Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Histol Histopathol ; 37(7): 621-636, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35388905

RESUMO

The PI3K/AKT signaling pathway is one of the most crucial regulatory mechanisms in animal cells, which can mainly regulate proliferation, survival and anti-apoptosis in cell lines. In the seminiferous epithelium, most studies were concentrated on the role of PI3K/AKT signaling in immature Sertoli cells (SCs) and spermatogonia stem cells (SSCs). PI3K/AKT signaling can facilitate the proliferation and anti-apoptosis of immature Sertoli cells and spermatogenic cells. Besides, in mature Sertoli cells, this pathway can disintegrate the structure of the blood-testis barrier (BTB) via regulatory protein synthesis and the cytoskeleton of Sertoli cells. All of these effects can directly and indirectly maintain and promote spermatogenesis in male testis.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Células de Sertoli , Animais , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Epitélio Seminífero/metabolismo , Células de Sertoli/metabolismo , Transdução de Sinais , Espermatogênese/fisiologia , Testículo
2.
Andrology ; 10(2): 377-391, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34535976

RESUMO

BACKGROUNDS: Sterility induced by anti-cancer treatments has caused significant concern, yet the mechanism and treatment exploration are little for male infertility after cancer therapy. Busulfan, the antineoplastic that was widely applied before bone marrow transplantation, was known to induce male reproductive disorder. OBJECTIVES: To investigate the effect of busulfan on blood-testis barrier function in adult rats and determine whether noncollagenous 1 domain peptide, the biologically active fragment proteolyzed from the collagen α3 chain (IV) by matrix metalloproteinase 9, was involved during this process. MATERIALS AND METHODS: Adult male rats were treated with one-dose or double-dose of busulfan (10 mg/kg) before euthanized at day 35. Blood-testis barrier integrity assay, HE staining, immunofluorescence, and Western blot were used to validate the effect of busulfan on blood-testis barrier permeability and spermatogenesis. JNJ0966 was applied to specifically inhibit the matrix metalloproteinase 9 activity. The polymerization activity of F-actin/G-actin and microtubule/tubulin in the testis were assessed by using commercial kits. RESULTS: A noteworthy blood-testis barrier injury and significant up-regulation of matrix metalloproteinase 9 activity and noncollagenous 1 level after a single-dose busulfan (10 mg/kg) treatment in adult rat testis were revealed. The application of JNJ0966 was found to decrease noncollagenous 1 level and rescue the busulfan-induced blood-testis barrier injury including the mis-localization of junction proteins across the seminiferous epithelium, by recovering the organization and polymerization of both F-actin and microtubule. The busulfan-induced spermatogenesis impairment was also improved by JNJ0966. CONCLUSION: These findings thus demonstrate that the elevation in matrix metalloproteinase 9 and noncollagenous 1 might participate in busulfan-induced blood-testis barrier disruption in adult male rats. As such, busulfan-induced male infertility could possibly be managed through interventions on noncollagenous 1 production.


Assuntos
Antineoplásicos Alquilantes/efeitos adversos , Barreira Hematotesticular/efeitos dos fármacos , Bussulfano/efeitos adversos , Infertilidade Masculina/induzido quimicamente , Espermatogênese/efeitos dos fármacos , Animais , Autoantígenos/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Colágeno Tipo IV/metabolismo , Modelos Animais de Doenças , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Ratos , Epitélio Seminífero/metabolismo
3.
Reprod Biol ; 21(4): 100562, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34555686

RESUMO

The structural integrity of the germ cells in the seminiferous epithelium and the correct process of spermatogenesis are made possible by proteins that participate in the formation of different types of junctions. This study was performed on samples of the testes of 4 groups (2 experimental and 2 corresponding control) of male Wistar rats. In the first experimental group, the adult rats received letrozole - a nonsteroidal inhibitor of cytochrome P450 aromatase (P450arom). The second experimental group was exposed to soya isoflavones during the prenatal period, lactation, and up to sexual maturity. The aim of this study was to examine the immunoexpression of ß-catenin, N-cadherin, occludin, connexin43, annexin V, and advanced glycation end products (AGE) in the seminiferous epithelium of rat testes with chronic estrogen deficiency and of rats exposed to soya isoflavones. Series of sections of the testes were stained using PAS and silver impregnation. Moreover, immunohistochemistry tests were performed. A semi-quantitative determination of protein immunoexpression was performed using Image J. The number of annexin V positive Sertoli cells per tubule were counted manually. Comparisons between the experimental and corresponding control groups were performed using a non-parametric Mann-Whitney U test. The most common alterations were prematurely sloughed germ cells in the lumen of the seminiferous tubules and invaginations of the seminiferous tubules. We observed a lower number of annexin V positive Sertoli cells and a lower expression of N-cadherin and occludin in the seminiferous epithelium of both groups of rats with hormonal imbalances. Moreover, a higher expression of AGE, a lower expression of connexin 43 and a lower amount of reticular fibers in the basal lamina of seminiferous tubules was present in rats treated with letrozole and a higher expression of ß-catenin was found in rats exposed to soya isoflavones. The hormonal imbalance between androgens and estrogens resulted in a decreased number of annexin V positive Sertoli cells. This may be associated with a failed clearance of apoptotic germ cells that leads to disturbances in the blood-testis-barrier (BTB) by affecting the expression of junctional proteins in the seminiferous epithelium. Moreover, a decreased level of estrogens was also associated with an increased expression of AGEs and with a changed composition of basal lamina in the seminiferous tubules of rats. These changes could lead to germ cell sloughing and invaginations of the seminiferous tubules.


Assuntos
Estrogênios/deficiência , Junções Intercelulares/metabolismo , Isoflavonas/farmacologia , Proteínas de Membrana/metabolismo , Epitélio Seminífero/metabolismo , Animais , Barreira Hematotesticular/efeitos dos fármacos , Feminino , Produtos Finais de Glicação Avançada/metabolismo , Letrozol , Masculino , Exposição Materna , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos Wistar , Epitélio Seminífero/efeitos dos fármacos , Maturidade Sexual/efeitos dos fármacos
4.
Asian J Androl ; 23(2): 123-128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32896837

RESUMO

Collagen α3 (IV) chains are one of the major constituent components of the basement membrane in the mammalian testis. Studies have shown that biologically active fragments, such as noncollagenase domain (NC1)-peptide, can be released from the C-terminal region of collagen α3 (IV) chains, possibly through the proteolytic action of metalloproteinase 9 (MMP9). NC1-peptide was shown to promote blood-testis barrier (BTB) remodeling and fully developed spermatid (e.g., sperm) release from the seminiferous epithelium because this bioactive peptide was capable of perturbing the organization of both actin- and microtubule (MT)-based cytoskeletons at the Sertoli cell-cell and also Sertoli-spermatid interface, the ultrastructure known as the basal ectoplasmic specialization (ES) and apical ES, respectively. More importantly, recent studies have shown that this NC1-peptide-induced effects on cytoskeletal organization in the testis are mediated through an activation of mammalian target of rapamycin complex 1/ribosomal protein S6/transforming retrovirus Akt1/2 protein (mTORC1/rpS6/Akt1/2) signaling cascade, involving an activation of cell division control protein 42 homolog (Cdc42) GTPase, but not Ras homolog family member A GTPase (RhoA), and the participation of end-binding protein 1 (EB1), a microtubule plus (+) end tracking protein (+TIP), downstream. Herein, we critically evaluate these findings, providing a critical discussion by which the basement membrane modulates spermatogenesis through one of its locally generated regulatory peptides in the testis.


Assuntos
Membrana Basal/metabolismo , Barreira Hematotesticular/metabolismo , Colágeno Tipo IV/metabolismo , Fragmentos de Peptídeos/metabolismo , Epitélio Seminífero/metabolismo , Espermatogênese/fisiologia , Citoesqueleto de Actina , Animais , Membrana Basal/fisiologia , Barreira Hematotesticular/fisiologia , Comunicação Celular , Colágeno Tipo IV/fisiologia , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos , Fragmentos de Peptídeos/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína S6 Ribossômica/metabolismo , Epitélio Seminífero/fisiologia , Células de Sertoli/metabolismo , Células de Sertoli/fisiologia , Transdução de Sinais , Espermátides/metabolismo , Espermátides/fisiologia , Testículo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
5.
Reprod Sci ; 27(7): 1443-1454, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31994000

RESUMO

Sertoli cells are important for spermatogenesis not only by directly interacting with germ line cells in the seminiferous epithelium but also by constituting the blood-testis barrier (BTB) structure to create a favorable environment for spermatogenesis. Blind sterile (bs) male mice are infertile, with excessive germ cell apoptosis and spermatogenesis arrest. TBC1D20 (TBC1 domain family member 20) deficiency has been identified as the causative mutation in bs mice. However, whether TBC1D20 loss of function also impairs BTB integrity, which further contributes to the failed spermatogenesis of bs male mice, remains unclear. In the present study, biotin tracer assay and transmission electron microscopy showed severely disrupted BTB integrity in bs testes. Compared to the wild-type Sertoli cells, BTB components of cultured bs Sertoli cells in vitro was perturbed with downregulation of E-cadherin, ZO-1, ß-catenin, and Claudin 11. The obvious rearrangement of F-actin indicated disrupted epithelial-mesenchymal balance in TBC1D20-deficient Sertoli cells. The ability of bs Sertoli cells to maintain the clone formation of spermatogonia stem cells was also obviously limited. Furthermore, the decreasing of SOX9 (sex-determining region Y box 9) and WT1 (Wilms' tumor 1) and increasing of vimentin in bs Sertoli cells indicated that TBC1D20 loss of function attenuated the differentiation progression of bs Sertoli cells. In summary, TBC1D20 loss of function impedes the maturation of adult Sertoli cells and resulted in impaired BTB integrity, which is further implicated in the infertile phenotype of bs male mice.


Assuntos
Barreira Hematotesticular/metabolismo , Epitélio Seminífero/metabolismo , Células de Sertoli/metabolismo , Proteínas rab1 de Ligação ao GTP/efeitos dos fármacos , Animais , Barreira Hematotesticular/patologia , Células Cultivadas , Técnicas de Cocultura , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Masculino , Camundongos , Camundongos Transgênicos , Epitélio Seminífero/patologia , Células de Sertoli/patologia , Testículo/metabolismo , Testículo/patologia , Proteínas rab1 de Ligação ao GTP/genética
6.
FASEB J ; 34(2): 3105-3128, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31909540

RESUMO

During the epithelial cycle of spermatogenesis, different sets of cellular events take place across the seminiferous epithelium in the testis. For instance, remodeling of the blood-testis barrier (BTB) that facilitates the transport of preleptotene spermatocytes across the immunological barrier and the release of sperms at spermiation take place at the opposite ends of the epithelium simultaneously at stage VIII of the epithelial cycle. These cellular events are tightly coordinated via locally produced regulatory biomolecules. Studies have shown that collagen α3 (IV) chains, a major constituent component of the basement membrane, release the non-collagenous (NC) 1 domain, a 28-kDa peptide, designated NC1-peptide, from the C-terminal region, via the action of MMP-9 (matrix metalloproteinase 9). NC1-peptide was found to be capable of inducing BTB remodeling and spermatid release across the epithelium. As such, the NC1-peptide is an endogenously produced biologically active peptide which coordinates these cellular events across the epithelium in stage VIII tubules. Herein, we used an animal model, wherein NC1-peptide cloned into the pCI-neo mammalian expression vector was overexpressed in the testis, to better understanding the molecular mechanism by which NC1-peptide regulated spermatogenic function. It was shown that NC1-peptide induced considerable downregulation on a number of cell polarity and planar cell polarity (PCP) proteins, and studies have shown these polarity and PCP proteins modulate spermatid polarity and adhesion via their effects on microtubule (MT) and F-actin cytoskeletal organization across the epithelium. More important, NC1-peptide exerted its effects by downregulating the expression of microtubule (MT) plus-end tracking protein (+TIP) called EB1 (end-binding protein 1). We cloned the full-length EB1 cDNA for its overexpression in the testis, which was found to block the NC1-peptide-mediated disruptive effects on cytoskeletal organization in Sertoli cell epithelium and pertinent Sertoli cell functions. These findings thus illustrate that NC1-peptide is working in concert with EB1 to support spermatogenesis.


Assuntos
Citoesqueleto de Actina/metabolismo , Barreira Hematotesticular/metabolismo , Colágeno/farmacologia , Proteínas Associadas aos Microtúbulos/metabolismo , Peptídeos/farmacologia , Espermátides/metabolismo , Espermatogênese/efeitos dos fármacos , Animais , Barreira Hematotesticular/citologia , Colágeno/química , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Peptídeos/química , Ratos , Ratos Sprague-Dawley , Epitélio Seminífero/citologia , Epitélio Seminífero/metabolismo , Espermátides/citologia , Junções Íntimas/metabolismo
7.
Front Immunol ; 10: 1326, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244861

RESUMO

Primary membranous nephropathy (MN) is a frequent cause of NS in adults. In native kidneys the disease may progress to ESRD in the long term, in some 40-50% of untreated patients. The identification of the pathogenic role of anti-podocyte autoantibodies and the development of new therapeutic options has achieved an amelioration in the prognosis of this disease. MN may also develop in renal allograft as a recurrent or a de novo disease. Since the de novo MN may have some different pathogenetic and morphologic features compared to recurrent MN, in the present paper we will deal only with the recurrent disease. The true incidence of the recurrent form is difficult to assess. This is mainly due to the variable graft biopsy policies in kidney transplantation, among the different transplant centers. Anti-phospholipase A2 receptor (PLA2R) autoantibodies are detected in 70-80% of patients. The knowledge of anti-PLA2R status before transplant is useful in predicting the risk of recurrence. In addition, the serial survey of the anti-PLA2R titers is important to assess the rate of disease progression and the response to treatment. Currently, there are no established guidelines for prevention and treatment of recurrent MN. Symptomatic therapy may help to reduce the signs and symptoms related to the nephrotic syndrome. Anecdotal cases of response to cyclical therapy with steroids and cyclophosphamide have been published. Promising results have been reported with rituximab in both prophylaxis and treatment of recurrence. However, these results are based on observational data, and prospective controlled trials are still missing.


Assuntos
Complexo Antígeno-Anticorpo/metabolismo , Doenças Autoimunes/imunologia , Membrana Basal Glomerular/patologia , Glomerulonefrite Membranosa/imunologia , Transplante de Rim , Epitélio Seminífero/metabolismo , Autoimunidade , Humanos , Masculino , Recidiva , Epitélio Seminífero/patologia
8.
Am J Physiol Endocrinol Metab ; 317(1): E121-E138, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31112404

RESUMO

Studies have shown that the mTORC1/rpS6 signaling cascade regulates Sertoli cell blood-testis barrier (BTB) dynamics. For instance, specific inhibition of mTORC1 by treating Sertoli cells with rapamycin promotes the Sertoli cell barrier, making it "tighter." However, activation of mTORC1 by overexpressing a full-length rpS6 cDNA clone (i.e., rpS6-WT, wild type) in Sertoli cells promotes BTB remodeling, making the barrier "leaky." Also, there is an increase in rpS6 and p-rpS6 (phosphorylated and activated rpS6) expression at the BTB in testes at stages VIII-IX of the epithelial cycle, and it coincides with BTB remodeling to support the transport of preleptotene spermatocytes across the barrier, illustrating that rpS6 is a BTB-modifying signaling protein. Herein, we used a constitutively active, quadruple phosphomimetic mutant of rpS6, namely p-rpS6-MT of p-rpS6-S235E/S236E/S240E/S244E, wherein Ser (S) was converted to Glu (E) at amino acid residues 235, 236, 240, and 244 from the NH2 terminus by site-directed mutagenesis, for its overexpression in rat testes in vivo using the Polyplus in vivo jet-PEI transfection reagent with high transfection efficiency. Overexpression of this p-rpS6-MT was capable of inducing BTB remodeling, making the barrier "leaky." This thus promoted the entry of the nonhormonal male contraceptive adjudin into the adluminal compartment in the seminiferous epithelium to induce germ cell exfoliation. Combined overexpression of p-rpS6-MT with a male contraceptive (e.g., adjudin) potentiated the drug bioavailability by modifying the BTB. This approach thus lowers intrinsic drug toxicity due to a reduced drug dose, further characterizing the biology of BTB transport function.


Assuntos
Barreira Hematotesticular/metabolismo , Anticoncepcionais Masculinos/farmacologia , Hidrazinas/farmacologia , Indazóis/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteína S6 Ribossômica/metabolismo , Animais , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Mutagênese Sítio-Dirigida , Ratos , Ratos Sprague-Dawley , Proteína S6 Ribossômica/genética , Epitélio Seminífero/metabolismo , Células de Sertoli/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espermatócitos/metabolismo , Espermatogênese/efeitos dos fármacos
9.
PLoS One ; 13(12): e0208835, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30571760

RESUMO

The fertility of men with neurofibromatosis 1 (NF1) is reduced. Despite this observation, gonadal function has not been examined in patients with NF1. In order to assess the role of reduced neurofibromin in the testes, we examined testicular morphology and function in an Nf1+/- mouse model. We found that although Nf1+/- male mice are able to reproduce, they have significantly fewer pups per litter than Nf1+/+ control males. Reduced fertility in Nf1+/- male mice is associated with disorganization of the seminiferous epithelium, with exfoliation of germ cells and immature spermatids into the tubule lumen. Morphometric analysis shows that these alterations are associated with decreased Leydig cell numbers and increased spermatid cell numbers. We hypothesized that hyper-activation of Ras in Nf1+/- males affects ectoplasmic specialization, a Sertoli-spermatid adherens junction involved in spermiation. Consistent with this idea, we found increased expression of phosphorylated ERK, a downstream effector of Ras that has been shown to alter ectoplasmic specialization, in Nf1+/- males in comparison to control Nf1+/+ littermates. These data demonstrate that neurofibromin haploinsufficiency impairs spermatogenesis and fertility in a mouse model of NF1.


Assuntos
Fertilidade , Haploinsuficiência , Neurofibromatose 1/metabolismo , Neurofibromina 1/metabolismo , Espermatogênese , Animais , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Masculino , Camundongos , Camundongos Mutantes , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Neurofibromina 1/genética , Epitélio Seminífero/metabolismo , Epitélio Seminífero/patologia , Espermátides/metabolismo , Espermátides/patologia , Proteínas ras/genética , Proteínas ras/metabolismo
10.
Biomed Res ; 39(4): 197-214, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30101840

RESUMO

Despite their pharmacologically opposite actions, long-acting depot formulations of both GnRH agonists and antagonists have been clinically applied for treatment of androgen-sensitive prostate cancer. Sustained treatment with GnRH analogues commonly suppresses both the synthesis and release of gonadotropins, leading to depletion of testicular testosterone. To clarify the underlying differences in the effects of GnRH agonists and antagonists on spermatogenesis, we compared histological changes in the seminiferous epithelium after administration of depot formulations of GnRH agonist leuprorelin and antagonist degarelix to male rats. Testicular weight had markedly declined by 28 days after administration of both GnRH analogues, although the testicular weight was decreased more promptly by leuprorelin compared with degarelix. Shortly after administration, massive exfoliation of premature spermatids and anomalous multinucleated giant cells was observed in seminiferous tubules of leuprorelin-treated rats, probably via the initial hyperstimulatory effects on the hypothalamic-pituitary-testicular axis, whereas no discernible changes were found in those of degarelix-treated rats. Long term treatment with both types of GnRH analogues similarly induced a marked reduction in the height of the epithelium and deformation of apical cytoplasm in Sertoli cells, resulting in premature detachment of spermatids from the epithelium. Lipid droplets had accumulated progressively in Sertoli cells, especially in those of degarelix-treated rats. These findings clearly demonstrate the differences in the effects of GnRH agonists and antagonists on the spermatogenic process. This study suggests that an appropriate choice of GnRH analogues is necessary to minimize their adverse effects on spermatogenesis when reproductive functions should be preserved in patients.


Assuntos
Hormônio Liberador de Gonadotropina , Leuprolida , Oligopeptídeos , Epitélio Seminífero/metabolismo , Espermatogênese/efeitos dos fármacos , Animais , Hormônio Liberador de Gonadotropina/agonistas , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Leuprolida/efeitos adversos , Leuprolida/farmacocinética , Leuprolida/farmacologia , Masculino , Oligopeptídeos/efeitos adversos , Oligopeptídeos/farmacocinética , Oligopeptídeos/farmacologia , Ratos , Ratos Wistar , Epitélio Seminífero/patologia , Células de Sertoli/metabolismo , Células de Sertoli/patologia , Espermátides/metabolismo , Espermátides/patologia
11.
C R Biol ; 341(7-8): 371-379, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30150094

RESUMO

Obesity and overweight are frequently associated with male subfertility. To address new findings on the players involved in the obesity-induced impairment of spermatogenesis, we used a high-fat diet-induced overweight-rat model. Following four weeks of high-fat diet, the organization of seminiferous epithelium was affected, and tubules lumen showed immature/degenerated cells, typical signs of hormonal imbalance and testicular damage. Real-time PCR analysis allowed us to detect increased levels of ERα and decreased levels of aromatase CYP19 transcripts in testis, suggesting an increase in circulating estrogens derived from the accumulating adipose tissue rather than the induction of testicular estrogen synthesis. Moreover, in situ hybridization analysis showed an increased susceptibility towards estrogens in testis from high-fat fed rats, being ERs expressed not only in spermatogonia, as in control testis, but also in spermatids. Western blot and immunohistochemical analyses revealed an increase in the amount of p53 and PCNA, together with a change in their immunodetection, being the proteins localised on germ cells at different stages of maturation. Differences in p53 and PCNA expression may give evidence and be part of a cellular response to stress conditions and damage caused by the excessive intake of saturated fatty acids.


Assuntos
Aromatase/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Receptores de Estrogênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Masculino , Ratos , Ratos Wistar , Epitélio Seminífero/metabolismo , Espermátides/fisiologia , Espermatogênese/fisiologia , Testículo/fisiologia
12.
Reprod Fertil Dev ; 30(12): 1595-1603, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29860969

RESUMO

Spermiation (sperm release) is the culmination of a spermatid's journey in the seminiferous epithelium. After a long association with the Sertoli cell, spermatids have to finally 'let go' of the support from Sertoli cells in order to be transported to the epididymis. Spermiation is a multistep process characterised by removal of excess spermatid cytoplasm, recycling of junctional adhesion molecules by endocytosis, extensive cytoskeletal remodelling and final spermatid disengagement. Successful execution of all these events requires coordinated regulation by endocrine and paracrine factors. This review focuses on the endocrine regulation of spermiation. With the aim of delineating how hormones control the various aspects of spermiation, this review provides an analysis of recent advances in research on the hormonal control of molecules associated with the spermiation machinery. Because spermiation is one of the most sensitive phases of spermatogenesis to variations in hormone levels, understanding their molecular control is imperative to advance our knowledge of the nuances of spermatogenesis and male fertility.


Assuntos
Androgênios/metabolismo , Movimento Celular/fisiologia , Estrogênios/metabolismo , Ocitocina/metabolismo , Espermatogênese/fisiologia , Espermatozoides/citologia , Animais , Humanos , Masculino , Epitélio Seminífero/citologia , Epitélio Seminífero/metabolismo , Espermátides/citologia , Espermátides/metabolismo , Espermatozoides/metabolismo , Testículo/citologia , Testículo/metabolismo
13.
Cell Death Dis ; 9(2): 208, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29434191

RESUMO

Germ cell differentiation during the epithelial cycle of spermatogenesis is accompanied by extensive remodeling at the Sertoli cell-cell and Sertoli cell-spermatid interface to accommodate the transport of preleptotene spermatocytes and developing spermatids across the blood-testis barrier (BTB) and the adluminal compartment of the seminiferous epithelium, respectively. The unique cell junction in the testis is the actin-rich ectoplasmic specialization (ES) designated basal ES at the Sertoli cell-cell interface, and the apical ES at the Sertoli-spermatid interface. Since ES dynamics (i.e., disassembly, reassembly and stabilization) are supported by actin microfilaments, which rapidly converts between their bundled and unbundled/branched configuration to confer plasticity to the ES, it is logical to speculate that actin nucleation proteins play a crucial role to ES dynamics. Herein, we reported findings that Spire 1, an actin nucleator known to polymerize actins into long stretches of linear microfilaments in cells, is an important regulator of ES dynamics. Its knockdown by RNAi in Sertoli cells cultured in vitro was found to impede the Sertoli cell tight junction (TJ)-permeability barrier through changes in the organization of F-actin across Sertoli cell cytosol. Unexpectedly, Spire 1 knockdown also perturbed microtubule (MT) organization in Sertoli cells cultured in vitro. Biochemical studies using cultured Sertoli cells and specific F-actin vs. MT polymerization assays supported the notion that a transient loss of Spire 1 by RNAi disrupted Sertoli cell actin and MT polymerization and bundling activities. These findings in vitro were reproduced in studies in vivo by RNAi using Spire 1-specific siRNA duplexes to transfect testes with Polyplus in vivo-jetPEI as a transfection medium with high transfection efficiency. Spire 1 knockdown in the testis led to gross disruption of F-actin and MT organization across the seminiferous epithelium, thereby impeding the transport of spermatids and phagosomes across the epithelium and perturbing spermatogenesis. In summary, Spire 1 is an ES regulator to support germ cell development during spermatogenesis.


Assuntos
Citoplasma/metabolismo , Proteínas dos Microfilamentos/metabolismo , Epitélio Seminífero/metabolismo , Células de Sertoli/metabolismo , Espermátides/metabolismo , Espermatogênese/fisiologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Epitélio Seminífero/citologia , Células de Sertoli/citologia , Espermátides/citologia , Junções Íntimas/metabolismo
14.
Mol Reprod Dev ; 85(3): 262-270, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29393534

RESUMO

In mouse testes, Sertoli cells support the continuous process of spermatogenesis, which is dependent on seminiferous epithelial cycles along the longitudinal axis of the seminiferous tubule. Sertoli cell function is modulated partly by local cytokines and/or growth factors derived from adjacent tissues such as blood vessels, macrophages, rete testis, etc. However, the spatial activation patterns by local signals in vivo remain unclear. In this study, we focused on Signal Transducers and Activators of Transcription (STAT) signaling in Sertoli cells, because STAT is a major crucial cytokine transducer for somatic cyst cell regulation in Drosophila testis niches. In mouse testes, STAT3 was ubiquitously expressed in Sertoli cells throughout the seminiferous tubules. Phosphorylated STAT3 (p-STAT3) was predominantly observed in the Sertoli cells within the valve-like structure adjacent to the rete testis (i.e., the Sertoli valve [SV]) in the terminal segment of the proximal seminiferous tubules. In the distal seminiferous tubules with active spermatogenesis, most Sertoli cells were negative for anti-p-STAT3 staining. Albeit rarely, a small patch of several p-STAT3-positive Sertoli cells was detected frequently in seminiferous epithelial cycle stages I-VI. Such p-STAT3-positive ratios in the convoluted seminiferous epithelia were significantly increased in germ cell-less testes than in the wild-type testes, but with considerably lower ratios than in the SV region. These findings imply that regionally distinct patterns of STAT3 phosphorylation in the Sertoli cells depend on either location or spermatogenic activity in normal healthy testes in vivo, highlighting a novel entry point to understanding STAT signaling in mammalian spermatogenesis.


Assuntos
Fator de Transcrição STAT3/metabolismo , Epitélio Seminífero/metabolismo , Células de Sertoli/metabolismo , Espermatogênese/fisiologia , Testículo/metabolismo , Animais , Masculino , Camundongos , Especificidade de Órgãos , Fosforilação
15.
PLoS Genet ; 13(11): e1007078, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29136647

RESUMO

The katanin microtubule-severing proteins are essential regulators of microtubule dynamics in a diverse range of species. Here we have defined critical roles for the poorly characterised katanin protein KATNAL2 in multiple aspects of spermatogenesis: the initiation of sperm tail growth from the basal body, sperm head shaping via the manchette, acrosome attachment, and ultimately sperm release. We present data suggesting that depending on context, KATNAL2 can partner with the regulatory protein KATNB1 or act autonomously. Moreover, our data indicate KATNAL2 may regulate δ- and ε-tubulin rather than classical α-ß-tubulin microtubule polymers, suggesting the katanin family has a greater diversity of function than previously realised. Together with our previous research, showing the essential requirement of katanin proteins KATNAL1 and KATNB1 during spermatogenesis, our data supports the concept that in higher order species the presence of multiple katanins has allowed for subspecialisation of function within complex cellular settings such as the seminiferous epithelium.


Assuntos
Katanina/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos/genética , Animais , Células Germinativas/metabolismo , Haploidia , Infertilidade Masculina/metabolismo , Katanina/genética , Masculino , Camundongos , Microtúbulos/metabolismo , Isoformas de Proteínas , Epitélio Seminífero/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo , Testículo/metabolismo , Tubulina (Proteína)/metabolismo
16.
J Toxicol Environ Health A ; 80(19-21): 1166-1179, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28956719

RESUMO

The acute promyelocytic leukemia (APL) is a rare disease, affecting 0.1/100,000 individuals globally. Despite significant advances in APL therapy, some patients still experience relapsed disease. Currently, arsenic trioxide (As2O3) was found to be effective in relapsed APL treatment and considered as standard treatment for these cases. However, it has been shown that exposure to As2O3 may exert adverse effects on the male reproductive system since this substance might also induce apoptosis of other important cell types including stem cells. Studies demonstrated that treatment with this metallic substance decreased plasma levels of testosterone and interfered with sperm parameters such as concentration, motility, and viability. In addition, As2O3 was found to produce significant damage to spermatocytes, which may be associated with testicular toxicity and consequent inhibition of spermatogenesis. The aim of this study was to determine sub-chronic treatment effects of As2O3 on sperm and testicular morphology, androgen receptor (AR) immunoreactivity in testes and epididymis, in addition to evaluation of fertility parameters in adult male mice. Thirty adult Swiss mice were divided into three experimental groups: control; received distilled water (vehicle) while treated received 0.3 or 3 mg/kg/day As2O3 subcutaneously, for 5 days per week, followed by 2 days of interruption, for 5 weeks. Results showed that As2O3 (1) decreased spermatozoa number, (2) produced seminiferous epithelium degeneration and exfoliation of germ cells tubule lumen (3) altered nucleus/cytoplasm proportion of Leydig cells and (4) reduced AR immunoreactivity in both Leydig and epithelial epididymal cells. Further, fetal viability tests demonstrated an increase in post-implantation loss in females that were mated with As2O3-treated males. Data indicate that As2O3 exposure altered the spermatogenic process and subsequently fetal viability.


Assuntos
Viabilidade Fetal/efeitos dos fármacos , Óxidos/toxicidade , Testículo/efeitos dos fármacos , Animais , Trióxido de Arsênio , Arsenicais/administração & dosagem , Modelos Animais de Doenças , Epididimo/efeitos dos fármacos , Epididimo/metabolismo , Fertilidade/efeitos dos fármacos , Leucemia Promielocítica Aguda/tratamento farmacológico , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Óxidos/administração & dosagem , Receptores Androgênicos/metabolismo , Reprodução/efeitos dos fármacos , Epitélio Seminífero/efeitos dos fármacos , Epitélio Seminífero/metabolismo , Espermatogênese/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Testículo/metabolismo , Testes de Toxicidade Subcrônica , Aumento de Peso/efeitos dos fármacos
17.
Cell Death Dis ; 8(9): e3038, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28880272

RESUMO

During spermatogenesis, immature spermatocytes traverse the blood-testis barrier (BTB) and enter the apical apartment of seminiferous epithelium for further development. This course involves extensive junction disassembly and reassembly at the BTB. P-glycoprotein is known to be coded by two genes in rodents, namely Abcb1a and Abcb1b. Our previous studies showed that simultaneously silencing Abcb1a and Abcb1b genes in Sertoli cells impeded BTB integrity. However, the individual role of Abcb1a and Abcb1b in regulating BTB dynamics remains uninvestigated. Here, single knockdown of Abcb1a by RNAi impeded the in vitro Sertoli cell permeability barrier via redistributing TJ proteins, accelerating endocytosis, and affecting endocytic vesicle-mediated protein transportation that undermined Sertoli cell barrier. F5-peptide model was used to induce cell junction disruption and subsequent restructuring in primary Sertoli cells. F5-peptide perturbed this barrier, but its removal allowed barrier 'resealing'. Abcb1b knockdown was found to inhibit barrier resealing following F5-peptide removal by suppressing the restore of the expression and distribution of junction proteins at BTB, and reducing the migration of internalized junction proteins back to Sertoli cell interface. In summary, Abcb1a is critical in maintaining BTB integrity, while Abcb1b is crucial for junction reassembly at the BTB.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Barreira Hematotesticular/metabolismo , Células de Sertoli/metabolismo , Espermatócitos/metabolismo , Espermatogênese/genética , Junções Íntimas/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Barreira Hematotesticular/efeitos dos fármacos , Caderinas/genética , Caderinas/metabolismo , Movimento Celular/efeitos dos fármacos , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ocludina/genética , Ocludina/metabolismo , Peptídeos/farmacologia , Cultura Primária de Células , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Epitélio Seminífero/citologia , Epitélio Seminífero/efeitos dos fármacos , Epitélio Seminífero/metabolismo , Células de Sertoli/citologia , Células de Sertoli/efeitos dos fármacos , Espermatócitos/citologia , Espermatócitos/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
18.
Reprod Fertil Dev ; 29(5): 998-1011, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28442050

RESUMO

Several compounds affect male fertility by disrupting the adhesion of germ cells to Sertoli cells, which results in the release of undeveloped germ cells into the seminiferous tubule lumen that are incapable of fertilising the ovum. Indazole carboxylic acids are one class of compounds exhibiting such effects and they have been investigated as non-hormonal contraceptives for potential human use. The aims of this study were to investigate the effects of lonidamine-ethyl ester, an indazole carboxylic acid, on spermatogenesis and cell junctions, in particular, desmosomes. We found two doses of lonidamine-ethyl ester at 50mg kg-1 to disrupt Sertoli-germ cell adhesion. By light and fluorescent microscopy, pronounced changes were observed in the distribution of actin microfilaments and intermediate filaments, as well as in the localisation of plakoglobin, a protein with structural and signalling roles at the desmosome and adherens junction at the blood-testis barrier. Furthermore, immunoblotting and immunoprecipitation experiments using testis lysates revealed a significant upregulation (P<0.01) of plakoglobin and Tyr-phosphorylated plakoglobin. Co-immunoprecipitation experiments showed an increase in the interaction between plakoglobin and fyn proto-oncogene, an Src family non-receptor tyrosine kinase, after treatment, as well as an increase in the interaction between plakoglobin and α-catenin. Taken collectively, these data indicate that a disruption of Sertoli cell and spermatocyte-spermatid adhesion in the seminiferous epithelium by lonidamine-ethyl ester results in the phosphorylation of plakoglobin, thereby promoting its interaction with α-catenin at the blood-testis barrier.


Assuntos
Antiespermatogênicos/farmacologia , Barreira Hematotesticular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Indazóis/farmacologia , Células de Sertoli/efeitos dos fármacos , alfa Catenina/metabolismo , gama Catenina/metabolismo , Animais , Barreira Hematotesticular/metabolismo , Citoesqueleto/metabolismo , Masculino , Fosforilação/efeitos dos fármacos , Proto-Oncogene Mas , Ratos , Ratos Sprague-Dawley , Epitélio Seminífero/efeitos dos fármacos , Epitélio Seminífero/metabolismo , Células de Sertoli/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo
19.
J Reprod Dev ; 62(1): 59-64, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26498203

RESUMO

Gene expression of epidermal growth factor (EGF), transforming growth factor-α (TGF-α) and EGF receptor (EGF-R) and the localization of the corresponding proteins in the canine testis were studied. Levels of mRNA expressions were determined by semiquantitative reverse transcription polymerase chain reaction in the testes of the peripubertal (4-6 months), young adult (3-4 years), advanced adult (7-8 years) and senescent (11-16 years) groups. The EGF-R mRNA level in the testes of the peripubertal group was significantly higher than those in the other groups, whereas there was no difference in EGF and TGF-α mRNA levels among groups. Immunohistochemical stainings for EGF, TGF-α and EGF-R in the testis revealed that immunoreactivity in the seminiferous epithelium and Sertoli cell was weak and nonspecific for the stage of spermatogenesis, and distinct staining was found in Leydig cells. These results suggest that the EGF family of growth factors may be involved in testicular maturation and function in the dog.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Células Intersticiais do Testículo/metabolismo , Epitélio Seminífero/metabolismo , Células de Sertoli/metabolismo , Testículo/metabolismo , Fator de Crescimento Transformador alfa/metabolismo , Animais , Peso Corporal , Cães , Regulação da Expressão Gênica , Imuno-Histoquímica , Masculino , RNA Mensageiro/metabolismo
20.
Sci Rep ; 5: 16271, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26537751

RESUMO

Spermiation and BTB restructuring, two critical cellular events that occur across seminiferous epithelium in mammalian testis during spermatogenesis, are tightly coordinated by biologically active peptides released from laminin chains. Our earlier study reported that F5-peptide, synthesized based on a stretch of 50 amino acids within laminin-γ3 domain IV, could reversibly induce the impairment of spermatogenesis, disruption of BTB integrity, and germ cell loss, and thus is a promising male contraceptive. However, how F5-peptide when administered intratesticularly enters seminiferous tubules and exerts effects beyond BTB is currently unknown. Here we demonstrated that Slc15a1, a peptide transporter also known as Pept1, was predominantly present in peritubular myoid cells, interstitial Leydig cells, vascular endothelial cells and germ cells, while absent in Sertoli cells or BTB site. The steady-state protein level of Slc15a1 in adult rat testis was not affected by F5-peptide treatment. Knockdown of Slc15a1 by in vivo RNAi in rat testis was shown to prevent F5-peptide induced disruptive effects on spermatogenesis. This study suggests that Slc15a1 is involved in the transport of synthetic F5-peptide into seminiferous epithelium, and thus Slc15a1 is a novel target in testis that could be genetically modified to improve the bioavailability of F5-peptide as a prospective male contraceptive.


Assuntos
Células Endoteliais/metabolismo , Peptídeos/metabolismo , Epitélio Seminífero/metabolismo , Simportadores/metabolismo , Animais , Transporte Biológico/fisiologia , Barreira Hematotesticular/metabolismo , Anticoncepcionais Masculinos/metabolismo , Células Germinativas/metabolismo , Laminina/metabolismo , Células Intersticiais do Testículo/metabolismo , Masculino , Transportador 1 de Peptídeos , Ratos , Ratos Sprague-Dawley , Células de Sertoli/metabolismo , Espermatogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA