Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Epilepsia ; 61(12): 2825-2835, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33098125

RESUMO

OBJECTIVE: The role of α2A adrenergic receptors (α2A ARs) in absence epilepsy is not well characterized. Therefore, we investigated the outcomes of the specific antagonism of α2A ARs on the spike-and-wave discharges (SWDs) in genetic absence epilepsy rats from Strasbourg (GAERSs), together with its influence on the behavior and second messenger systems, which may point to the mechanisms to which a possible SWD modulation can be related. METHODS: Atipamezole, an α2A AR antagonist, was administered intracerebroventricularly to the adult GAERSs, and electroencephalography (EEG) was conducted. The cumulative duration and number of SWDs, and the mean duration of each SWD complex were counted. The relative power of the EEG frequency bands and behavioral activity after the acute application of two doses (12 and 31 µg/5 µL) of atipamezole were evaluated. The levels of cyclic adenosine monophosphate and calcium/calmodulin-dependent kinase II (CaMKII) were measured in the cortex, thalamus, and hippocampus of naive Wistar rats and GAERSs, administered with artificial cerebrospinal fluid (aCSF) as a vehicle, or either acute or chronic atipamezole (12 µg), the latter being administered for 5 consecutive days. RESULTS: Atipamezole significantly suppressed SWDs dose-dependently, without affecting the relative power values of EEG frequency spectrum. The stereotypic activity was significantly lower in both naive Wistar rats and GAERSs receiving the highest dose (31 µg) of atipamezole compared to GAERSs receiving aCSF. In GAERSs, CaMKII levels were found to be higher in the thalamus after the acute and chronic application of SWD-suppressing doses of atipamezole (12 and 31 µg) compared to aCSF. SIGNIFICANCE: This study emphasizes the α2 AR-related modulation of absence epilepsy and particularly the significance of α2 AR antagonism in suppressing SWDs. Atipamezole's SWD-suppressive actions may be through CaMKII-mediated second messenger systems in the thalamus.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Anticonvulsivantes/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Epilepsia Tipo Ausência/tratamento farmacológico , Imidazóis/farmacologia , Tálamo/efeitos dos fármacos , Animais , Anticonvulsivantes/administração & dosagem , Encéfalo/enzimologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Eletroencefalografia , Ensaio de Imunoadsorção Enzimática , Epilepsia Tipo Ausência/enzimologia , Epilepsia Tipo Ausência/fisiopatologia , Feminino , Imidazóis/administração & dosagem , Injeções Intraventriculares , Masculino , Ratos , Ratos Endogâmicos , Ratos Wistar , Tálamo/fisiopatologia
2.
Epilepsia ; 61(9): e124-e128, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32949474

RESUMO

Our goal was to assess the interrater agreement (IRA) of photoparoxysmal response (PPR) using the classification proposed by a task force of the International League Against Epilepsy (ILAE), and a simplified classification system proposed by our group. In addition, we evaluated IRA of epileptiform discharges (EDs) and the diagnostic significance of the electroencephalographic (EEG) abnormalities. We used EEG recordings from the European Reference Network (EpiCARE) and Standardized Computer-based Organized Reporting of EEG (SCORE). Six raters independently scored EEG recordings from 30 patients. We calculated the agreement coefficient (AC) for each feature. IRA of PPR using the classification proposed by the ILAE task force was only fair (AC = 0.38). This improved to a moderate agreement by using the simplified classification (AC = 0.56; P = .004). IRA of EDs was almost perfect (AC = 0.98), and IRA of scoring the diagnostic significance was moderate (AC = 0.51). Our results suggest that the simplified classification of the PPR is suitable for implementation in clinical practice.


Assuntos
Encéfalo/fisiopatologia , Eletroencefalografia , Epilepsia/classificação , Transtornos de Fotossensibilidade/classificação , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsias Mioclônicas/fisiopatologia , Epilepsia/fisiopatologia , Epilepsia Tipo Ausência/fisiopatologia , Feminino , Humanos , Lactente , Doença de Lafora/fisiopatologia , Masculino , Pessoa de Meia-Idade , Encefalomiopatias Mitocondriais/fisiopatologia , Epilepsia Mioclônica Juvenil/fisiopatologia , Neurofibromatose 1/fisiopatologia , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Variações Dependentes do Observador , Estimulação Luminosa , Transtornos de Fotossensibilidade/fisiopatologia , Reprodutibilidade dos Testes , Síndrome de Rett/fisiopatologia , Adulto Jovem
3.
Clin Exp Pharmacol Physiol ; 47(9): 1530-1536, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32304254

RESUMO

Insulin-mediated signalling in the brain is critical for neuronal functioning. Insulin resistance is implicated in the development of some neurological diseases, although changes associated with absence epilepsy have not been established yet. Therefore, we examined the major components of PI3K/Akt-mediated insulin signalling in cortical, thalamic, and hippocampal tissues collected from Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and Non-Epileptic Control (NEC) rats. Insulin levels were also measured in plasma and cerebrospinal fluid (CSF). For the brain samples, the nuclear fraction (NF) and total homogenate (TH) were isolated and investigated for insulin signalling markers including insulin receptor beta (IRß), IR substrate-1 and 2 (IRS1 & 2), phosphatase and tensin homologue (PTEN), phosphoinositide 3-kinase phospho-85 alpha (PI3K p85α), phosphatidylinositol 4,5-bisphosphate, phosphatidylinositol (3,4,5)-trisphosphate, protein kinase B (PKB/Akt1/2/3), glucose transporter-1 and 4 (GLUT1 & 4) and glycogen synthase kinase-3ß (GSK3ß) using western blotting. A significant increase in PTEN and GSK3ß levels and decreased PI3K p85α and pAkt1/2/3 levels were observed in NF of GAERS cortical and hippocampal tissues. IRß, IRS1, GLUT1, and GLUT4 levels were significantly decreased in hippocampal TH of GAERS compared to NEC. A non-significant increase in insulin levels was observed in plasma and CSF of GAERS rats. An insulin sensitivity assay showed decreased p-Akt level in cortical and hippocampal tissues. Together, altered hippocampal insulin signalling was more prominent in NF and TH compared to cortical and thalamic regions in GAERS. Restoring insulin signalling may improve the pathophysiology displayed by GAERS, including the spike-and-wave discharges that relate to absence seizures in patients.


Assuntos
Ondas Encefálicas , Epilepsia Tipo Ausência/metabolismo , Insulina/metabolismo , Rombencéfalo/metabolismo , Animais , Glicemia/metabolismo , Modelos Animais de Doenças , Epilepsia Tipo Ausência/genética , Epilepsia Tipo Ausência/fisiopatologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Insulina/sangue , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Endogâmicos , Receptor de Insulina/metabolismo , Rombencéfalo/fisiopatologia , Transdução de Sinais
4.
Pharmacology ; 105(9-10): 561-567, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32101873

RESUMO

INTRODUCTION: Absence epilepsy is associated with diffuse spike-and-wave discharges (SWD) on the electroencephalogram (EEG). Recent studies have demonstrated that the primary somatosensory cortex is also implicated in the generation of the SWDs. OBJECTIVE: This study investigated the effects of systemic and local administrations of U-92032 into the brain of Genetic Absence Epilepsy Rats from Strasbourg (GAERS). METHODS: GAERS animals underwent stereotaxic surgery for the placement of EEG recording electrodes and guide cannulas for U-92032 administration into the lateral ventricle (intracerebroventricular [i.c.v.]), upper lips area (S1Ulp) or barrel field area (S1B) of primary somatosensory cortex. Following 7 days of recovery, electrical activity was recorded continuously for 1 h before and 6 h after intraperitoneal (0.25; 1; 5 mg/kg i.p.) or local U-92032 or dimethyl sulfoxide (DMSO) injections. RESULTS: No changes were detected in the cumulative duration, mean duration, and number of SWDs following i.p. U-92032 injections. Local i.c.v. injections of U-92032 caused a significant decrease in the cumulative duration (i.c.v., 50 and 100 nmol/L), mean duration (i.c.v., 50, 100, and 250 nmol/L), and the number (i.c.v., 250 nmol/L) of SWDs compared to DMSO groups. Intra-cortical (S1Ulp and S1B) U-92032 injections caused a significant decrease in all 3 parameters compared to DMSO groups, as well. CONCLUSION: Intra-cortical injection of U-92032 caused almost complete removal of SWDs in GAERS and i.c.v. administration resulted in a significant reduction. However, systemic i.p. administration did not cause a significant change with the applied -doses.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/efeitos dos fármacos , Canais de Cálcio Tipo T/metabolismo , Epilepsia Tipo Ausência/tratamento farmacológico , Piperazinas/farmacologia , Tropolona/análogos & derivados , Animais , Bloqueadores dos Canais de Cálcio/administração & dosagem , Modelos Animais de Doenças , Eletrodos Implantados , Eletroencefalografia , Epilepsia Tipo Ausência/genética , Epilepsia Tipo Ausência/fisiopatologia , Feminino , Infusões Intraventriculares , Injeções Intraperitoneais , Masculino , Piperazinas/administração & dosagem , Ratos , Ratos Wistar , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/fisiopatologia , Tropolona/administração & dosagem , Tropolona/farmacologia
5.
Neurosci Lett ; 713: 134504, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31539618

RESUMO

Caffeine, a central nervous system stimulant, has been reported to modulate seizure activity in various studies. In this study the effects of caffeine exposure on the pentylenetetrazole (PTZ) induced seizure thresholds and seizure stages in the Wistar and genetic absence epilepsy model offsprings were examined. Adult female and male Wistar rats and genetic absence epilepsy rats from Strasbourg (GAERS) consumed caffeine dissolved in water (0.3 g/L) before conception, during the gestational periods and lactation period whereas control groups of each strain received tap water. All offsprings at postnatal day 30 (PN30) subjected to 70 mg/kg of PTZ were evaluated in terms of overall seizure stages, the latency to the first generalized seizure and the c-Fos protein activity in the brain regions of somatosensorial cortex (SSCx), reticular thalamic nucleus (Rt), ventrobasal thalamus (VB), centromedial nucleus (CM) and lateral geniculate nucleus (LGN). The Wistar caffeine group had significantly shorter latency to the first generalized seizure (1.53 ±â€¯0.49 min) comparing to the Wistar control offsprings (3.40 ±â€¯0.68 min). GAERS caffeine group (6.52 ±â€¯2.48 min) showed significantly longer latency comparing to Wistar caffeine group (1.53 ±â€¯0.49 min). Although statistically not significant, GAERS caffeine group showed a longer latency comparing to the GAERS control group (4.71 ±â€¯1.82 min). In all regions of SSCx, Rt, VB, CM and LGN, GAERS caffeine group had lower c-Fos protein expression comparing to the GAERS control group (p < 0.05). Wistar caffeine rats had lower expression of c-Fos protein comparing to the Wistar control group only in SSCx. In CM, GAERS rats expressed lower c-Fos protein comparing to the Wistar control (p < 0.05). In conclusion differential effects of caffeine in the seizure modulation may involve c-Fos protein activity-dependent protection mechanisms.


Assuntos
Encéfalo/efeitos dos fármacos , Cafeína/efeitos adversos , Epilepsia Tipo Ausência/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Convulsões/fisiopatologia , Animais , Encéfalo/metabolismo , Canais de Cálcio Tipo T/genética , Epilepsia Tipo Ausência/genética , Feminino , Masculino , Pentilenotetrazol , Gravidez , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Endogâmicos , Convulsões/induzido quimicamente , Fatores de Tempo
6.
Brain Topogr ; 32(1): 178-191, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30291582

RESUMO

Childhood absence epilepsy (CAE), the most common pediatric epilepsy syndrome, is usually treated with valproic acid (VPA) and lamotrigine (LTG) in China. This study aimed to investigate the ictal source locations and functional connectivity (FC) networks between the cortices and thalamus that are related to treatment response. Magnetoencephalography (MEG) data from 25 patients with CAE were recorded at 300 Hz and analyzed in 1-30 Hz frequency bands. Neuromagnetic sources were volumetrically scanned with accumulated source imaging. The FC networks between the cortices and thalamus were evaluated at the source level through a connectivity analysis. Treatment outcome was assessed after 36-66 months following MEG recording. The children with CAE were divided into LTG responder, LTG non-responder, VPA responder and VPA non-responder groups. The ictal source locations and cortico-thalamic FC networks were compared to the treatment response. The ictal source locations in the post-dorsal medial frontal cortex (post-DMFC, including the medial primary motor cortex and the supplementary sensorimotor area) were observed in all LTG non-responders but in all LTG responders. At 1-7 Hz, patients with fronto-thalamo-parietal/occipital (F-T-P/O) networks were older than those with fronto-thalamic (F-T) networks or other cortico-thalamic networks (p = 0.000). The duration of seizures in patients with F-T-P/O networks at 1-7 Hz was longer than that in patients with F-T networks or other cortico-thalamic networks (p = 0.001). The ictal post-DMFC source localizations suggest that children with CAE might experience initial LTG monotherapy failure. Moreover, the cortico-thalamo-cortical network is associated with age. Finally, the cortico-thalamo-cortical network consists of anterior and posterior cortices and might contribute to the maintenance of discharges.


Assuntos
Anticonvulsivantes/uso terapêutico , Córtex Cerebral/fisiopatologia , Epilepsia Tipo Ausência/fisiopatologia , Rede Nervosa/fisiopatologia , Tálamo/fisiopatologia , Criança , Pré-Escolar , China , Epilepsia Tipo Ausência/tratamento farmacológico , Feminino , Substância Cinzenta/fisiopatologia , Humanos , Lamotrigina/uso terapêutico , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Resultado do Tratamento , Ácido Valproico/uso terapêutico
7.
Brain Res ; 1686: 1-9, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29457994

RESUMO

Uric acid has a role in several physiological and pathophysiological processes. For example, uric acid may facilitate seizure generalization while reducing uric acid level may evoke anticonvulsant/antiepileptic effects. Allopurinol blocks the activity of xanthine oxidase, by which allopurinol inhibits catabolism of hypoxanthine to xanthine and uric acid and, as a consequence, decreases the level of uric acid. Although the modulation of serum uric acid level is a widely used strategy in the treatment of certain diseases, our knowledge regarding the effects of uric acid on epileptic activity is far from complete. Thus, the main aim of this study was the investigation of the effect of uric acid on absence epileptic seizures (spike-wave discharges: SWDs) in a model of human absence epilepsy, the Wistar Albino Glaxo/Rijswijk (WAG/Rij) rat. We investigated the influence of intraperitoneally (i.p.) injected uric acid (100 mg/kg and 200 mg/kg), allopurinol (50 mg/kg and 100 mg/kg), a cyclooxygenase 1 and 2 (COX-1 and COX-2) inhibitor indomethacin (10 mg/kg) and inosine (500 mg/kg) alone and the combined application of allopurinol (50 mg/kg) with uric acid (100 mg/kg) or inosine (500 mg/kg) as well as indomethacin (10 mg/kg) with uric acid (100 mg/kg) and inosine (500 mg/kg) with uric acid (100 mg/kg) on absence epileptic activity. We demonstrated that both uric acid and allopurinol alone significantly increased the number of SWDs whereas indomethacin abolished the uric acid-evoked increase in SWD number. Our results suggest that uric acid and allopurinol have proepileptic effects in WAG/Rij rats.


Assuntos
Alopurinol/farmacologia , Anticonvulsivantes/farmacologia , Encéfalo/efeitos dos fármacos , Epilepsia Tipo Ausência/induzido quimicamente , Ácido Úrico/farmacologia , Animais , Encéfalo/fisiopatologia , Inibidores de Ciclo-Oxigenase/farmacologia , Modelos Animais de Doenças , Eletroencefalografia/métodos , Epilepsia Tipo Ausência/fisiopatologia , Masculino , Ratos Wistar
8.
Brain Dev ; 40(2): 126-129, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28823645

RESUMO

BACKGROUND: Epilepsy with myoclonic absences (EMAs) is a rare epileptic disorder characterized by a predominant type of seizures, myoclonic absences (MAs). The pathophysiology of MAs in patients with EMAs remains unknown. Here, we report the first characterization of the ictal phase of MAs by single photon emission computed tomography (SPECT). METHODS: We evaluated 1 male (Patient 1) and 1 female (Patient 2) patient with EMAs, aged 8 and 4years at first SPECT investigation, respectively. We performed ictal and interictal 99 mTc-ethyl cysteinate dimer (ECD) SPECT. We then generated images of subtraction ictal SPECT co-registered to MRI (SISCOM) from the interictal and ictal data to evaluate topographic changes in cerebral blood flow (CBF) during MAs as compared to the interictal state. RESULTS: In Patient 1, the CBF increased in the perirolandic areas, thalamus, caudate nucleus, and precuneus, and decreased in the middle frontal gyrus and bilateral orbitofrontal regions. In Patient 2, CBF increased in the thalamus, putamen, and globus pallidus. In contrast to the CBF in Patient 1, CBF was decreased in the precuneus. CONCLUSIONS: Using SPECT, we showed that, in addition to the thalamus and basal ganglia, the perirolandic cortical motor area is involved in MAs. We hypothesize that in MAs the blood perfusion in the perirolandic cortical motor area might have changed under the influence of the cortico-thalamic network oscillation features. The CBF properties observed by means of our SPECT procedure may represent key features of the pathophysiological mechanisms underlying MAs.


Assuntos
Encéfalo/diagnóstico por imagem , Epilepsias Mioclônicas/diagnóstico por imagem , Epilepsia Tipo Ausência/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Encéfalo/fisiopatologia , Mapeamento Encefálico , Circulação Cerebrovascular , Criança , Pré-Escolar , Epilepsias Mioclônicas/fisiopatologia , Epilepsia Tipo Ausência/fisiopatologia , Feminino , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/fisiopatologia , Masculino , Fluxo Sanguíneo Regional
9.
Neuroscience ; 357: 134-144, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28576731

RESUMO

OBJECTIVE: The cortico-thalamo-cortical network plays a key role in childhood absence epilepsy (CAE). However, the exact interaction between the cortex and the thalamus remains incompletely understood. This study aimed to investigate the dynamic changes of frequency-dependent neural networks during the initialization of absence seizures. METHODS: Magnetoencephalography data from 14 patients with CAE were recorded during and between seizures at a sampling rate of 6000Hz and analyzed in seven frequency bands. Neuromagnetic sources were volumetrically scanned with accumulated source imaging. Effective connectivity networks of the entire brain, including the cortico-thalamo-cortical network, were evaluated at the source level through Granger causality analysis. RESULTS: The low-frequency (1-80Hz) activities showed significant frontal cortical and parieto-occipito-temporal junction source localization around seizures. The high-frequency (80-250Hz) oscillations showed predominant activities consistently localized in deep brain areas and medial frontal cortex. The increased cortico-thalamic effective connectivity was observed around seizures in both low- and high-frequency ranges. The direction was predominantly from the cortex to the thalamus at the early time, although the cortex that drove connectivity varied among subjects. CONCLUSIONS: The cerebral cortex plays a key role in driving the cortico-thalamic connections at the early portion of the initialization of absence seizures. The oscillatory activities in the thalamus could be triggered by networks from various regions in the cortex. SIGNIFICANCE: The dynamic changes of neural network provide evidences that absence seizures are probably resulted from cortical initialized cortico-thalamic network.


Assuntos
Encéfalo/fisiopatologia , Epilepsia Tipo Ausência/fisiopatologia , Magnetoencefalografia , Convulsões/fisiopatologia , Mapeamento Encefálico , Criança , Pré-Escolar , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiopatologia
10.
Clin Neurophysiol ; 127(2): 1120-1129, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26384756

RESUMO

OBJECTIVE: This study quantified the clinical correlation of interictal and ictal neuromagnetic activities from low- to very-high-frequency ranges in childhood absence epilepsy (CAE). METHODS: Twelve patients with clinically diagnosed drug-naïve CAE were studied using a 275-channel whole-head magnetoencephalography (MEG) system. MEG data were digitized at 6000 Hz and analyzed at both sensor and source levels with multi-frequency analyses. RESULTS: Neuromagnetic changes from interictal to ictal periods predominantly occurred in medial prefrontal cortex and parieto-occipito-temporal junction in absence seizures. The changes were statistically significant in low-frequency bands only (<30 Hz, p<0.0001). There was a significant correlation between the source strength of ictal high-frequency oscillations (HFOs) in 200-1000 Hz and the number of daily seizures (r=0.734, p<0.01). CONCLUSIONS: CAE has focal neuromagnetic sources. The transition from interictal to ictal periods is associated with the elevation of low-frequency brain activities. The strength of HFOs reflects the severity of absence seizures. SIGNIFICANCE: Low- and high-frequency MEG signals reveal distinct brain activities in CAE. HFOs is a new biomarker for the study of absence seizures.


Assuntos
Ondas Encefálicas/fisiologia , Epilepsia Tipo Ausência/fisiopatologia , Magnetoencefalografia/métodos , Convulsões/fisiopatologia , Índice de Gravidade de Doença , Criança , Pré-Escolar , Epilepsia Tipo Ausência/diagnóstico , Feminino , Humanos , Masculino , Convulsões/diagnóstico
11.
Brain Res Bull ; 118: 46-57, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26365718

RESUMO

We showed previously that the number of spike-wave discharges (SWDs) was increased after intraperitoneal (i.p.) injection of lipopolysaccharide (LPS), inosine (Ino) and muscimol alone whereas i.p. guanosine (Guo), uridine (Urd), bicuculline, theophylline and (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imine maleate (MK-801) alone decreased the SWD number in Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. These drugs may exert their effects on absence epileptic activity mainly via proinflammatory cytokines-evoked increase in cortical excitability (such as LPS), GABAergic system (LPS, Ino, Urd, muscimol and bicuculline), glutamatergic system (LPS, Guo and MK-801) and adenosinergic system (LPS, Ino, Guo, Urd and theophylline). Both GABAergic system and glutamatergic system are involved in the pathomechanism of absence epilepsy, the LPS-evoked increase in absence epileptic activity and the pro- or antiepileptic effects of non-adenosine (non-Ado) nucleosides Ino, Guo and Urd. Moreover, Ino, Guo and Urd have modulatory effects on inflammatory processes. Thus, we investigated whether Ino, Guo and Urd have also modulatory influence on LPS-evoked increase in SWD number using two different concentrations of each nucleoside in WAG/Rij rats. We demonstrated that Ino dose-dependently aggravated whereas Guo and Urd attenuated the LPS-evoked increase in SWD number. Our results suggest that different nucleosides have diverse effects on LPS-induced changes in absence epileptic activity.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Ribonucleosídeos/farmacologia , Animais , Anticonvulsivantes/farmacologia , Encéfalo/efeitos dos fármacos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Eletroencefalografia/efeitos dos fármacos , Epilepsia Tipo Ausência/induzido quimicamente , Epilepsia Tipo Ausência/tratamento farmacológico , Epilepsia Tipo Ausência/fisiopatologia , Masculino , Modelos Animais , Ratos , Ratos Wistar
12.
Neuroscience ; 300: 593-608, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26037802

RESUMO

Adenosine (Ado) and non-adenosine (non-Ado) nucleosides such as inosine (Ino), guanosine (Guo) and uridine (Urd) may have regionally different roles in the regulation of physiological and pathophysiological processes in the central nervous system (CNS) such as epilepsy. It was demonstrated previously that Ino and Guo decreased quinolinic acid (QA)-induced seizures and Urd reduced penicillin-, bicuculline- and pentylenetetrazole (PTZ)-induced seizures. It has also been demonstrated that Ino and Urd may exert their effects through GABAergic system by altering the function of GABA(A) type of gamma-aminobutyric acid receptors (GABAA receptors) whereas Guo decreases glutamate-induced excitability through glutamatergic system, which systems (GABAergic and glutamatergic) are involved in pathomechanisms of absence epilepsy. Thus, we hypothesized that Ino and Guo, similarly to the previously described effect of Urd, might also decrease absence epileptic activity. We investigated in the present study whether intraperitoneal (i.p.) application of Ino (500 and 1000mg/kg), Guo (20 and 50mg/kg), Urd (500 and 1000mg/kg), GABA(A) receptor agonist muscimol (1 and 3mg/kg), GABA(A) receptor antagonist bicuculline (2 and 4mg/kg), non-selective Ado receptor antagonist theophylline (5 and 10mg/kg) and non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo (a,d) cyclohepten-5,10-imine maleate (MK-801, 0.0625 and 0.1250mg/kg) alone and in combination have modulatory effects on absence epileptic activity in Wistar Albino Glaxo Rijswijk (WAG/Rij) rats. We found that Guo decreased the number of spike-wave discharges (SWDs) whereas Ino increased it dose-dependently. We strengthened that Urd can decrease absence epileptic activity. Our results suggest that Guo, Urd and their analogs could be potentially effective drugs for treatment of human absence epilepsy.


Assuntos
Anticonvulsivantes/farmacologia , Encéfalo/efeitos dos fármacos , Epilepsia Tipo Ausência/tratamento farmacológico , Guanosina/farmacologia , Inosina/farmacologia , Uridina/farmacologia , Animais , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletrocorticografia , Epilepsia Tipo Ausência/fisiopatologia , Masculino , Ratos Wistar , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Purinérgicos P1/metabolismo
13.
J Proteome Res ; 14(5): 2177-89, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25761974

RESUMO

The possibility that a metabolomic approach can inform about the pathophysiology of a given form of epilepsy was addressed. Using chemometric analyses of HRMAS NMR data, we compared several brain structures in three rat strains with different susceptibilities to absence epilepsy: Genetic Absence Epilepsy Rats from Strasbourg (GAERS), Non Epileptic Control rats (NEC), and Wistar rats. Two ages were investigated: 14 days postnatal (P14) before the onset of seizures and 5 month old adults with fully developed seizures (Adults). The relative concentrations of 19 metabolites were assessed using (1)H HRMAS NMR experiments. Univariate and multivariate analyses including multiblock models were used to identify the most discriminant metabolites. A strain-dependent evolution of glutamate, glutamine, scyllo-inositol, alanine, and glutathione was highlighted during cerebral maturation. In Adults, data from somatosensory and motor cortices allowed discrimination between GAERS and NEC rats with higher levels of scyllo-inositol, taurine, and phosphoethanolamine in NEC. This epileptic metabolic phenotype was in accordance with current pathophysiological hypothesis of absence epilepsy (i.e., seizure-generating and control networks) and putative resistance of NEC rats and was observed before seizure onset. This methodology could be very efficient in a clinical context.


Assuntos
Epilepsia Tipo Ausência/diagnóstico , Epilepsia Tipo Ausência/metabolismo , Metaboloma , Córtex Motor/metabolismo , Córtex Somatossensorial/metabolismo , Fatores Etários , Alanina/metabolismo , Animais , Suscetibilidade a Doenças , Epilepsia Tipo Ausência/fisiopatologia , Etanolaminas/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Glutationa/metabolismo , Inositol/metabolismo , Masculino , Córtex Motor/química , Córtex Motor/fisiopatologia , Análise Multivariada , Ratos , Ratos Endogâmicos , Ratos Wistar , Córtex Somatossensorial/química , Córtex Somatossensorial/fisiopatologia , Especificidade da Espécie , Taurina/metabolismo
14.
Epilepsy Res ; 110: 105-14, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25616462

RESUMO

The influence of caffeine on epileptic seizures remains a matter of debate. Here we tested on Genetic Absence Epilepsy Rats from Strasbourg (GAERS) the consequences of acute and chronic exposure to caffeine on the expression of spike-and-wave discharges (SWDs). Since caffeine is a mixed nonspecific A(1) and A(2A) adenosine receptor antagonist, we measured also the influence of antagonists and agonists of these receptors on SWD expression. GAERS were equipped with four cortical electrodes over the frontoparietal cortex and the cumulated duration and number of SWDs were recorded for 120 min after the injection of increasing doses of caffeine, specific antagonists and agonists of A(1) and A(2A) adenosine receptors. The effects of chronic caffeine were also studied. In GAERS, caffeine dose-dependently reduced the cumulated number and duration of SWDs which almost disappeared after the injection of the two highest doses of caffeine, 5 and 10 mg/kg. Likewise, the A(1) and A(2A) adenosine receptor antagonists led to a dose-dependent reduction of SWD expression while the agonists dose-dependently increased SWD expression. Conversely, the chronic exposure to caffeine via drinking water for 15 days did not influence SWD expression. With the exception of the two highest doses of caffeine that largely enhanced activity, all compounds including low doses of caffeine had no effect on locomotor activity of GAERS. These data show that the acute exposure to low doses of caffeine, or A(1) and A(2A) adenosine receptor antagonists reduces SWD expression in GAERS, independently from any effect on motor activity. The chronic exposure of GAERS to caffeine does not affect the expression of epilepsy.


Assuntos
Anticonvulsivantes/farmacologia , Encéfalo/efeitos dos fármacos , Cafeína/farmacologia , Epilepsia Tipo Ausência/tratamento farmacológico , Agonistas Purinérgicos/farmacologia , Antagonistas Purinérgicos/farmacologia , Animais , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletrodos Implantados , Eletroencefalografia , Epilepsia Tipo Ausência/fisiopatologia , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/fisiopatologia , Fatores de Tempo
15.
Ann Neurol ; 76(4): 558-67, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25042348

RESUMO

OBJECTIVE: The aim of this study was to determine the frequency-dependent, spatiotemporal involvement of corticothalamic networks to the generation of absence seizures. METHODS: Magnetoencephalography recordings were obtained in 12 subjects (44 seizures) with untreated childhood absence seizures. Time-frequency analysis of each seizure was performed to determine bandwidths with significant power at ictal onset. Source localization was then completed to determine brain regions contributing to generalized spike and wave discharges seen on electroencephalogram. RESULTS: Significant power in the time-frequency analysis was seen within 1 to 20Hz, 20 to 70Hz, and 70 to 150Hz bandwidths. Source localization revealed that sources localized to the frontal cortex similarly for the low- and gamma-frequency bandwidths, whereas at the low-frequency bandwidth (3-20Hz) significantly more sources localized to the parietal cortex (odds ratio [OR] = 16.7). Cortical sources within the high-frequency oscillation (HFO) bandwidth (70-150Hz) localized primarily to the frontal region compared to the parietal (OR = 7.32) or temporal (OR = 2.78) areas. INTERPRETATION: Neuromagnetic activity within frontal and parietal cortical regions provides further confirmation of hemodynamic changes reported using functional magnetic resonance imaging that have been associated with absence seizures. The frequency-dependent nature of these networks has not previously been reported, and the presence of HFOs during absence seizures is a novel finding. Co-occurring frontal and parietal corticothalamic networks may interact to produce a pathological state that contributes to the generation of spike and wave discharges. The clinical and pathophysiological implications of HFOs within the frontal cortical region are unclear and should be further investigated.


Assuntos
Mapeamento Encefálico , Ondas Encefálicas/fisiologia , Epilepsia Tipo Ausência/patologia , Epilepsia Tipo Ausência/fisiopatologia , Criança , Eletroencefalografia , Feminino , Humanos , Magnetoencefalografia , Masculino , Fatores de Tempo
16.
Brain Res Bull ; 97: 16-23, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23707857

RESUMO

Pharmacological and functional data suggest the existence of uridine (Urd) receptors in the central nervous system (CNS). In the present study, simultaneous extracellular single unit recording and microiontophoretic injection of the pyrimidine nucleoside Urd was used to provide evidence for the presence of Urd-sensitive neurons in the thalamus and the cerebral cortex of Long Evans rats. Twenty-two neurons in the thalamus (24% of recorded neurons) and 17 neurons in the cortex (55%) responded to the direct iontophoresis of Urd. The majority of Urd-sensitive neurons in the thalamus and cortex (82% and 59%, respectively) increased their firing rate in response to Urd. In contrary, adenosine (Ado) and uridine 5'-triphosphate (UTP) decreased the firing rate of all responding neurons in the thalamus, and the majority of responding neurons in the cortex (83% and 87%, respectively). Functional relevance of Urd-sensitive neurons was investigated in spontaneously epileptic freely moving Long Evans and Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. Intraperitoneal (i.p.) injection of 500mg/kg Urd decreased epileptic activity (210-270min after injection) in both rat strains. Intraperitoneal administration of 1000mg/kg Urd decreased the number of spike-wave discharges (SWDs) between 150-270min and 90-270min in Long Evans and WAG/Rij rats, respectively. The effect of Urd was long-lasting in both rat strains as the higher dose significantly decreased the number of SWDs even 24h after Urd injection. The present results suggest that Urd-sensitive neurons in the thalamus and the cerebral cortex may play a role in the antiepileptic action of Urd possibly via modulation of thalamocortical neuronal circuits.


Assuntos
Anticonvulsivantes/farmacologia , Inibição Neural , Neurônios/efeitos dos fármacos , Uridina/farmacologia , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Epilepsia Tipo Ausência/fisiopatologia , Masculino , Neurônios/fisiologia , Ratos , Ratos Long-Evans , Ratos Wistar , Tálamo/efeitos dos fármacos , Tálamo/fisiologia
17.
Neurobiol Dis ; 51: 152-60, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23159741

RESUMO

Radiotherapy has shown some efficacy for epilepsies but the insufficient confinement of the radiation dose to the pathological target reduces its indications. Synchrotron-generated X-rays overcome this limitation and allow the delivery of focalized radiation doses to discrete brain volumes via interlaced arrays of microbeams (IntMRT). Here, we used IntMRT to target brain structures involved in seizure generation in a rat model of absence epilepsy (GAERS). We addressed the issue of whether and how synchrotron radiotherapeutic treatment suppresses epileptic activities in neuronal networks. IntMRT was used to target the somatosensory cortex (S1Cx), a region involved in seizure generation in the GAERS. The antiepileptic mechanisms were investigated by recording multisite local-field potentials and the intracellular activity of irradiated S1Cx pyramidal neurons in vivo. MRI and histopathological images displayed precise and sharp dose deposition and revealed no impairment of surrounding tissues. Local-field potentials from behaving animals demonstrated a quasi-total abolition of epileptiform activities within the target. The irradiated S1Cx was unable to initiate seizures, whereas neighboring non-irradiated cortical and thalamic regions could still produce pathological oscillations. In vivo intracellular recordings showed that irradiated pyramidal neurons were strongly hyperpolarized and displayed a decreased excitability and a reduction of spontaneous synaptic activities. These functional alterations explain the suppression of large-scale synchronization within irradiated cortical networks. Our work provides the first post-irradiation electrophysiological recordings of individual neurons. Altogether, our data are a critical step towards understanding how X-ray radiation impacts neuronal physiology and epileptogenic processes.


Assuntos
Epilepsia Tipo Ausência/radioterapia , Rede Nervosa/efeitos da radiação , Córtex Somatossensorial/efeitos da radiação , Animais , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia Tipo Ausência/fisiopatologia , Feminino , Rede Nervosa/fisiopatologia , Ratos , Córtex Somatossensorial/fisiopatologia , Terapia por Raios X/métodos
18.
J Mol Neurosci ; 48(1): 45-52, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22531884

RESUMO

Adenylyl cyclases (ACs) synthesize the second messenger cyclic AMP (cAMP) which influences the function of multiple ion channels. Former studies point to a malfunction of cAMP-dependent ion channel regulation in thalamocortical relay neurons that contribute to the development of the absence epileptic phenotype of a rat genetic model (WAG/Rij). Here, we provide detailed information about the thalamic gene and protein expression of Ca(2+)/calmodulin-activated AC isoforms in rat thalamus. Data from WAG/Rij were compared to those from non-epileptic controls (August-Copenhagen Irish rats) to elucidate whether differential expression of ACs contributes to the dysregulation of thalamocortical activity. At one postnatal stage (P21), we found the gene expression of two specific Ca(2+)-activated AC isoforms (AC-1 and AC-3) to be significantly down-regulated in epileptic tissue, and we identified the isoform AC-1 to be the most prominent one in both strains. However, Western blot data and analysis of enzymatic AC activity revealed no differences between the two strains. While basal AC activity was low, cAMP production was boosted by application of a forskolin derivative up to sevenfold. Despite previous hints pointing to a major contribution of ACs, the presented data show that there is no apparent causality between AC activity and the occurrence of the epileptic phenotype.


Assuntos
Adenilil Ciclases/genética , Epilepsia Tipo Ausência/enzimologia , Epilepsia Tipo Ausência/genética , Tálamo/enzimologia , Tálamo/fisiologia , Adenilil Ciclases/metabolismo , Animais , Córtex Cerebral/citologia , Córtex Cerebral/enzimologia , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Epilepsia Tipo Ausência/fisiopatologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Vias Neurais/citologia , Vias Neurais/enzimologia , Fenótipo , Ratos , Ratos Endogâmicos , Ratos Mutantes , Tálamo/citologia
19.
Neurobiol Dis ; 44(3): 259-69, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21645619

RESUMO

Interleukin (IL)-1ß plays a crucial role in the mechanisms of limbic seizures in rodent models of temporal lobe epilepsy. We addressed whether activation of the IL-1ß signaling occurs in rats with genetic absence epilepsy (GAERS) during the development of spike-and-wave discharges (SWDs). Moreover, we studied whether inhibition of IL-1ß biosynthesis in GAERS could affect SWD activity. IL-1ß expression and glia activation were studied by immunocytochemistry in the forebrain of GAERS at postnatal days (PN)14, PN20, and PN90 and in age-matched non-epileptic control Wistar rats. In PN14 GAERS, when no SWDs have developed yet, IL-1ß immunostaining was undetectable, and astrocytes and microglia showed a resting phenotype similar to control Wistar rats. In 3 out of 9 PN20 GAERS, IL-1ß was observed in activated astrocytes of the somatosensory cortex; the cytokine expression was associated with the occurrence of immature-type of SWDs. In all adult PN90 GAERS, when mature SWDs are established, IL-1ß was observed in reactive astrocytes of the somatosensory cortex but not in adjacent cortical areas or in extra-cortical regions. An age-dependent c-fos activation was found in the somatosensory cortex of GAERS with maximal levels reached in PN90 rats; c-fos was also induced in some thalamic nuclei in PN20 and PN90 GAERS. Inhibition of IL-1ß biosynthesis in PN90 GAERS by 4-day systemic administration of a specific ICE/Caspase-1 blocker, significantly reduced both SWD number and duration. These results show that IL-1ß is induced in reactive astrocytes of the somatosensory cortex of GAERS at the onset of SWDs. IL-1ß has pro-ictogenic properties in this model, and thus it may play a contributing role in the mechanisms underlying the occurrence of absence seizures.


Assuntos
Astrócitos/metabolismo , Ondas Encefálicas/fisiologia , Epilepsia Tipo Ausência/patologia , Epilepsia Tipo Ausência/fisiopatologia , Interleucina-1beta/metabolismo , Córtex Somatossensorial/patologia , Ácido 4-Aminobenzoico/farmacologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Ondas Encefálicas/efeitos dos fármacos , Ondas Encefálicas/genética , Contagem de Células , Dipeptídeos/farmacologia , Modelos Animais de Doenças , Eletroencefalografia , Inibidores Enzimáticos/farmacologia , Epilepsia Tipo Ausência/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Mutantes , Ratos Wistar , Córtex Somatossensorial/metabolismo , Estatísticas não Paramétricas , Núcleos Talâmicos/citologia , Núcleos Talâmicos/metabolismo , para-Aminobenzoatos
20.
Pediatr Infect Dis J ; 30(11): 1001-3, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21633320

RESUMO

Efavirenz, used in treating pediatric human immunodeficiency virus infection, has central nervous system side effects. We report on a 5-year-old girl with perinatally acquired human immunodeficiency virus infection, presenting with new onset absence seizures after starting treatment with efavirenz. Plasma efavirenz values were above therapeutic range. The child was homozygous for the CYP2B6-516T/T genotype, which is associated with poor efavirenz clearance. Seizures abated after efavirenz discontinuation.


Assuntos
Fármacos Anti-HIV/efeitos adversos , Hidrocarboneto de Aril Hidroxilases/genética , Benzoxazinas/efeitos adversos , Epilepsia Tipo Ausência/genética , Infecções por HIV/genética , HIV/fisiologia , Oxirredutases N-Desmetilantes/genética , Alcinos , Fármacos Anti-HIV/sangue , Hidrocarboneto de Aril Hidroxilases/deficiência , Benzoxazinas/sangue , Pré-Escolar , Ciclopropanos , Citocromo P-450 CYP2B6 , Epilepsia Tipo Ausência/sangue , Epilepsia Tipo Ausência/induzido quimicamente , Epilepsia Tipo Ausência/fisiopatologia , Epilepsia Tipo Ausência/virologia , Feminino , Predisposição Genética para Doença , Genótipo , HIV/efeitos dos fármacos , Infecções por HIV/sangue , Infecções por HIV/tratamento farmacológico , Infecções por HIV/fisiopatologia , Infecções por HIV/virologia , Homozigoto , Humanos , Oxirredutases N-Desmetilantes/deficiência , Polimorfismo Genético , África do Sul , Carga Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA