Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Epilepsia ; 65(3): 779-791, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38088023

RESUMO

OBJECTIVE: Epilepsy with eyelid myoclonia (EEM) spectrum is a generalized form of epilepsy characterized by eyelid myoclonia with or without absences, eye closure-induced seizures with electroencephalographic paroxysms, and photosensitivity. Based on the specific clinical features, age at onset, and familial occurrence, a genetic cause has been postulated. Pathogenic variants in CHD2, SYNGAP1, NEXMIF, RORB, and GABRA1 have been reported in individuals with photosensitivity and eyelid myoclonia, but whether other genes are also involved, or a single gene is uniquely linked with EEM, or its subtypes, is not yet known. We aimed to dissect the genetic etiology of EEM. METHODS: We studied a cohort of 105 individuals by using whole exome sequencing. Individuals were divided into two groups: EEM- (isolated EEM) and EEM+ (EEM accompanied by intellectual disability [ID] or any other neurodevelopmental/psychiatric disorder). RESULTS: We identified nine variants classified as pathogenic/likely pathogenic in the entire cohort (8.57%); among these, eight (five in CHD2, one in NEXMIF, one in SYNGAP1, and one in TRIM8) were found in the EEM+ subcohort (28.57%). Only one variant (IFIH1) was found in the EEM- subcohort (1.29%); however, because the phenotype of the proband did not fit with published data, additional evidence is needed before considering IFIH1 variants and EEM- an established association. Burden analysis did not identify any single burdened gene or gene set. SIGNIFICANCE: Our results suggest that for EEM, as for many other epilepsies, the identification of a genetic cause is more likely with comorbid ID and/or other neurodevelopmental disorders. Pathogenic variants were mostly found in CHD2, and the association of CHD2 with EEM+ can now be considered a reasonable gene-disease association. We provide further evidence to strengthen the association of EEM+ with NEXMIF and SYNGAP1. Possible new associations between EEM+ and TRIM8, and EEM- and IFIH1, are also reported. Although we provide robust evidence for gene variants associated with EEM+, the core genetic etiology of EEM- remains to be elucidated.


Assuntos
Epilepsia Generalizada , Epilepsia Reflexa , Mioclonia , Humanos , Sequenciamento do Exoma , Helicase IFIH1 Induzida por Interferon/genética , Epilepsia Reflexa/genética , Eletroencefalografia , Pálpebras , Proteínas de Transporte/genética , Proteínas do Tecido Nervoso/genética
2.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069426

RESUMO

Epilepsy is one of the common neurological diseases that affects not only adults but also infants and children. Because epilepsy has been studied for a long time, there are several pharmacologically effective anticonvulsants, which, however, are not suitable as therapy for all patients. The genesis of epilepsy has been extensively investigated in terms of its occurrence after injury and as a concomitant disease with various brain diseases, such as tumors, ischemic events, etc. However, in the last decades, there are multiple reports that both genetic and epigenetic factors play an important role in epileptogenesis. Therefore, there is a need for further identification of genes and loci that can be associated with higher susceptibility to epileptic seizures. Use of mouse knockout models of epileptogenesis is very informative, but it has its limitations. One of them is due to the fact that complete deletion of a gene is not, in many cases, similar to human epilepsy-associated syndromes. Another approach to generating mouse models of epilepsy is N-Ethyl-N-nitrosourea (ENU)-directed mutagenesis. Recently, using this approach, we generated a novel mouse strain, soc (socrates, formerly s8-3), with epileptiform activity. Using molecular biology methods, calcium neuroimaging, and immunocytochemistry, we were able to characterize the strain. Neurons isolated from soc mutant brains retain the ability to differentiate in vitro and form a network. However, soc mutant neurons are characterized by increased spontaneous excitation activity. They also demonstrate a high degree of Ca2+ activity compared to WT neurons. Additionally, they show increased expression of NMDA receptors, decreased expression of the Ca2+-conducting GluA2 subunit of AMPA receptors, suppressed expression of phosphoinositol 3-kinase, and BK channels of the cytoplasmic membrane involved in protection against epileptogenesis. During embryonic and postnatal development, the expression of several genes encoding ion channels is downregulated in vivo, as well. Our data indicate that soc mutation causes a disruption of the excitation-inhibition balance in the brain, and it can serve as a mouse model of epilepsy.


Assuntos
Epilepsia Reflexa , Criança , Animais , Humanos , Camundongos , Epilepsia Reflexa/genética , Epilepsia Reflexa/metabolismo , Etilnitrosoureia/toxicidade , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Anticonvulsivantes/farmacologia , Encéfalo/metabolismo , Modelos Animais de Doenças
3.
Biochemistry (Mosc) ; 88(4): 481-490, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37080934

RESUMO

Neuroinflammation plays an important role in epileptogenesis, however, most studies are performed using pharmacological models of epilepsy, while there are only few data available for non-invasive, including genetic, models. The levels of a number of pro-inflammatory cytokines were examined in the Krushinsky-Molodkina (KM) rat strain with high audiogenic epilepsy (AE) proneness (intense tonic seizure fit in response to loud sound) and in the control strain "0" (not predisposed to AE) using multiplex immunofluorescence magnetic assay (MILLIPLEX map Kit). Cytokine levels were determined in the dorsal striatum tissue and in the brain stem. Background levels of IL-1ß, IL-6, and TNF-α in the dorsal striatum of the KM rats were significantly lower than in the rats "0" (by 32.31, 27.84, and 38.87%, respectively, p < 0.05, 0.05, and 0.01), whereas no inter-strain differences in the levels of these metabolites were detected in the brain stem in the "background" state. Four hours after sound exposure, the TNF-α level in the dorsal striatum of the KM rats was significantly lower (by 38.34%, p < 0.01) than in the "0" rats. In the KM rats, the dorsal striatal levels of IL-1ß and IL-6 were significantly higher after the sound exposure and subsequent seizure fit, compared to the background (35.29 and 50.21% increase, p < 0.05, 0.01, respectively). In the background state the IL-2 level in the KM rats was not detected, whereas after audiogenic seizures its level was 14.01 pg/ml (significant difference, p < 0.01). In the KM rats the brain stem levels of IL-1ß and TNF-α after audiogenic seizures were significantly lower than in the background (13.23 and 23.44% decrease, respectively, p < 0.05). In the rats of the "0" strain, the levels of cytokines in the dorsal striatum after the action of sound (which did not induce AE seizures) were not different from those of the background, while in the brain stem of the "0" strain the levels of IL-1ß were lower than in the background (40.28%, p < 0.01). Thus, the differences between the background levels of cytokines and those after the action of sound were different in the rats with different proneness to AE. These data suggest involvement of the analyzed cytokines in pathophysiology of the seizure state, namely in AE seizures.


Assuntos
Epilepsia Reflexa , Humanos , Epilepsia Reflexa/complicações , Epilepsia Reflexa/genética , Citocinas , Fator de Necrose Tumoral alfa , Doenças Neuroinflamatórias , Interleucina-6 , Convulsões/metabolismo
4.
Ital J Pediatr ; 47(1): 137, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34118959

RESUMO

Eating epilepsy (EE) is a form of reflex epilepsy in which seizures are triggered by eating. It is a rare condition but a high prevalence has been reported in Sri Lanka. In EE, the ictal semiology includes focal seizures with or without secondary generalization or generalized seizures. Some cases are idiopathic while focal structural changes on imaging, if present, are often confined to the temporal lobe or perisylvian region. On the other hand, some cases support the hypothesis of a genetic aetiology. The prognosis of EE is extremely variable due to the different nature of the underlying disorder. We describe two patients with symptomatic eating epilepsy, a 13-year-old boy with a bilateral perisylvian polymicrogyria and a 2-year-old boy with a genetic cause. The presence of structural lesions or the dysfunction of specific cortical regions in the context of a germline genetic alteration might lead to a hyperexcitation fostering the epileptogenesis. We review the available literature to clarify the aetiopathogenesis and the mechanisms underlying EE to improve the diagnosis and the management of these rare conditions.


Assuntos
Ingestão de Alimentos , Epilepsia Reflexa/etiologia , Anormalidades Múltiplas , Adolescente , Anticonvulsivantes/uso terapêutico , Pré-Escolar , Eletroencefalografia , Epilepsia Reflexa/tratamento farmacológico , Epilepsia Reflexa/genética , Humanos , Deficiência Intelectual/complicações , Imageamento por Ressonância Magnética , Masculino , Malformações do Desenvolvimento Cortical/complicações
5.
Commun Biol ; 4(1): 59, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420383

RESUMO

The NMDA receptor-mediated Ca2+ signaling during simultaneous pre- and postsynaptic activity is critically involved in synaptic plasticity and thus has a key role in the nervous system. In GRIN2-variant patients alterations of this coincidence detection provoked complex clinical phenotypes, ranging from reduced muscle strength to epileptic seizures and intellectual disability. By using our gene-targeted mouse line (Grin2aN615S), we show that voltage-independent glutamate-gated signaling of GluN2A-containing NMDA receptors is associated with NMDAR-dependent audiogenic seizures due to hyperexcitable midbrain circuits. In contrast, the NMDAR antagonist MK-801-induced c-Fos expression is reduced in the hippocampus. Likewise, the synchronization of theta- and gamma oscillatory activity is lowered during exploration, demonstrating reduced hippocampal activity. This is associated with exploratory hyperactivity and aberrantly increased and dysregulated levels of attention that can interfere with associative learning, in particular when relevant cues and reward outcomes are disconnected in space and time. Together, our findings provide (i) experimental evidence that the inherent voltage-dependent Ca2+ signaling of NMDA receptors is essential for maintaining appropriate responses to sensory stimuli and (ii) a mechanistic explanation for the neurological manifestations seen in the NMDAR-related human disorders with GRIN2 variant-meidiated intellectual disability and focal epilepsy.


Assuntos
Sinalização do Cálcio , Disfunção Cognitiva/genética , Epilepsia Reflexa/genética , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Aprendizagem por Associação , Transtorno do Deficit de Atenção com Hiperatividade/genética , Hipocampo/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Memória Espacial
6.
Ann Clin Transl Neurol ; 7(5): 855-859, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32315120

RESUMO

Three relatives carrying a t(4;8)(p15.2;p23.2) translocation had juvenile myoclonic epilepsy, self-limited photosensitive occipital epilepsy and migraine with aura. The t(4;8) translocation interrupted the coding sequence of CSMD1 gene and occurred immediately to the 3'UTR of STIM2 gene. STIM2 was overexpressed in the patient carrying the unbalanced translocation, and all three individuals had a single functional copy of CSMD1. Array CGH study disclosed that these three individuals also carried a deletion at 5q12.3 that involves the RGS7BP gene. The overall results favor the view that CSMD1, STIM2, and RGS7BP genes could contribute to epilepsy and migraine phenotypes in our family.


Assuntos
Epilepsia Reflexa/genética , Proteínas de Membrana/genética , Enxaqueca com Aura/genética , Epilepsia Mioclônica Juvenil/genética , Molécula 2 de Interação Estromal/genética , Proteínas Supressoras de Tumor/genética , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Translocação Genética/genética , Adulto Jovem
7.
Epilepsy Behav ; 105: 106944, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32097883

RESUMO

OBJECTIVE: Autosomal dominant sleep-related hypermotor epilepsy (ADSHE) is characterized by hypermotor seizures and may be caused by gain-of-function mutations affecting the nicotinic acetylcholine receptor (nAChR). Benefit from nicotine consumption has been reported in adult patients with this disorder. For the first time, the effect of transdermal nicotine is evaluated in children. METHODS: Transdermal nicotine was applied to three boys, two aged 10 years (7 mg/24 h) and one six years (3.5 mg/24 h). Autosomal dominant sleep-related hypermotor epilepsy was caused by the p.S280F-CHRNA4 (cholinergic receptor, nicotinic, alpha polypeptide 4) mutation. The children suffered from frequent, persistent nocturnal seizures and had developed educational and psychosocial problems. Seizure frequency and cognitive and behavioral parameters were assessed before and after treatment. RESULTS: A striking seizure reduction was reported soon after treatment onset. Hypermotor seizures disappeared; only sporadic arousals, sometimes with minor motor elements, were observed. Psychometric testing documented improvement in cognitive domains such as visuospatial ability, processing speed, memory, and some areas of executive functions. SIGNIFICANCE: Nicotine appears to be a mechanistic treatment for this specific disorder, probably because of desensitization of the mutated receptors. It may control seizures resistant to conventional drugs for epilepsy and impact socioeducational function in children. This mode of precision therapy should receive more attention and should be available to more patients with uncontrolled CHRNA4-related ADSHE across the age span.


Assuntos
Epilepsia Reflexa/tratamento farmacológico , Epilepsia Reflexa/genética , Nicotina/administração & dosagem , Receptores Nicotínicos/genética , Sono/genética , Dispositivos para o Abandono do Uso de Tabaco , Adolescente , Criança , Epilepsia Reflexa/diagnóstico , Humanos , Masculino , Mutação/genética , Sono/efeitos dos fármacos , Resultado do Tratamento
8.
Seizure ; 74: 60-64, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31835056

RESUMO

PURPOSE: Genetics of Sleep-related Hypermotor Epilepsy (SHE) includes mutations in several genes that cumulatively account for 30 % of families. This approximate estimate comes from different case-series, each focused on the screening of a single gene. We systematically investigated a large cohort of SHE patients to estimate the frequency of pathogenic variants in the main genes thus far implicated in this epilepsy syndrome. METHODS: We selected familial and isolated cases diagnosed with clinical/confirmed SHE who underwent genetic analysis by comparable next generation sequencing (NGS) techniques (WES/ multigene epilepsy panel). The identified heterozygous variants were classified according to the American College of Medical Genetics and Genomics guidelines. RESULTS: We included 103 SHE patients (M/F:61/42) who underwent NGS. Sixteen (15.5 %) were familial cases, 16.5 % had focal cortical dysplasia (FCD). We identified three pathogenic variants in CHRNA4 (2.9 %, CI: 0.6-8.3 %), two of whom novel; one pathogenic variant in KCNT1 (1 %, CI: 0.02-5.29 %); four loss-of-function variants in DEPDC5 (3.9 %, CI: 1.1-9.7 %), one of whom never reported; finally, one missense change in NPRL2 (1 %, CI: 0.02-5.29 %), already reported as pathogenic. Three out of the four patients with DEPDC5 variants had FCD. CONCLUSIONS: The overall frequency of pathogenic variants in our SHE cohort was 8.7 %, 19 % and 7 % considering familial and sporadic cases, respectively. Pathogenic variants in the GATOR1-complex genes account for 5 % of the cases. DEPDC5 shows the highest variants frequency, especially in patients with genetic-structural etiology. From a practical perspective, analysis of this gene is recommended even in isolated cases, because of possible implications for patient management.


Assuntos
Epilepsia Reflexa/genética , Síndromes Epilépticas/genética , Proteínas Ativadoras de GTPase/genética , Transtornos do Sono-Vigília/genética , Adolescente , Criança , Epilepsia Reflexa/diagnóstico , Síndromes Epilépticas/diagnóstico , Feminino , Humanos , Itália , Masculino , Proteínas do Tecido Nervoso/genética , Linhagem , Canais de Potássio Ativados por Sódio/genética , Receptores Nicotínicos/genética , Transtornos do Sono-Vigília/diagnóstico
9.
Int J Mol Sci ; 20(5)2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30813600

RESUMO

The dysfunction of astrocytic inwardly rectifying potassium (Kir) 4.1 channels, which mediate the spatial potassium-buffering function of astrocytes, is known to be involved in the development of epilepsy. Here, we analyzed the Kir4.1 expressional changes in Leucine-Rich Glioma-Inactivated 1 (Lgi1) mutant rats, which is a model of autosomal dominant lateral temporal lobe epilepsy in humans, to clarify the role of astrocytic Kir4.1 channels in Lgi1-related epileptogenesis. Priming acoustic stimulation (at postnatal day 16) conferred seizure susceptibility on Lgi1 mutant rats, which evoked audiogenic seizures with test stimulation at eight weeks. In the seizure-susceptible Lgi1 mutant rats (before test stimulation), astrocytic Kir4.1 expression was down-regulated region-specifically in the cerebral cortex, hippocampus, and amygdala. In addition, prophylactic treatments of Lgi1 mutant rats with valproic acid (VPA, 30 mg/kg and 200 mg/kg) for two weeks prevented both the development of seizure susceptibility and the down-regulation of Kir4.1 expression in astrocytes. The present study demonstrated for the first time that the astrocytic Kir4.1 expression was reduced in the Lgi1-related seizure model, suggesting that the down-regulation of Kir4.1 channels in astrocytes is involved in audiogenic epileptogenesis caused by Lgi1 mutation. In addition, VPA seemed to have a prophylactic effect on Lgi1-related seizures.


Assuntos
Astrócitos/metabolismo , Regulação para Baixo , Epilepsia Reflexa/genética , Mutação/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Proteínas/genética , Acústica , Animais , Suscetibilidade a Doenças , Epilepsia Reflexa/tratamento farmacológico , Proteína Glial Fibrilar Ácida/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Proteínas/metabolismo , Ratos Endogâmicos F344 , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico
10.
Ann Clin Transl Neurol ; 6(2): 386-391, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30847371

RESUMO

Mutations in the sodium-activated potassium channel gene KCNT1 have been associated with nonlesional sleep-related hypermotor epilepsy (SHE). We report the co-occurrence of mild malformation of cortical development (mMCD) and KCNT1 mutations in four patients with SHE. Focal cortical dysplasia type I was neuropathologically diagnosed after epilepsy surgery in three unrelated MRI-negative patients, periventricular nodular heterotopia was detected in one patient by MRI. Our findings suggest that KCNT1 epileptogenicity may result not only from dysregulated excitability by controlling Na+K+ transport, but also from mMCD. Therefore, pathogenic variants in KCNT1 may encompass both lesional and nonlesional epilepsies.


Assuntos
Mutação/genética , Proteínas do Tecido Nervoso/genética , Heterotopia Nodular Periventricular/genética , Canais de Potássio Ativados por Sódio/genética , Epilepsia Reflexa/genética , Humanos , Malformações do Desenvolvimento Cortical/genética , Neurogênese/genética
11.
Epilepsy Behav ; 71(Pt B): 226-237, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-26775236

RESUMO

Genetic animal models of epilepsy are an important tool for further understanding the basic cellular mechanisms underlying epileptogenesis and for developing novel antiepileptic drugs. We conducted a comparative study of gene expression in the inferior colliculus, a nucleus that triggers audiogenic seizures, using two animal models, the Wistar audiogenic rat (WAR) and the genetic audiogenic seizure hamster (GASH:Sal). For this purpose, both models were exposed to high intensity auditory stimulation, and 60min later, the inferior colliculi were collected. As controls, intact Wistar rats and Syrian hamsters were subjected to stimulation and tissue preparation protocols identical to those performed on the experimental animals. Ribonucleic acid was isolated, and microarray analysis comparing the stimulated Wistar and WAR rats showed that the genomic profile of these animals displayed significant (fold change, |FC|≥2.0 and p<0.05) upregulation of 38 genes and downregulation of 47 genes. Comparison of gene expression profiles between stimulated control hamsters and stimulated GASH:Sal revealed the upregulation of 10 genes and the downregulation of 5 genes. Among the common genes that were altered in both models, we identified the zinc finger immediate-early growth response gene Egr3. The Egr3 protein is a transcription factor that is induced by distinct stress-elicited factors. Based on immunohistochemistry, this protein was expressed in the cochlear nucleus complex, the inferior colliculus, and the hippocampus of both animal models as well as in lymphoma tumors of the GASH:Sal. Our results support that the overexpression of the Egr3 gene in both models might contribute to neuronal viability and development of lymphoma in response to stress associated with audiogenic seizures. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".


Assuntos
Estimulação Acústica/efeitos adversos , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteína 3 de Resposta de Crescimento Precoce/genética , Epilepsia Reflexa/genética , Convulsões/genética , Animais , Cricetinae , Proteína 1 de Resposta de Crescimento Precoce/biossíntese , Proteína 2 de Resposta de Crescimento Precoce/biossíntese , Proteína 3 de Resposta de Crescimento Precoce/biossíntese , Epilepsia Reflexa/tratamento farmacológico , Epilepsia Reflexa/metabolismo , Expressão Gênica , Genes Precoces/genética , Predisposição Genética para Doença/genética , Hipocampo/metabolismo , Masculino , Mesocricetus , Ratos , Ratos Wistar , Roedores , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Especificidade da Espécie
12.
Epilepsy Behav ; 71(Pt B): 142-153, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-26148984

RESUMO

Human epilepsy is usually considered to result from cortical pathology, but animal studies show that the cortex may be secondarily involved in epileptogenesis, and cortical seizures may be triggered by extracortical mechanisms. In the audiogenic kindling model, recurrent subcortical (brainstem-driven) seizures induce secondary epileptic activation of the cortex. The present review focuses on behavioral and electrographic features of the subcortico-cortical epileptogenesis: (1) behavioral expressions of traditional and mild paradigms of audiogenic kindling produced by full-blown (generalized) and minimal (focal) audiogenic seizures, respectively; (2) electrographic manifestations of secondary epileptic activation of the cortex - cortical epileptic discharge and cortical spreading depression; and (3) persistent individual asymmetry of minimal audiogenic seizures and secondary cortical events produced by their repetition. The characteristics of audiogenic kindling suggest that this model represents a unique experimental approach to studying cortical epileptogenesis and network aspects of epilepsy. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".


Assuntos
Estimulação Acústica/efeitos adversos , Modelos Animais de Doenças , Eletroencefalografia/tendências , Epilepsia Reflexa/fisiopatologia , Excitação Neurológica/fisiologia , Atividade Motora/fisiologia , Animais , Tronco Encefálico/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Eletroencefalografia/métodos , Epilepsia Reflexa/genética , Humanos , Ratos , Ratos Wistar , Convulsões/genética , Convulsões/fisiopatologia
13.
Pharmacol Biochem Behav ; 127: 21-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25285618

RESUMO

Audiogenic epilepsy proneness was analyzed in the progeny of rats from two strains (audiogenic seizure prone-strain "4"-and audiogenic seizure non-prone, strain "0"). Females were fed by a diet which contained substances enriched with methyl-groups during 1week before mating (MED), during pregnancy period and 1week after the delivery. This MED treatment resulted in a decrease of audiogenic seizure fit intensity, which was more evident in rats of strain "0". Control rats of strain "4" displayed intense seizures (tonic seizure, 3.85 arbitrary units). Med "4" rats seizures were less intense (3.23, tonic seizure of lower intensity), control "0" strain rats demonstrated the seizure with mean 3.09 arbitrary units, "0" MED rats only 2.03 arbitrary unit intensity (only clonic seizures, significantly, p<0.05, different from controls). Methyl-enriched diet resulted in the significant changes in methylation status of several genes (Cpne6, Gtf2i, Sctr,1 Sfmbt, Phe2). These genes among others were chosen for analysis as their expression was analyzed in other methylation study. These genes were hypermethylated after "epileptic tolerance". Due to this procedure, the intensity of status epilepticus, produced by kainate in mice, decreased (Miller-Delaney et al., 2012). The modulation of audiogenic seizure intensity as the result of methyl-enriched diet during prenatal and early postnatal ontogeny was demonstrated for the first time.


Assuntos
Betaína/administração & dosagem , Dieta , Epilepsia Reflexa/dietoterapia , Bem-Estar Materno , Metionina/administração & dosagem , Animais , Animais Recém-Nascidos , Colina/administração & dosagem , Dieta/métodos , Epilepsia Reflexa/genética , Epilepsia Reflexa/metabolismo , Feminino , Ácido Fólico/administração & dosagem , Masculino , Metilação , Gravidez , Ratos , Ratos Wistar , Vitamina B 12/administração & dosagem
15.
Neurosci Res ; 80: 69-75, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24406746

RESUMO

Mutations in the leucine-rich, glioma inactivated 1 (LGI1) gene have been identified in patients with autosomal dominant lateral temporal lobe epilepsy (ADLTE). We previously reported that Lgi1 mutant rats, carrying a missense mutation (L385R) generated by gene-driven N-ethyl-N-nitrosourea (ENU) mutagenesis, showed generalized tonic-clonic seizures (GTCS) in response to acoustic stimuli. In the present study, we assessed clinically relevant features of Lgi1 heterozygous mutant rats (Lgi1(L385R/+)) as an animal model of ADLTE. First, to explore the focus of the audiogenic seizures, we performed electroencephalography (EEG) and brain Fos immunohistochemistry in Lgi1(L385R/+) and wild type rats. EEG showed unique seizure patterns (e.g., bilateral rhythmic spikes) in Lgi1(L385R/+) rats with GTCS. An elevated level of Fos expression indicated greater neural excitability to acoustic stimuli in Lgi1(L385R/+) rats, especially in the temporal lobe, thalamus and subthalamic nucleus. Finally, microarray analysis revealed a number of differentially expressed genes that may be involved in epilepsy. These results suggest that Lgi1(L385R/+) rats are useful as an animal model of human ADLTE.


Assuntos
Epilepsia Reflexa/genética , Mutação de Sentido Incorreto/genética , Proteínas/genética , Estimulação Acústica/efeitos adversos , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia Reflexa/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Endogâmicos F344
16.
Proc Natl Acad Sci U S A ; 110(47): 19101-6, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24191038

RESUMO

VLGR1 (very large G protein-coupled receptor 1), also known as MASS1 (monogenic audiogenic seizure susceptible 1), is an orphan G protein-coupled receptor that contains a large extracellular N terminus with 35 calcium-binding domains. A truncating mutation in the Mass1 gene causes autosomal recessive, sound-induced seizures in the Frings mouse. However, the function of MASS1 and the mechanism underlying Frings mouse epilepsy are not known. Here, we found that MASS1 protein is enriched in the myelinated regions of the superior and inferior colliculi, critical areas for the initiation and propagation of audiogenic seizures. Using a panel of myelin antibodies, we discovered that myelin-associated glycoprotein (MAG) expression is dramatically decreased in Frings mice. MASS1 inhibits the ubiquitylation of MAG, thus enhancing the stability of this protein, and the calcium-binding domains of MASS1 are essential for this regulation. Furthermore, MASS1 interacts with Gαs/Gαq and activates PKA and PKC in response to extracellular calcium. Suppression of signaling by MASS1 RNAi or a specific inhibitor abrogates MAG up-regulation. We postulate that MASS1 senses extracellular calcium and activates cytosolic PKA/PKC pathways to regulate myelination by means of MAG protein stability in myelin-forming cells of the auditory pathway. Further work is required to determine whether MAG dysregulation is a cause or consequence of audiogenic epilepsy and whether there are other pathways regulated by MASS1.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Epilepsia Reflexa/genética , Modelos Biológicos , Glicoproteína Associada a Mielina/metabolismo , Proteína Quinase C/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Animais , Cálcio/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Epilepsia Reflexa/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Imuno-Histoquímica , Camundongos , Microscopia Eletrônica de Transmissão , Ubiquitinação
17.
Hum Mol Genet ; 21(16): 3546-57, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22589250

RESUMO

Mutations of the leucine-rich glioma-inactivated 1 (LGI1) gene cause an autosomal dominant partial epilepsy with auditory features also known as autosomal-dominant lateral temporal lobe epilepsy. LGI1 is also the main antigen present in sera and cerebrospinal fluids of patients with limbic encephalitis and seizures, highlighting its importance in a spectrum of epileptic disorders. LGI1 encodes a neuronal secreted protein, whose brain function is still poorly understood. Here, we generated, by ENU (N-ethyl-N-nitrosourea) mutagenesis, Lgi1-mutant rats carrying a missense mutation (L385R). We found that the L385R mutation prevents the secretion of Lgi1 protein by COS7 transfected cells. However, the L385R-Lgi1 protein was found at low levels in the brains and cultured neurons of Lgi1-mutant rats, suggesting that mutant protein may be destabilized in vivo. Studies on the behavioral phenotype and intracranial electroencephalographic signals from Lgi1-mutant rats recalled several features of the human genetic disorder. We show that homozygous Lgi1-mutant rats (Lgi1(L385R/L385R)) generated early-onset spontaneous epileptic seizures from P10 and died prematurely. Heterozygous Lgi1-mutant rats (Lgi1(+/L385R)) were more susceptible to sound-induced, generalized tonic-clonic seizures than control rats. Audiogenic seizures were suppressed by antiepileptic drugs such as carbamazepine, phenytoin and levetiracetam, which are commonly used to treat partial seizures, but not by the prototypic absence seizure drug, ethosuximide. Our findings provide the first rat model with a missense mutation in Lgi1 gene, an original model complementary to knockout mice. This study revealed that LGI1 disease-causing missense mutations might cause a depletion of the protein in neurons, and not only a failure of Lgi1 secretion.


Assuntos
Epilepsia/etiologia , Proteínas/genética , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Anticonvulsivantes/farmacologia , Encéfalo/metabolismo , Células COS , Carbamazepina/farmacologia , Células Cultivadas , Chlorocebus aethiops , Modelos Animais de Doenças , Eletroencefalografia , Epilepsias Parciais/tratamento farmacológico , Epilepsias Parciais/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Epilepsia Reflexa/tratamento farmacológico , Epilepsia Reflexa/genética , Etossuximida/farmacologia , Heterozigoto , Homozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Levetiracetam , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Neurônios/metabolismo , Fenitoína/farmacologia , Piracetam/análogos & derivados , Piracetam/farmacologia , Ratos Mutantes
18.
Brain ; 133(9): 2749-62, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20659958

RESUMO

Mutations of the LGI1 (leucine-rich, glioma-inactivated 1) gene underlie autosomal dominant lateral temporal lobe epilepsy, a focal idiopathic inherited epilepsy syndrome. The LGI1 gene encodes a protein secreted by neurons, one of the only non-ion channel genes implicated in idiopathic familial epilepsy. While mutations probably result in a loss of function, the role of LGI1 in the pathophysiology of epilepsy remains unclear. Here we generated a germline knockout mouse for LGI1 and examined spontaneous seizure characteristics, changes in threshold for induced seizures and hippocampal pathology. Frequent spontaneous seizures emerged in homozygous LGI1(-/-) mice during the second postnatal week. Properties of these spontaneous events were examined in a simultaneous video and intracranial electroencephalographic recording. Their mean duration was 120 +/- 12 s, and behavioural correlates consisted of an initial immobility, automatisms, sometimes followed by wild running and tonic and/or clonic movements. Electroencephalographic monitoring indicated that seizures originated earlier in the hippocampus than in the cortex. LGI1(-/-) mice did not survive beyond postnatal day 20, probably due to seizures and failure to feed. While no major developmental abnormalities were observed, after recurrent seizures we detected neuronal loss, mossy fibre sprouting, astrocyte reactivity and granule cell dispersion in the hippocampus of LGI1(-/-) mice. In contrast, heterozygous LGI1(+/-) littermates displayed no spontaneous behavioural epileptic seizures, but auditory stimuli induced seizures at a lower threshold, reflecting the human pathology of sound-triggered seizures in some patients. We conclude that LGI1(+/-) and LGI1(-/-) mice may provide useful models for lateral temporal lobe epilepsy, and more generally idiopathic focal epilepsy.


Assuntos
Epilepsia Reflexa/genética , Proteínas/genética , Fatores Etários , Animais , Animais Recém-Nascidos , Encéfalo/patologia , Encéfalo/fisiopatologia , Lesões Encefálicas/etiologia , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions , Modelos Animais de Doenças , Eletroencefalografia/métodos , Epilepsia Reflexa/complicações , Epilepsia Reflexa/etiologia , Epilepsia Reflexa/patologia , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravação em Vídeo/métodos
19.
Genes Brain Behav ; 8(7): 650-60, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19500159

RESUMO

The lde/lde rat is characterized by dwarfism, postnatal lethality, male hypogonadism, a high incidence of epilepsy and many vacuoles in the hippocampus and amygdala. We used a candidate approach to identify the gene responsible for the lde phenotype and assessed the susceptibility of lde/lde rats for audiogenic seizures. Following backcross breeding of lethal dwarfism with epilepsy (LDE) to Brown Norway rats, the lde/lde rats with an altered genetic background showed all pleiotropic phenotypes. The lde locus was mapped to a 1.5-Mbp region on rat chromosome 19 that included the latter half of the Wwox gene. Sequencing of the full-length Wwox transcript identified a 13-bp deletion in exon 9 in lde/lde rats. This mutation causes a frame shift, resulting in aberrant amino acid sequences at the C-terminal. Western blotting showed that both the full-length products of the Wwox gene and its isoform were present in normal testes and hippocampi, whereas both products were undetectable in the testes and hippocampi of lde/lde rats. Sound stimulation induced epileptic seizures in 95% of lde/lde rats, with starting as wild running (WR), sometimes progressing to tonic-clonic convulsions. Electroencephalogram (EEG) analysis showed interictal spikes, fast waves during WR and burst of spikes during clonic phases. The Wwox protein is expressed in the central nervous system (CNS), indicating that abnormal neuronal excitability in lde/lde rats may be because of a lack of Wwox function. The lde/lde rat is not only useful for understanding the multiple functions of Wwox but is also a unique model for studying the physiological function of Wwox in CNS.


Assuntos
Nanismo/genética , Epilepsia Reflexa/genética , Mutação da Fase de Leitura/genética , Genes Letais/genética , Genes Supressores de Tumor , Predisposição Genética para Doença/genética , Oxirredutases/genética , Potenciais de Ação/genética , Sequência de Aminoácidos/genética , Animais , Mapeamento Cromossômico , Análise Mutacional de DNA , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia Reflexa/metabolismo , Epilepsia Reflexa/fisiopatologia , Epilepsia Tônico-Clônica/genética , Éxons/genética , Hipogonadismo/genética , Hipogonadismo/patologia , Hipogonadismo/fisiopatologia , Masculino , Fenótipo , Ratos , Ratos Mutantes , Lobo Temporal/patologia , Lobo Temporal/fisiopatologia , Oxidorredutase com Domínios WW
20.
Epilepsy Res ; 78(2-3): 225-31, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18160259

RESUMO

We report on monozygotic twins with neonatal onset of daily reflex seizures triggered by hot water. Video record during the hot water bathing showed clinical signs consistent with a reflex seizure. The numbers of episodes were markedly reduced when the mother began bathing the children with reduced temperature bath water. At the age of 20 months, the twins developed episodes of paroxysmal disturbances including alternating hemiplegia. These two patients are the youngest reported cases of reflex hot water seizures, and the only reported cases in which reflex hot water seizures subsequently manifested episodes of alternating hemiplegia.


Assuntos
Epilepsia Reflexa/fisiopatologia , Hemiplegia/etiologia , Temperatura Alta , Confusão/etiologia , Confusão/psicologia , Eletroencefalografia , Epilepsia Reflexa/complicações , Epilepsia Reflexa/genética , Feminino , Lateralidade Funcional/fisiologia , Hemiplegia/psicologia , Humanos , Recém-Nascido , ATPase Trocadora de Sódio-Potássio/genética , Gêmeos Monozigóticos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA