Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Endocrinol Metab ; 107(1): 150-166, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34487152

RESUMO

CONTEXT: Chronic glucocorticoid (GC) overexposure, resulting from endogenous Cushing's syndrome (CS) or exogenous GC therapy, causes several adverse outcomes, including persistent central fat accumulation associated with a low-grade inflammation. However, no previous multiomics studies in visceral adipose tissue (VAT) from patients exposed to high levels of unsuppressed GC during active CS or after remission are available yet. OBJECTIVE: To determine the persistent VAT transcriptomic alterations and epigenetic fingerprints induced by chronic hypercortisolism. METHODS: We employed a translational approach combining high-throughput data on endogenous CS patients and a reversible CS mouse model. We performed RNA sequencing and chromatin immunoprecipitation sequencing on histone modifications (H3K4me3, H3K27ac, and H3K27me3) to identify persistent transcriptional and epigenetic signatures in VAT produced during active CS and maintained after remission. RESULTS: VAT dysfunction was associated with low-grade proinflammatory status, macrophage infiltration, and extracellular matrix remodeling. Most notably, chronic hypercortisolism caused a persistent circadian rhythm disruption in VAT through core clock genes modulation. Importantly, changes in the levels of 2 histone modifications associated to gene transcriptional activation (H3K4me3 and H3K27ac) correlated with the observed differences in gene expression during active CS and after CS remission. CONCLUSION: We identified for the first time the persistent transcriptional and epigenetic signatures induced by hypercortisolism in VAT, providing a novel integrated view of molecular components driving the long-term VAT impairment associated with CS.


Assuntos
Neoplasias das Glândulas Suprarrenais/complicações , Síndrome de Cushing/metabolismo , Glucocorticoides/efeitos adversos , Gordura Intra-Abdominal/imunologia , Obesidade Abdominal/genética , Administração Oral , Neoplasias das Glândulas Suprarrenais/diagnóstico , Neoplasias das Glândulas Suprarrenais/imunologia , Neoplasias das Glândulas Suprarrenais/urina , Adulto , Animais , Biópsia , Sequenciamento de Cromatina por Imunoprecipitação , Corticosterona/administração & dosagem , Corticosterona/efeitos adversos , Estudos Transversais , Síndrome de Cushing/imunologia , Síndrome de Cushing/patologia , Modelos Animais de Doenças , Epigenoma/efeitos dos fármacos , Epigenoma/imunologia , Feminino , Glucocorticoides/administração & dosagem , Glucocorticoides/metabolismo , Humanos , Hidrocortisona/metabolismo , Hidrocortisona/urina , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Obesidade Abdominal/imunologia , Obesidade Abdominal/patologia , RNA-Seq , Transcriptoma/efeitos dos fármacos , Transcriptoma/imunologia
2.
Front Immunol ; 12: 625881, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717140

RESUMO

T cells play a critical role in coronavirus diseases. How they do so in COVID-19 may be revealed by analyzing the epigenetic chromatin accessibility of cis- and trans-regulatory elements and creating transcriptomic immune profiles. We performed single-cell assay for transposase-accessible chromatin (scATAC) and single-cell RNA (scRNA) sequencing (seq) on the peripheral blood mononuclear cells (PBMCs) of severely ill/critical patients (SCPs) infected with COVID-19, moderate patients (MPs), and healthy volunteer controls (HCs). About 76,570 and 107,862 single cells were used, respectively, for analyzing the characteristics of chromatin accessibility and transcriptomic immune profiles by the application of scATAC-seq (nine cases) and scRNA-seq (15 cases). The scATAC-seq detected 28,535 different peaks in the three groups; among these peaks, 41.6 and 10.7% were located in the promoter and enhancer regions, respectively. Compared to HCs, among the peak-located genes in the total T cells and its subsets, CD4+ T and CD8+ T cells, from SCPs and MPs were enriched with inflammatory pathways, such as mitogen-activated protein kinase (MAPK) signaling pathway and tumor necrosis factor (TNF) signaling pathway. The motifs of TBX21 were less accessible in the CD4+ T cells of SCPs compared with those in MPs. Furthermore, the scRNA-seq showed that the proportion of T cells, especially the CD4+ T cells, was decreased in SCPs and MPs compared with those in HCs. Transcriptomic results revealed that histone-related genes, and inflammatory genes, such as NFKBIA, S100A9, and PIK3R1, were highly expressed in the total T cells, CD4+ T and CD8+ T cells, both in the cases of SCPs and MPs. In the CD4+ T cells, decreased T helper-1 (Th1) cells were observed in SCPs and MPs. In the CD8+T cells, activation markers, such as CD69 and HLA class II genes (HLA-DRA, HLA-DRB1, and HLA-DRB5), were significantly upregulated in SCPs. An integrated analysis of the data from scATAC-seq and scRNA-seq showed some consistency between the approaches. Cumulatively, we have generated a landscape of chromatin epigenetic status and transcriptomic immune profiles of T cells in patients with COVID-19. This has provided a deeper dissection of the characteristics of the T cells involved at a higher resolution than from previously obtained data merely by the scRNA-seq analysis. Our data led us to suggest that the T-cell inflammatory states accompanied with defective functions in the CD4+ T cells of SCPs may be the key factors for determining the pathogenesis of and recovery from COVID-19.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , COVID-19/imunologia , Cromatina/metabolismo , SARS-CoV-2/fisiologia , COVID-19/genética , Calgranulina B/genética , Cromatina/genética , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Epigenoma/imunologia , Perfilação da Expressão Gênica , Humanos , Imunidade Celular/genética , Inflamação/genética , Ativação Linfocitária , Inibidor de NF-kappaB alfa/genética , Análise de Sequência de RNA , Análise de Célula Única , Transposases/metabolismo , Regulação para Cima
3.
BMC Cancer ; 20(1): 588, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576165

RESUMO

BACKGROUND: Prostate Cancer (PCa) is the second most common cancer in men where advancements have been made for early detection using imaging techniques, however these are limited by lesion size. Immune surveillance has emerged as an effective approach for early detection and to monitor disease progression. In recent studies, we have shown that host peripheral blood immune cells undergo changes in DNA methylation in liver and breast cancer. METHODS: In the current study, we examined the DNA methylation status of peripheral blood T cells of men with positive biopsy for PCa versus men with negative biopsy having benign prostate tissue, defined as controls. T cells DNA was isolated and subjected to Illumina Infinium methylation EPIC array and validated using Illumina amplicon sequencing and pyrosequencing platforms. RESULTS: Differential methylation of 449 CG sites between control and PCa T cell DNA showed a correlation with Gleason score (p < 0.05). Two hundred twenty-three differentially methylated CGs between control and PCa (Ƨ +/- 10%, p < 0.05), were enriched in pathways involved in immune surveillance system. Three CGs which were found differentially methylated following DMP (Differentially methylated probes) analysis of ChAMP remained significant after BH (Benjamini-Hochberg) correction, of which, 2 CGs were validated. Predictive ability of combination of these 3 CGs (polygenic methylation score, PMS) to detect PCa had high sensitivity, specificity and overall accuracy. PMS also showed strong positive correlation with Gleason score and tumor volume of PCa patients. CONCLUSIONS: Results from the current study provide for the first-time a potential role of DNA methylation changes in peripheral T cells in PCa. This non-invasive methodology may allow for early intervention and stratification of patients into different prognostic groups to reduce PCa associated morbidity from repeat invasive prostate biopsies and design therapeutic strategy to reduce PCa associated mortality.


Assuntos
Metilação de DNA/imunologia , Epigenômica/métodos , Vigilância Imunológica/genética , Neoplasias da Próstata/diagnóstico , Linfócitos T/imunologia , Biópsia , Estudos de Casos e Controles , Epigenoma/imunologia , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Prognóstico , Próstata/patologia , Neoplasias da Próstata/sangue , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Sensibilidade e Especificidade , Análise de Sequência de DNA , Carga Tumoral
4.
Blood ; 136(17): 1980-1983, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32518951
5.
Immunology ; 161(3): 165-174, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32418209

RESUMO

Metabolites are the essential substrates for epigenetic modification enzymes to write or erase the epigenetic blueprint in cells. Hence, the availability of nutrients and activity of metabolic pathways strongly influence the enzymatic function. Recent studies have shed light on the choreography between metabolome and epigenome in the control of immune cell differentiation and function, with a major focus on histone modifications. Yet, despite its importance in gene regulation, DNA methylation and its relationship with metabolism is relatively unclear. In this review, we will describe how the metabolic flux can influence epigenetic networks in innate and adaptive immune cells, with a focus on the DNA methylation cycle and the metabolites S-adenosylmethionine and α-ketoglutarate. Future directions will be discussed for this rapidly emerging field.


Assuntos
Ciclo do Ácido Cítrico/imunologia , Epigenoma/imunologia , Metaboloma/imunologia , Imunidade Adaptativa , Animais , Metilação de DNA , Epigênese Genética , Humanos , Imunidade Inata , Ácidos Cetoglutáricos/metabolismo , S-Adenosilmetionina/metabolismo
6.
Cancer Discov ; 10(3): 440-459, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31915197

RESUMO

CREBBP mutations are highly recurrent in B-cell lymphomas and either inactivate its histone acetyltransferase (HAT) domain or truncate the protein. Herein, we show that these two classes of mutations yield different degrees of disruption of the epigenome, with HAT mutations being more severe and associated with inferior clinical outcome. Genes perturbed by CREBBP mutation are direct targets of the BCL6-HDAC3 onco-repressor complex. Accordingly, we show that HDAC3-selective inhibitors reverse CREBBP-mutant aberrant epigenetic programming, resulting in: (i) growth inhibition of lymphoma cells through induction of BCL6 target genes such as CDKN1A and (ii) restoration of immune surveillance due to induction of BCL6-repressed IFN pathway and antigen-presenting genes. By reactivating these genes, exposure to HDAC3 inhibitors restored the ability of tumor-infiltrating lymphocytes to kill DLBCL cells in an MHC class I and II-dependent manner, and synergized with PD-L1 blockade in a syngeneic model in vivo. Hence, HDAC3 inhibition represents a novel mechanism-based immune epigenetic therapy for CREBBP-mutant lymphomas. SIGNIFICANCE: We have leveraged the molecular characterization of different types of CREBBP mutations to define a rational approach for targeting these mutations through selective inhibition of HDAC3. This represents an attractive therapeutic avenue for targeting synthetic vulnerabilities in CREBBP-mutant cells in tandem with promoting antitumor immunity.This article is highlighted in the In This Issue feature, p. 327.


Assuntos
Proteína de Ligação a CREB/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Histona Desacetilases/genética , Linfoma/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Epigenoma/genética , Epigenoma/imunologia , Genes MHC Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Histona Acetiltransferases/genética , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/efeitos dos fármacos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/imunologia , Interferons/genética , Interferons/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfoma/tratamento farmacológico , Linfoma/imunologia , Linfoma/patologia , Camundongos , Mutação/genética , Transdução de Sinais/efeitos dos fármacos
7.
J Allergy Clin Immunol ; 145(6): 1655-1663, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31953105

RESUMO

BACKGROUND: Epigenetic signatures in the nasal epithelium, which is a primary interface with the environment and an accessible proxy for the bronchial epithelium, might provide insights into mechanisms of allergic disease. OBJECTIVE: We aimed to identify and interpret methylation signatures in nasal epithelial brushes associated with rhinitis and asthma. METHODS: Nasal epithelial brushes were obtained from 455 children at the 16-year follow-up of the Dutch Prevention and Incidence of Asthma and Mite Allergy birth cohort study. Epigenome-wide association studies were performed on children with asthma, rhinitis, and asthma and/or rhinitis (AsRh) by using logistic regression, and the top results were replicated in 2 independent cohorts of African American and Puerto Rican children. Significant CpG sites were related to environmental exposures (pets, active and passive smoking, and molds) during secondary school and were correlated with gene expression by RNA-sequencing (n = 244). RESULTS: The epigenome-wide association studies identified CpG sites significantly associated with rhinitis (n = 81) and AsRh (n = 75), but not with asthma. We significantly replicated 62 of 81 CpG sites with rhinitis and 60 of 75 with AsRh, as well as 1 CpG site with asthma. Methylation of cg03565274 was negatively associated with AsRh and positively associated with exposure to pets during secondary school. DNA methylation signals associated with AsRh were mainly driven by specific IgE-positive subjects. DNA methylation related to gene transcripts that were enriched for immune pathways and expressed in immune and epithelial cells. Nasal CpG sites performed well in predicting AsRh. CONCLUSIONS: We identified replicable DNA methylation profiles of asthma and rhinitis in nasal brushes. Exposure to pets may affect nasal epithelial methylation in relation to asthma and rhinitis.


Assuntos
Asma/genética , Metilação de DNA/genética , Mucosa Nasal/imunologia , Rinite/genética , Adolescente , Negro ou Afro-Americano/genética , Asma/imunologia , Criança , Estudos de Coortes , Ilhas de CpG/genética , Ilhas de CpG/imunologia , Metilação de DNA/imunologia , Epigênese Genética/genética , Epigênese Genética/imunologia , Epigenoma/genética , Epigenoma/imunologia , Epigenômica/métodos , Células Epiteliais/imunologia , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Imunoglobulina E/genética , Masculino , Mucosa Respiratória/imunologia , Rinite/imunologia
8.
Ann Rheum Dis ; 78(11): 1505-1516, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31371305

RESUMO

OBJECTIVE: Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that mainly targets joints. Monocytes and macrophages are critical in RA pathogenesis and contribute to inflammatory lesions. These extremely plastic cells respond to extracellular signals which cause epigenomic changes that define their pathogenic phenotype. Here, we interrogated how DNA methylation alterations in RA monocytes are determined by extracellular signals. METHODS: High-throughput DNA methylation analyses of patients with RA and controls and in vitro cytokine stimulation were used to investigate the underlying mechanisms behind DNA methylation alterations in RA as well as their relationship with clinical parameters, including RA disease activity. RESULTS: The DNA methylomes of peripheral blood monocytes displayed significant changes and increased variability in patients with RA with respect to healthy controls. Changes in the monocyte methylome correlate with DAS28, in which high-activity patients are divergent from healthy controls in contrast to remission patients whose methylome is virtually identical to healthy controls. Indeed, the notion of a changing monocyte methylome is supported after comparing the profiles of same individuals at different stages of activity. We show how these changes are mediated by an increase in disease activity-associated cytokines, such as tumour necrosis factor alpha and interferons, as they recapitulate the DNA methylation changes observed in patients in vitro. CONCLUSION: We demonstrate a direct link between RA disease activity and the monocyte methylome through the action of inflammation-associated cytokines. Finally, we have obtained a DNA methylation-based mathematical formula that predicts inflammation-mediated disease activity for RA and other chronic immune-mediated inflammatory diseases.


Assuntos
Artrite Reumatoide/sangue , Artrite Reumatoide/genética , Citocinas/sangue , Epigenoma/imunologia , Mediadores da Inflamação/sangue , Biomarcadores/sangue , Metilação de DNA/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA