Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nucleic Acids Res ; 49(16): e93, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34157105

RESUMO

Epigenetic changes, such as aberrant DNA methylation, contribute to cancer clonal expansion and disease progression. However, identifying subpopulation-level changes in a heterogeneous sample remains challenging. Thus, we have developed a computational approach, DXM, to deconvolve the methylation profiles of major allelic subpopulations from the bisulfite sequencing data of a heterogeneous sample. DXM does not require prior knowledge of the number of subpopulations or types of cells to expect. We benchmark DXM's performance and demonstrate improvement over existing methods. We further experimentally validate DXM predicted allelic subpopulation-methylation profiles in four Diffuse Large B-Cell Lymphomas (DLBCLs). Lastly, as proof-of-concept, we apply DXM to a cohort of 31 DLBCLs and relate allelic subpopulation methylation profiles to relapse. We thus demonstrate that DXM can robustly find allelic subpopulation methylation profiles that may contribute to disease progression using bisulfite sequencing data of any heterogeneous sample.


Assuntos
Algoritmos , Metilação de DNA , Linfoma Difuso de Grandes Células B/genética , Análise de Sequência de DNA/métodos , Linhagem Celular Tumoral , Epigenômica/métodos , Epigenômica/normas , Heterogeneidade Genética , Humanos , Análise de Sequência de DNA/normas
2.
Nucleic Acids Res ; 48(D1): D40-D44, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31428785

RESUMO

Epigenetic alterations, including 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) and nucleosome positioning (NP), in cell-free DNA (cfDNA) have been widely observed in human diseases, and many available cfDNA-based epigenome-wide profiles exhibit high sensitivity and specificity in disease detection and classification. However, due to the lack of efficient collection, standardized quality control, and analysis procedures, efficiently integrating and reusing these data remain considerable challenges. Here, we introduce CFEA (http://www.bio-data.cn/CFEA), a cell-free epigenome database dedicated to three types of widely adopted epigenetic modifications (5mC, 5hmC and NP) involved in 27 human diseases. We developed bioinformatic pipelines for quality control and standard data processing and an easy-to-use web interface to facilitate the query, visualization and download of these cell-free epigenome data. We also manually curated related biological and clinical information for each profile, allowing users to better browse and compare cfDNA epigenomes at a specific stage (such as early- or metastasis-stage) of cancer development. CFEA provides a comprehensive and timely resource to the scientific community and supports the development of liquid biopsy-based biomarkers for various human diseases.


Assuntos
Ácidos Nucleicos Livres , Bases de Dados Genéticas , Epigênese Genética , Epigenoma , Epigenômica/métodos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Biomarcadores , Biologia Computacional/métodos , Epigenômica/normas , Humanos , Software , Navegador
4.
Epigenetics ; 13(9): 941-958, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30232931

RESUMO

Accounting for cellular heterogeneity is essential in neonatal epigenome-wide association studies (EWAS) performed on heterogeneous tissues, such as umbilical cord tissue (CT) or cord blood (CB). Using a reference-panel-based statistical approach, the cell type composition of heterogeneous tissues can be estimated by comparison of whole tissue DNA methylation profiles with cell type-specific DNA methylation signatures. Currently, there is no adequate DNA methylation reference panel for CT, and existing CB panels have been generated on lower coverage Infinium HumanMethylation450 arrays. In this study, we generate a reference panel for CT and improve available CB panels by using the higher coverage Infinium MethylationEPIC arrays. We performed DNA methylation profiling of 9 cell types isolated from CT and CB samples from 14 neonates. In addition to these cell types, we profiled DNA methylation of unfractionated CT and CB. Cell type composition of these unfractionated tissue samples, as estimated by our reference panels, was in agreement with that obtained by flow cytometry. Expectedly, DNA methylation profiles from CT and CB were distinct, reflecting their mesenchymal and hematopoietic stem cell origins. Variable CpGs from both unfractionated CT and its isolated cell types were more likely to be located in open seas and intronic regions than those in CB. Cell type specific CpGs in CT were enriched in intercellular matrix pathways, while those from CB were enriched in immune-related pathways. This study provides an open source reference panel for estimation and adjustment of cellular heterogeneity in CT and CB, and broadens the scope of tissue utilization assessed in future neonatal EWAS studies.


Assuntos
Células Sanguíneas/metabolismo , Metilação de DNA , Epigenômica/normas , Sangue Fetal/metabolismo , Análise de Sequência de DNA/normas , Cordão Umbilical/metabolismo , Adulto , Ilhas de CpG , Feminino , Sangue Fetal/citologia , Humanos , Recém-Nascido , Especificidade de Órgãos , Gravidez , Padrões de Referência , Análise de Sequência de DNA/métodos , Cordão Umbilical/citologia
5.
RNA Biol ; 15(6): 829-831, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29671387

RESUMO

The genetic alphabet consists of the four letters: C, A, G, and T in DNA and C,A,G, and U in RNA. Triplets of these four letters jointly encode 20 different amino acids out of which proteins of all organisms are built. This system is universal and is found in all kingdoms of life. However, bases in DNA and RNA can be chemically modified. In DNA, around 10 different modifications are known, and those have been studied intensively over the past 20 years. Scientific studies on DNA modifications and proteins that recognize them gave rise to the large field of epigenetic and epigenomic research. The outcome of this intense research field is the discovery that development, ageing, and stem-cell dependent regeneration but also several diseases including cancer are largely controlled by the epigenetic state of cells. Consequently, this research has already led to the first FDA approved drugs that exploit the gained knowledge to combat disease. In recent years, the ~150 modifications found in RNA have come to the focus of intense research. Here we provide a perspective on necessary and expected developments in the fast expanding area of RNA modifications, termed epitranscriptomics.


Assuntos
DNA de Neoplasias , Epigênese Genética , Epigenômica/normas , Perfilação da Expressão Gênica/normas , Regulação Neoplásica da Expressão Gênica , Neoplasias , RNA Neoplásico , Transcriptoma , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Europa (Continente) , Perfilação da Expressão Gênica/métodos , Humanos , Neoplasias/genética , Neoplasias/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo
6.
São Paulo; s.n; s.n; 2018. 174 p. graf, tab, ilus.
Tese em Português | LILACS | ID: biblio-996534

RESUMO

O adenocarcinoma ductal pancreático (PDAC, pancreatic ductal adenocarcinoma), o tipo mais prevalente de câncer do pâncreas, é uma neoplasia extremamente agressiva e com elevado índice de letalidade. Há uma necessidade premente de identificação de vulnerabilidades no PDAC que possam ser exploradas como alvos terapêuticos, e a utilização de modelos pré-clínicos que recapitulem a complexidade biológica e heterogeneidade clínica da doença é um aspecto central para a realização dessa tarefa. Os xenotransplantes de tecido tumoral derivado de pacientes (PDX, patient-derived tumor tissue xenografts), realizados em camundongos imunodeficientes, replicam com grande similaridade as principais características do tumor original e, assim, constituem uma ferramenta valiosa para o teste de drogas e estudos funcionais. Neste trabalho, 17 amostras cirúrgicas de PDAC humano foram implantadas subcutaneamente em camundongos nude atímicos. Sete tumores (41%) foram enxertados com sucesso e têm sido mantidos em sucessivas gerações de animais receptores. O exame histológico de seis desses xenoenxertos identificou características morfológicas compatíveis com os padrões reconhecidos no PDAC humano, assim como uma consistente similaridade de seu status de diferenciação histológica em relação aos perfis verificados nos tumoresoriginais. O cultivo in vitro de células derivadas de um dos xenotumores resultou em uma nova linhagem de câncer de pâncreas, com morfologia e cinética de crescimento comparáveis às de outras linhagens celulares de câncer pancreático. O potencial tumorigênico dessa nova linhagem foi validado in vivo, com uma consistente formação de tumores após inoculação em camundongos nude. A fim de aproveitar esse recurso para a investigação de potenciais alvos terapêuticos no PDAC, um rastreamento de vulnerabilidades moleculares foi realizado por meio de silenciamento gênico em larga-escala com RNA de interferência (RNAi). Uma biblioteca lentiviral de 4492 shRNAs (short hairpin RNAs), alvejando cerca de 350 genes envolvidos na regulação epigenética, foi empregada para a triagem de genes de suscetibilidade nas células derivadas de PDX, e em outras cinco linhagens tumorais pancreáticas (AsPC-1, BxPC-3, Capan-1, MIA PaCa-2 e PANC-1). Inicialmente, foi realizada uma série de experimentos preliminares, visando à amplificação e controle de qualidade da biblioteca de silenciamento, à produção de vetores lentivirais e à padronização das condições experimentais para a transdução e seleção das células-alvo. Apenas três das linhagens avaliadas (AsPC-1, MIA PaCa-2 e PANC-1) mostraram-se permissíveis à transdução pelos vetores lentivirais, e foram assim utilizadas no screening de alvos epigenéticos. A análise dos dados obtidos nesse ensaio está em curso e os resultados serão utilizados para a definição de potenciais alvos candidatos. Em conclusão, recursos valiosos para apoiar a pesquisa sobre o câncer de pâncreas foram desenvolvidos. A coleção de PDXs estabelecida, bem como a linhagem celular recém-derivada, constituem uma fonte permanente e estável de células de PDAC para análises moleculares e estudos funcionais que busquem elucidar aspectos da doença ainda pouco compreendidos. Adicionalmente, os reagentes gerados e a expertise adquirida com os ensaiosrealizados com a biblioteca de shRNAs contra alvos epigenéticos serão de grande utilidade em futuras investigações para identificar genes com funções importantes na manutenção do fenótipo tumoral, e consequentemente com potencial para serem explorados terapeuticamente


Pancreatic ductal adenocarcinoma (PDAC), the most prevalent type of pancreatic cancer, is a highly aggressive and lethal neoplasm. There is a pressing need to identify vulnerabilities in PDAC suited to be exploited as therapeutic targets, and the use of preclinical models recapitulating the biological complexity and clinical heterogeneity of the disease is central to this task. Patient-derived tumor tissue xenografts (PDX), established in immunodeficient mice, replicate with great similarity the main characteristics of the original tumor and thus constitute a valuable tool for drug testing and functional studies. In this work, 17 surgical samples of human PDAC were implanted subcutaneously in athymic nude mice. Seven tumors (41%) were successfully grafted and have been maintained through successive generations of recipient animals. Histological examination of six of these xenografts identified morphological characteristics compatible with the recognized patterns of human PDAC, as well as a consistent similarity of their histological differentiation status in relation to the profiles verified in the original tumors. In vitro culture of cells derived from one of these xenografts resulted in a new pancreatic cancer cell line, with morphology and growth kinetics comparable to those of other pancreatic tumor cells. The tumorigenic potential of this freshly derived cell line was validated in vivo, with a consistent tumor formation following inoculation into nude mice. To take advantage ofthis resource to investigate potential therapeutic targets in PDAC, a screening of molecular vulnerabilities was performed through large-scale gene silencing with RNA interference (RNAi). A lentiviral library containing 4492 short hairpin RNAs (shRNAs), targeting about 350 genes involved in epigenetic regulation, was employed for the search of susceptibility genes in the PDX-derived cells and in other five pancreatic tumor cell lines (AsPC-1, BxPC -3, Capan-1, MIA PaCa-2 and PANC-1). Initially, a series of preliminary experiments were carried out aiming at the amplification and quality control of the silencing library, production of lentiviral vectors and adjustment of the experimental conditions for transduction and selection of the target cells. Only three of the cell lines evaluated (AsPC-1, MIA PaCa-2 and PANC-1) were permissible for transduction by the lentiviral vectors, and were accordingly used in the screening of epigenetic targets. The analysis of data obtained in this trial is ongoing and the results will be used for definition of potential candidate targets. In conclusion, valuable resources to support research on pancreatic cancer have been developed. The established collection of PDXs as well as the newly derived cell line constitutes a permanent and stable source of PDAC cells for molecular analyzes and functional studies seeking to elucidate aspects of this disease that are still poorly understood. Additionally, both the reagents generated and the expertise gained from the RNAi assay against epigenetic targets will have inordinate usefulness in future investigations to identify genes with major functions in maintaining the malignant phenotype, and consequently with the potential to be exploited therapeutically


Assuntos
Animais , Feminino , Camundongos , Neoplasias Pancreáticas/fisiopatologia , Linhagem Celular Tumoral/classificação , Xenoenxertos/metabolismo , Transplante Heterólogo/instrumentação , Biblioteca Gênica , RNA Interferente Pequeno , Interferência de RNA , Epigenômica/normas
7.
Epigenomics ; 9(11): 1437-1454, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28882057

RESUMO

AIM: This is the first systematic study to examine the population differentiation effect of DNA methylation on the treatment response and drug absorption, distribution, metabolism and excretion in multiple tissue types and cancer types. MATERIALS & METHODS: We analyzed the whole methylome and transcriptome data of primary tumor tissues of four cancer types (breast, colon, head & neck and uterine corpus) and lymphoblastoid cell lines for African and European ancestry populations. RESULTS: Ethnicity-associated CpG sites exhibited similar methylation patterns in the two studied populations, but the patterns differed between tumor tissues and lymphoblastoid cell lines. Ethnicity-associated CpG sites may have triggered gene expression, influenced drug absorption, distribution, metabolism and excretion, and showed tumor-specific patterns of methylation and gene regulation. CONCLUSION: Ethnicity should be carefully accounted for in future pharmacoepigenetics research.


Assuntos
Antineoplásicos/farmacocinética , População Negra/genética , Metilação de DNA , Epigênese Genética , Neoplasias/genética , Farmacogenética/normas , População Branca/genética , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Ilhas de CpG , Epigenômica/normas , Feminino , Humanos , Masculino , Taxa de Depuração Metabólica , Neoplasias/tratamento farmacológico , Neoplasias/etnologia , Distribuição Tecidual
8.
Epigenomics ; 9(3): 351-367, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28234021

RESUMO

Maternal smoking and micronutrient intake during pregnancy are two strong biological candidates for impacting the developing epigenome. The extent to which DNA methylation in offspring is modified by these intrauterine exposures has not been presented in parallel. In this review, we summarize human studies which have investigated genome-wide DNA methylation in the offspring in relation to maternal smoking and one-carbon micronutrient exposure during pregnancy. We contrast the primarily independent efforts for these two categories of exposure, and potential explanations for these differences. We emphasize methodological considerations such as power to detect methylation signals, exposure assessment, control of sources of variability, causal inference and the role of observed methylation changes in mediating downstream outcomes in the offspring.


Assuntos
Metilação de DNA/efeitos dos fármacos , Desenvolvimento Embrionário , Micronutrientes/genética , Fumar/genética , Epigenômica/métodos , Epigenômica/normas , Feminino , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/normas , Humanos , Micronutrientes/deficiência , Micronutrientes/farmacologia , Gravidez , Fumar/efeitos adversos
9.
Epigenomics ; 9(3): 253-265, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28234025

RESUMO

AIMS: Assessing whether epigenetic alterations mediate associations between environmental exposures and health outcomes is increasingly popular. We investigate the impact of exposure misclassification in such investigations. MATERIALS & METHODS: We quantify bias and false-positive rates due to exposure misclassification in mediation analysis and assess the performance of the simulation extrapolation method (SIMEX). We evaluate whether DNA-methylation mediates smoking-birth weight relationship in the Norwegian Mother and Child Study birth cohort. RESULTS: Ignoring exposure misclassification increases type I error in mediation analysis. The direct effect is underestimated and, when the mediator is a biomarker of the exposure, as is true for smoking, the indirect effect is overestimated. CONCLUSION: Misclassification correction plus cautious interpretation are recommended for mediation analyses in the presence of exposure misclassification.


Assuntos
Peso ao Nascer/genética , Metilação de DNA , Epigenômica/normas , Retardo do Crescimento Fetal/genética , Estudo de Associação Genômica Ampla/normas , Fumar/epidemiologia , Adulto , Viés , Epigenômica/métodos , Reações Falso-Positivas , Feminino , Retardo do Crescimento Fetal/epidemiologia , Estudo de Associação Genômica Ampla/métodos , Humanos , Recém-Nascido , Fumar/efeitos adversos , Fumar/genética
10.
Genome Biol ; 18(1): 19, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-28129774

RESUMO

We show that epigenome- and transcriptome-wide association studies (EWAS and TWAS) are prone to significant inflation and bias of test statistics, an unrecognized phenomenon introducing spurious findings if left unaddressed. Neither GWAS-based methodology nor state-of-the-art confounder adjustment methods completely remove bias and inflation. We propose a Bayesian method to control bias and inflation in EWAS and TWAS based on estimation of the empirical null distribution. Using simulations and real data, we demonstrate that our method maximizes power while properly controlling the false positive rate. We illustrate the utility of our method in large-scale EWAS and TWAS meta-analyses of age and smoking.


Assuntos
Viés , Epigênese Genética , Epigenômica/métodos , Estudo de Associação Genômica Ampla/métodos , Transcriptoma , Fatores Etários , Teorema de Bayes , Epigenômica/normas , Humanos , Metanálise como Assunto , Fumar
12.
J Mol Diagn ; 18(3): 350-361, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26927331

RESUMO

The methylation status of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene is an important predictive biomarker for benefit from alkylating agent therapy in glioblastoma. Our model MGMT-STP27 allows prediction of the methylation status of the MGMT promoter using data from the Illumina's Human Methylation BeadChips (HM-27K and HM-450K) that is publically available for many cancer data sets. Here, we investigate the impact of the context of genetic and epigenetic alterations and tumor type on the classification and report on technical aspects, such as robustness of cutoff definition and preprocessing of the data. The association between gene copy number variation, predicted MGMT methylation, and MGMT expression revealed a gene dosage effect on MGMT expression in lower grade glioma (World Health Organization grade II/III) that in contrast to glioblastoma usually carry two copies of chromosome 10 on which MGMT resides (10q26.3). This implies some MGMT expression, potentially conferring residual repair function blunting the therapeutic effect of alkylating agents. A sensitivity analyses corroborated the performance of the original cutoff for various optimization criteria and for most data preprocessing methods. Finally, we propose an R package mgmtstp27 that allows prediction of the methylation status of the MGMT promoter and calculation of appropriate confidence and/or prediction intervals. Overall, MGMT-STP27 is a robust model for MGMT classification that is independent of tumor type and is adapted for single sample prediction.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Epigenômica/métodos , Genômica/métodos , Glioma/diagnóstico , Glioma/genética , Proteínas Supressoras de Tumor/genética , Biomarcadores , Variações do Número de Cópias de DNA , Epigenômica/normas , Expressão Gênica , Genômica/normas , Humanos , Regiões Promotoras Genéticas , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Sci Rep ; 5: 15375, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26482909

RESUMO

Two cost-efficient genome-scale methodologies to assess DNA-methylation are MethylCap-seq and Illumina's Infinium HumanMethylation450 BeadChips (HM450). Objective information regarding the best-suited methodology for a specific research question is scant. Therefore, we performed a large-scale evaluation on a set of 70 brain tissue samples, i.e. 65 glioblastoma and 5 non-tumoral tissues. As MethylCap-seq coverages were limited, we focused on the inherent capacity of the methodology to detect methylated loci rather than a quantitative analysis. MethylCap-seq and HM450 data were dichotomized and performances were compared using a gold standard free Bayesian modelling procedure. While conditional specificity was adequate for both approaches, conditional sensitivity was systematically higher for HM450. In addition, genome-wide characteristics were compared, revealing that HM450 probes identified substantially fewer regions compared to MethylCap-seq. Although results indicated that the latter method can detect more potentially relevant DNA-methylation, this did not translate into the discovery of more differentially methylated loci between tumours and controls compared to HM450. Our results therefore indicate that both methodologies are complementary, with a higher sensitivity for HM450 and a far larger genome-wide coverage for MethylCap-seq, but also that a more comprehensive character does not automatically imply more significant results in biomarker studies.


Assuntos
Metilação de DNA , Epigênese Genética , Epigenômica , Estudo de Associação Genômica Ampla , Alelos , Estudos de Casos e Controles , Biologia Computacional/métodos , Ilhas de CpG , Epigenômica/métodos , Epigenômica/normas , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/normas , Glioblastoma/genética , Humanos , Anotação de Sequência Molecular , Sensibilidade e Especificidade
14.
Epigenomics ; 6(6): 603-22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25531255

RESUMO

DNA methylation is a stable covalent epigenetic modification of primarily CpG dinucleotides that has recently gained considerable attention for its use as a biomarker in different clinical settings, including disease diagnosis, prognosis and therapeutic response prediction. Although the advent of genome-wide DNA methylation profiling in primary disease tissue has provided a manifold resource for biomarker development, only a tiny fraction of DNA methylation-based assays have reached clinical testing. Here, we provide a critical overview of different analytical methods that are suitable for biomarker validation, including general study design considerations, which might help to streamline epigenetic marker development. Furthermore, we highlight some of the recent marker validation studies and established markers that are currently commercially available for assisting in clinical management of different cancers.


Assuntos
Metilação de DNA , Epigenômica/métodos , Epigenômica/normas , Neoplasias/genética , Biomarcadores , Ilhas de CpG , Epigênese Genética , Guias como Assunto , Humanos , Neoplasias/sangue , Estudos de Validação como Assunto
15.
BMC Vet Res ; 8: 30, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22424615

RESUMO

BACKGROUND: Sarcoids are peculiar equine benign tumours. Their onset is associated with Bovine Papillomavirus type -1 or -2 (BPV-1/2) infection. Little is known about the molecular interplay between viral infection and neoplastic transformation. The data regarding papillomavirus infections in human species show the inactivation of a number of tumour suppressor genes as basic mechanism of transformation. In this study the putative role of the tumour suppressor gene Fragile Histidine Triad (FHIT) in sarcoid tumour was investigated in different experimental models. The expression of the oncosuppressor protein was assessed in normal and sarcoid cells and tissue. RESULTS: Nine paraffin embedded sarcoids and sarcoid derived cell lines were analysed for the expression of FHIT protein by immunohistochemistry, immunofluorescence techniques and western blotting. These analyses revealed the absence of signal in seven out of nine sarcoids. The two sarcoid derived cell lines too showed a reduced signal of the protein. To investigate the causes of the altered protein expression, the samples were analysed for the DNA methylation profile of the CpG island associated with the FHIT promoter. The analysis of the 32 CpGs encompassing the region of interest showed no significative differential methylation profile between pathological tissues and cell lines and their normal counterparts. CONCLUSION: This study represent a further evidence of the role of a tumour suppressor gene in equine sarcoids and approaches the epigenetic regulation in this well known equine neoplasm. The data obtained in sarcoid tissues and sarcoid derived cell lines suggest that also in horse, as in humans, there is a possible involvement of the tumour suppressor FHIT gene in BPV induced tumours. DNA methylation seems not to be involved in the gene expression alteration. Further studies are needed to understand the basic molecular mechanisms involved in reduced FHIT expression.


Assuntos
Hidrolases Anidrido Ácido/genética , Papillomavirus Bovino 1/genética , Epigenômica/normas , Doenças dos Cavalos/genética , Proteínas de Neoplasias/genética , Infecções por Papillomavirus/veterinária , Neoplasias Cutâneas/veterinária , Hidrolases Anidrido Ácido/metabolismo , Fatores Etários , Animais , Papillomavirus Bovino 1/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Doenças dos Cavalos/metabolismo , Doenças dos Cavalos/virologia , Cavalos , Imuno-Histoquímica/veterinária , Proteínas de Neoplasias/metabolismo , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , RNA Neoplásico/química , RNA Neoplásico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/virologia
16.
Int J Epidemiol ; 40(3): 537-62, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21807641

RESUMO

Epidemiologists aim to identify modifiable causes of disease, this often being a prerequisite for the application of epidemiological findings in public health programmes, health service planning and clinical medicine. Despite successes in identifying causes, it is often claimed that there are missing additional causes for even reasonably well-understood conditions such as lung cancer and coronary heart disease. Several lines of evidence suggest that largely chance events, from the biographical down to the sub-cellular, contribute an important stochastic element to disease risk that is not epidemiologically tractable at the individual level. Epigenetic influences provide a fashionable contemporary explanation for such seemingly random processes. Chance events-such as a particular lifelong smoker living unharmed to 100 years-are averaged out at the group level. As a consequence population-level differences (for example, secular trends or differences between administrative areas) can be entirely explicable by causal factors that appear to account for only a small proportion of individual-level risk. In public health terms, a modifiable cause of the large majority of cases of a disease may have been identified, with a wild goose chase continuing in an attempt to discipline the random nature of the world with respect to which particular individuals will succumb. The quest for personalized medicine is a contemporary manifestation of this dream. An evolutionary explanation of why randomness exists in the development of organisms has long been articulated, in terms of offering a survival advantage in changing environments. Further, the basic notion that what is near-random at one level may be almost entirely predictable at a higher level is an emergent property of many systems, from particle physics to the social sciences. These considerations suggest that epidemiological approaches will remain fruitful as we enter the decade of the epigenome.


Assuntos
Atenção à Saúde/tendências , Epidemiologia/tendências , Epigenômica/tendências , Saúde Pública/tendências , Atenção à Saúde/normas , Fatores Epidemiológicos , Epidemiologia/normas , Epigenômica/normas , Feminino , Previsões , Humanos , Masculino , Medicina de Precisão , Saúde Pública/normas , Distribuição Aleatória , Projetos de Pesquisa , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA