Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.157
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(19): 14160-14170, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38712976

RESUMO

Protonated ions of fucose-containing oligosaccharides are prone to undergo internal glycan rearrangement which results in chimeric fragments that obfuscate mass-spectrometric analysis. Lack of accessible tools that would facilitate systematic analysis of glycans in the gas phase limits our understanding of this phenomenon. In this work, we use density functional theory modeling to interpret cryogenic IR spectra of Lewis a and blood group type H1 trisaccharides and to establish whether these trisaccharides undergo the rearrangement during gas-phase analysis. Structurally unconstrained search reveals that none of the parent ions constitute a thermodynamic global minimum. In contrast, predicted collision cross sections and anharmonic IR spectra provide a good match to available experimental data which allowed us to conclude that fucose migration does not occur in these antigens. By comparing the predicted structures with those obtained for Lewis x and blood group type H2 epitopes, we demonstrate that the availability of the mobile proton and a large difference in the relative stability of the parent ions and rearrangement products constitute the prerequisites for the rearrangement reaction.


Assuntos
Antígenos do Grupo Sanguíneo de Lewis , Antígenos do Grupo Sanguíneo de Lewis/química , Epitopos/química , Termodinâmica , Polissacarídeos/química , Teoria da Densidade Funcional , Antígenos de Grupos Sanguíneos/química , Espectrofotometria Infravermelho , Oligossacarídeos/química , Trissacarídeos/química
2.
Biosens Bioelectron ; 258: 116349, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705072

RESUMO

Detection of cancer-related exosomes in body fluids has become a revolutionary strategy for early cancer diagnosis and prognosis prediction. We have developed a two-step targeting detection method, termed PS-MIPs-NELISA SERS, for rapid and highly sensitive exosomes detection. In the first step, a phospholipid polar site imprinting strategy was employed using magnetic PS-MIPs (phospholipids-molecularly imprinted polymers) to selectively isolate and enrich all exosomes from urine samples. In the second step, a nanozyme-linked immunosorbent assay (NELISA) technique was utilized. We constructed Au/Na7PMo11O39 nanoparticles (NPs) with both surface-enhanced Raman scattering (SERS) property and peroxidase catalytic activity, followed by the immobilization of CD9 antibodies on the surface of Au/Na7PMo11O39 NPs. The Au/Na7PMo11O39-CD9 antibody complexes were then used to recognize CD9 proteins on the surface of exosomes enriched by magnetic PS-MIPs. Lastly, the high sensitivity detection of exosomes was achieved indirectly via the SERS activity and peroxidase-like activity of Au/Na7PMo11O39 NPs. The quantity of exosomes in urine samples from pancreatic cancer patients obtained by the PS-MIPs-NELISA SERS technique showed a linear relationship with the SERS intensity in the range of 6.21 × 107-2.81 × 108 particles/mL, with a limit of detection (LOD) of 5.82 × 107 particles/mL. The SERS signal intensity of exosomes in urine samples from pancreatic cancer patients was higher than that of healthy volunteers. This bidirectional MIPs-NELISA-SERS approach enables noninvasive, highly sensitive, and rapid detection of cancer, facilitating the monitoring of disease progression during treatment and opening up a new avenue for rapid early cancer screening.


Assuntos
Técnicas Biossensoriais , Exossomos , Ouro , Análise Espectral Raman , Humanos , Exossomos/química , Ouro/química , Análise Espectral Raman/métodos , Fosfolipídeos/química , Fosfolipídeos/urina , Limite de Detecção , Impressão Molecular , Polímeros Molecularmente Impressos/química , Epitopos/imunologia , Epitopos/química , Nanopartículas Metálicas/química , Tetraspanina 29/urina , Tetraspanina 29/análise , Anticorpos Imobilizados/química
3.
Cell Chem Biol ; 31(5): 944-954.e5, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38653243

RESUMO

Agonist antibodies are being pursued for therapeutic applications ranging from neurodegenerative diseases to cancer. For the tumor necrosis factor (TNF) receptor superfamily, higher-order clustering of three or more receptors is key to their activation, which can be achieved using antibodies that recognize two unique epitopes. However, the generation of biepitopic (i.e., biparatopic) antibodies typically requires animal immunization and is laborious and unpredictable. Here, we report a simple method for identifying biepitopic antibodies that potently activate TNF receptors without the need for additional animal immunization. Our approach uses existing, receptor-specific IgGs, which lack intrinsic agonist activity, to block their corresponding epitopes, then selects single-chain antibodies that bind accessible epitopes. The selected antibodies are fused to the light chains of IgGs to generate human tetravalent antibodies. We highlight the broad utility of this approach by converting several clinical-stage antibodies against OX40 and CD137 (4-1BB) into biepitopic antibodies with potent agonist activity.


Assuntos
Epitopos , Humanos , Epitopos/imunologia , Epitopos/química , Animais , Receptores do Fator de Necrose Tumoral/agonistas , Receptores do Fator de Necrose Tumoral/imunologia , Receptores do Fator de Necrose Tumoral/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/agonistas , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/antagonistas & inibidores , Receptores OX40/agonistas , Receptores OX40/imunologia , Receptores OX40/metabolismo , Receptores OX40/antagonistas & inibidores , Anticorpos/imunologia , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/farmacologia , Camundongos
4.
J Biol Chem ; 300(4): 107163, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484799

RESUMO

The use of variable domain of the heavy-chain of the heavy-chain-only antibodies (VHHs) as disease-modifying biomolecules in neurodegenerative disorders holds promises, including targeting of aggregation-sensitive proteins. Exploitation of their clinical values depends however on the capacity to deliver VHHs with optimal physico-chemical properties for their specific context of use. We described previously a VHH with high therapeutic potential in a family of neurodegenerative diseases called tauopathies. The activity of this promising parent VHH named Z70 relies on its binding within the central region of the tau protein. Accordingly, we carried out random mutagenesis followed by yeast two-hybrid screening to obtain optimized variants. The VHHs selected from this initial screen targeted the same epitope as VHH Z70 as shown using NMR spectroscopy and had indeed improved binding affinities according to dissociation constant values obtained by surface plasmon resonance spectroscopy. The improved affinities can be partially rationalized based on three-dimensional structures and NMR data of three complexes consisting of an optimized VHH and a peptide containing the tau epitope. Interestingly, the ability of the VHH variants to inhibit tau aggregation and seeding could not be predicted from their affinity alone. We indeed showed that the in vitro and in cellulo VHH stabilities are other limiting key factors to their efficacy. Our results demonstrate that only a complete pipeline of experiments, here described, permits a rational selection of optimized VHH variants, resulting in the selection of VHH variants with higher affinities and/or acting against tau seeding in cell models.


Assuntos
Anticorpos de Domínio Único , Proteínas tau , Proteínas tau/imunologia , Proteínas tau/metabolismo , Proteínas tau/química , Proteínas tau/genética , Humanos , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/imunologia , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Epitopos/química , Epitopos/imunologia , Peptídeos/química , Peptídeos/imunologia
5.
ACS Sens ; 9(4): 1831-1841, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38489767

RESUMO

Detection of pathogenic viruses for point-of-care applications has attracted great attention since the COVID-19 pandemic. Current virus diagnostic tools are laborious and expensive, while requiring medically trained staff. Although user-friendly and cost-effective biosensors are utilized for virus detection, many of them rely on recognition elements that suffer major drawbacks. Herein, computationally designed epitope-imprinted polymers (eIPs) are conjugated with a portable piezoelectric sensing platform to establish a sensitive and robust biosensor for the human pathogenic adenovirus (HAdV). The template epitope is selected from the knob part of the HAdV capsid, ensuring surface accessibility. Computational simulations are performed to evaluate the conformational stability of the selected epitope. Further, molecular dynamics simulations are executed to investigate the interactions between the epitope and the different functional monomers for the smart design of eIPs. The HAdV epitope is imprinted via the solid-phase synthesis method to produce eIPs using in silico-selected ingredients. The synthetic receptors show a remarkable detection sensitivity (LOD: 102 pfu mL-1) and affinity (dissociation constant (Kd): 6.48 × 10-12 M) for HAdV. Moreover, the computational eIPs lead to around twofold improved binding behavior than the eIPs synthesized with a well-established conventional recipe. The proposed computational strategy holds enormous potential for the intelligent design of ultrasensitive imprinted polymer binders.


Assuntos
Adenovírus Humanos , Epitopos , Humanos , Adenovírus Humanos/imunologia , Adenovírus Humanos/química , Epitopos/imunologia , Epitopos/química , Técnicas Biossensoriais/métodos , Polímeros/química , Simulação de Dinâmica Molecular , Polímeros Molecularmente Impressos/química , Impressão Molecular/métodos , Limite de Detecção , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/química
6.
Biotechnol Lett ; 46(3): 315-354, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403788

RESUMO

The HIV-1 virus has been regarded as a catastrophe for human well-being. The global incidence of HIV-1-infected individuals is increasing. Hence, development of effective immunostimulatory molecules has recently attracted an increasing attention in the field of vaccine design against HIV-1 infection. In this study, we explored the impacts of CD40L and IFN-γ as immunostimulatory adjuvants for our candidate HIV-1 Nef vaccine in human and mouse using immunoinformatics analyses. Overall, 18 IFN-γ-based vaccine constructs (9 constructs in human and 9 constructs in mouse), and 18 CD40L-based vaccine constructs (9 constructs in human and 9 constructs in mouse) were designed. To find immunogenic epitopes, important characteristics of each component (e.g., MHC-I and MHC-II binding, and peptide-MHC-I/MHC-II molecular docking) were determined. Then, the selected epitopes were applied to create multiepitope constructs. Finally, the physicochemical properties, linear and discontinuous B cell epitopes, and molecular interaction between the 3D structure of each construct and CD40, IFN-γ receptor or toll-like receptors (TLRs) were predicted. Our data showed that the full-length CD40L and IFN-γ linked to the N-terminal region of Nef were capable of inducing more effective immune response than multiepitope vaccine constructs. Moreover, molecular docking of the non-allergenic full-length- and epitope-based CD40L and IFN-γ constructs to their cognate receptors, CD40 and IFN-γ receptors, and TLRs 4 and 5 in mouse were more potent than in human. Generally, these findings suggest that the full forms of these adjuvants could be more efficient for improvement of HIV-1 Nef vaccine candidate compared to the designed multiepitope-based constructs.


Assuntos
Vacinas contra a AIDS , HIV-1 , Interferon gama , Vacinas de Subunidades Antigênicas , Produtos do Gene nef do Vírus da Imunodeficiência Humana , HIV-1/imunologia , Animais , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/química , Camundongos , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/química , Humanos , Interferon gama/metabolismo , Interferon gama/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/química , Adjuvantes Imunológicos/farmacologia , Simulação de Acoplamento Molecular , Infecções por HIV/prevenção & controle , Infecções por HIV/imunologia , Infecções por HIV/virologia , Ligante de CD40/imunologia , Ligante de CD40/química , Simulação por Computador , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Epitopos/imunologia , Epitopos/química , Vacinas de Subunidades Proteicas
7.
J Biosci Bioeng ; 137(4): 321-328, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342664

RESUMO

A novel, efficient and cost-effective approach for epitope identification of an antibody has been developed using a ribosome display platform. This platform, known as PURE ribosome display, utilizes an Escherichia coli-based reconstituted cell-free protein synthesis system (PURE system). It stabilizes the mRNA-ribosome-peptide complex via a ribosome-arrest peptide sequence. This system was complemented by next-generation sequencing (NGS) and an algorithm for analyzing binding epitopes. To showcase the effectiveness of this method, selection conditions were refined using the anti-PA tag monoclonal antibody with the PA tag peptide as a model. Subsequently, a random peptide library was constructed using 10 NNK triplet oligonucleotides via the PURE ribosome display. The resulting random peptide library-ribosome-mRNA complex was selected using a commercially available anti-HA (YPYDVPDYA) tag monoclonal antibody, followed by NGS and bioinformatic analysis. Our approach successfully identified the DVPDY sequence as an epitope within the hemagglutinin amino acid sequence, which was then experimentally validated. This platform provided a valuable tool for investigating continuous epitopes in antibodies.


Assuntos
Biblioteca de Peptídeos , Peptídeos , Mapeamento de Epitopos/métodos , Análise Custo-Benefício , Peptídeos/genética , Peptídeos/química , Anticorpos Monoclonais/genética , Epitopos/genética , Epitopos/química , Ribossomos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Biologia Computacional , RNA Mensageiro
8.
Food Funct ; 15(1): 196-207, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38047408

RESUMO

Ovomucoid is the immune-dominant allergen in the egg white of hens. Due to its structure based on nine disulfide bonds as well as its resistance to heat and enzymatic hydrolysis, the allergenicity of this food protein is difficult to decrease by technological processes. We sought to reduce its allergenicity through the Maillard reaction. The unfolding of ovomucoid with L-cysteine-mediated reduction was used to increase accessibility to conformational and linear epitopes by modifying the secondary and tertiary structures of the allergen. Glycation with different saccharides revealed the beneficial effect of maltose glycation on the IgG-binding capacity reduction. By determining the better glycation conditions of unfolded ovomucoid, we produced ovomucoid with reduced IgE binding capacity due to the glycation sites (K17, K112, K129, and K164) on epitopes. Moreover, after simulated infant and adult gastrointestinal digestion, the unfolded plus glycated ovomucoid showed higher ABTS˙+ scavenging activity, O2˙- scavenging activity, ˙OH scavenging activity, Fe2+ chelating activity, and a FRAP value; in particular, for ˙OH scavenging activity, there was a sharp increase of more than 100%.


Assuntos
Reação de Maillard , Ovomucina , Humanos , Lactente , Adulto , Animais , Feminino , Ovomucina/química , Ovomucina/metabolismo , Antioxidantes , Galinhas/metabolismo , Epitopos/química , Alérgenos/química , Imunoglobulina E/química , Imunoglobulina G/química
9.
Food Chem ; 438: 137920, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38000156

RESUMO

The digestion products of Penaeus vannamei still had sensitizing and eliciting capacity; however, the underlying mechanism has not been identified. This study analyzed the structural changes of shrimp proteins during digestion, predicted the linearmimotopepeptides and first validated the allergenicity of immunodominantepitopes with binding ability. The results showed that the shrimp proteins were gradually degraded into small peptides during digestion, which might lead to the destruction of linear epitopes. However, these peptides carried IgE epitopes that still trigger allergic reactions. Eighteen digestion-resistant epitopes were predicted by multiple immunoinformatics tools and digestomics. Five epitopes contained more critical amino acids and had strong molecular docking (P1: DSGVGIYAPDAEA, P2: EGELKGTYYPLTGM, P3: GRQGDPHGKFDLPPGV, P4: IFAWPHKDNNGIE, P5: KSTESSVTVPDVPSIHD), and these epitopes were identified as novel IgE binding immunodominantepitopes in Penaeus vannamei. These findings provide novel insight into allergenic epitopes, which might serve as key targets for reducing the allergenicity in shrimp.


Assuntos
Penaeidae , Animais , Sequência de Aminoácidos , Epitopos Imunodominantes , Alérgenos/química , Simulação de Acoplamento Molecular , Imunoglobulina E , Peptídeos , Epitopos/química , Digestão , Tropomiosina/química
10.
J Sci Food Agric ; 104(6): 3697-3704, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38160247

RESUMO

INTRODUCTION: One of the main allergens in soybeans is glycinin, which seriously impacts the normal lives of allergic people. Previous studies have confirmed that thermal processing and thermal processing combined with ultrahigh-pressure processing could significantly reduce the antigenicity of glycinin. The dominant antigen region of acidic peptide chain A2 of G2 subunit was located by phage display experiment. METHODS: In this paper, overlapping peptides and alanine substitution techniques were used to explore the key amino acids that significantly affect the antigenicity of A2 peptide chain. The purity of peptide 1, peptide 2 and peptide 3 was identified by mass spectrometry and high-performance liquid chromatography, and the results showed that the purity of the synthesized overlapping peptide was more than 90%. SDS-PAGE showed that the peptide was successfully coupled with bovine serum albumin. The antigenicity of the coupling peptide was tested by ELISA and Dot-Blot, and the allergenicity was detected by reacting with the serum of patients with soybean globulin allergy. CONCLUSION: The results showed that peptide 3 has stronger antigenicity and sensitization. Alanine substitution technology allowed one to perform site-directed mutagenesis on peptide 3. Dot-Blot and ELISA tests showed that D259, E260, E261, Q263 and C266 may be the key amino acids that significantly affect the antigenicity of peptide 3. The research presented is of great significance for correctly guiding the production of safe food and preventing the occurrence of food allergic diseases. © 2023 Society of Chemical Industry.


Assuntos
Globulinas , Proteínas de Soja , Humanos , Epitopos/química , Proteínas de Soja/química , Glycine max , Globulinas/química , Alérgenos , Peptídeos , Alanina , Aminoácidos , Imunoglobulina E
11.
Nat Commun ; 14(1): 8502, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135691

RESUMO

In human celiac disease (CeD) HLA-DQ2.5 presents gluten peptides to antigen-specific CD4+ T cells, thereby instigating immune activation and enteropathy. Targeting HLA-DQ2.5 with neutralizing antibody for treating CeD may be plausible, yet using pan-HLA-DQ antibody risks affecting systemic immunity, while targeting selected gluten peptide:HLA-DQ2.5 complex (pHLA-DQ2.5) may be insufficient. Here we generate a TCR-like, neutralizing antibody (DONQ52) that broadly recognizes more than twenty-five distinct gluten pHLA-DQ2.5 through rabbit immunization with multi-epitope gluten pHLA-DQ2.5 and multidimensional optimization. Structural analyses show that the proline-rich and glutamine-rich motif of gluten epitopes critical for pathogenesis is flexibly recognized by multiple tyrosine residues present in the antibody paratope, implicating the mechanisms for the broad reactivity. In HLA-DQ2.5 transgenic mice, DONQ52 demonstrates favorable pharmacokinetics with high subcutaneous bioavailability, and blocks immunity to gluten while not affecting systemic immunity. Our results thus provide a rationale for clinical testing of DONQ52 in CeD.


Assuntos
Doença Celíaca , Glutens , Camundongos , Animais , Humanos , Coelhos , Glutens/química , Anticorpos Neutralizantes , Antígenos HLA-DQ , Peptídeos/química , Epitopos/química , Camundongos Transgênicos
12.
J Biochem ; 175(1): 85-93, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37795834

RESUMO

T7 phage libraries displaying random peptides are powerful tools for screening peptide sequences that bind to various target molecules. The T7 phage system has the advantage of less biased peptide distribution compared to the M13 phage system. However, the construction of T7 phage DNA is challenging due to its long 36 kb linear DNA. Furthermore, the diversity of the libraries depends strongly on the efficiency of commercially available packaging extracts. To address these issues, we examined the combination of seamless cloning with cell-free translation systems. Seamless cloning technologies have been widely used to construct short circular plasmid DNA, and several recent studies showed that cell-free translation can achieve more diverse phage packaging. In this study, we combined these techniques to construct four libraries (CX7C, CX9C, CX11C and CX13C) with different random regions lengths. The libraries thus obtained all showed diversity > 109 plaque forming units (pfu). Evaluating our libraries with an anti-FLAG monoclonal antibody yielded the correct epitope sequence. The results indicate that our libraries are useful for screening peptide epitopes against antibodies. These findings suggest that our system can efficiently construct T7 phage libraries with greater diversity than previous systems.


Assuntos
Bacteriófago T7 , Biblioteca de Peptídeos , Sequência de Aminoácidos , Bacteriófago T7/genética , Bacteriófago T7/metabolismo , Peptídeos/química , DNA/metabolismo , Epitopos/química , Clonagem Molecular
13.
Int J Biol Macromol ; 246: 125588, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37399872

RESUMO

In the Americas and specially in Brazil, the Loxosceles intermedia, Loxosceles gaucho and Loxosceles laeta are the three most medically relevant brown spider species, and whose bites can lead to the condition known as loxoscelism. Here, we report the development of a tool capable of identifying a common epitope amongst Loxosceles sp. venom's toxins. A murine monoclonal antibody (LmAb12) and its recombinant fragments (scFv12P and diabody12P) have been produced and characterized. This antibody and its recombinant constructs were able to recognize proteins of Loxosceles spider venoms with specificity. The scFv12P variant was also able to detect low concentrations of Loxosceles venom in a competitive ELISA assay, displaying potential as a venom identification tool. The primary antigenic target of LmAb12 is a knottin, a venom neurotoxin, that has a shared identity of 100 % between the L. intermedia and L. gaucho species and high similarity to L. laeta. Furthermore, we observed LmAb12 was able to partially inhibit in vitro hemolysis, a cellular event typically induced by the Loxosceles sp. venoms. Such behavior might be due to LmAb12 cross-reactivity between the antigenic target of LmAb12 and the venom's dermonecrotic toxins, the PLDs, or even the existence of synergism between these two toxins.


Assuntos
Venenos de Aranha , Aranhas , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Antígenos/química , Antivenenos/química , Reações Cruzadas , Miniproteínas Nó de Cistina/química , Fosfolipase D/química , Venenos de Aranha/química , Aranhas/química , Epitopos/química
14.
J Agric Food Chem ; 71(26): 10144-10154, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37339085

RESUMO

Fermentation techniques may induce alterations in fish allergen immunoreactivity. In this study, the influence of fermentation with three different strains of Lactobacillus helveticus (Lh187926, Lh191404, and Lh187926) on the immunoreactivity of Atlantic cod allergens was investigated via several methods. Gradually reduced protein composition and band intensity due to the fermentation by strain Lh191404 were found in SDS-PAGE analysis, and decreased immunoreactivity of fish allergens was confirmed by Western blotting and ELISA analysis due to the fermentation of strain Lh191404. Additionally, results from nLC-MS/MS and immunoinformatics tools analysis demonstrated that the protein polypeptide and allergen composition of Atlantic cod showed evident alterations after fermentation, with the epitopes of the main fish allergens being heavily exposed and destroyed. These results indicated that the fermentation of L. helveticus Lh191404 could destroy the structure and linear epitopes of the allergens from Atlantic cod and may have considerable potential in mitigating the allergenicity of fish.


Assuntos
Gadus morhua , Lactobacillus helveticus , Animais , Alérgenos/química , Gadus morhua/metabolismo , Fermentação , Espectrometria de Massas em Tandem , Epitopos/química , Peixes/metabolismo
15.
Sci Rep ; 13(1): 8694, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248285

RESUMO

Multi-specific antibodies (msAbs) are being developed as next generation antibody-based therapeutics. Knowledge of the three-dimensional structures, in the full antibody context, of their fragment antigen-binding (Fab) moieties with or without bound antigens is key to elucidating their therapeutic efficiency and stability. However, the flexibility of msAbs, a feature essential for their multi specificity, has hindered efforts in this direction. Cross-Over Dual Variable immunoglobulin (CODVIg) is a promising bispecific antibody format, designed to simultaneously target the interleukins IL4 and IL13. In this work we present the biophysical and structural characterisation of a CODVFab:IL13 complex in the full antibody context, using cryo-electron microscopy at an overall resolution of 4.2 Å. Unlike the 1:2 stoichiometry previously observed for CODVIg:IL4, CODVIg:IL13 shows a 1:1 stoichiometry. As well as providing details of the IL13-CODV binding interface, including the residues involved in the epitope-paratope region, the structure of CODVFab:IL13 also validates the use of labelling antibody as a new strategy for the single particle cryo-EM study of msAbs in complex with one, or more, antigens. This strategy reduced the inherent flexibility of the IL13 binding domain of CODV without inducing either structural changes at the epitope level or steric hindrance between the IL4 and IL13 binding regions of CODVIg. The work presented here thus also contributes to the development of methodology for the structural study of msAbs, a promising platform for cancer immunotherapy.


Assuntos
Anticorpos Monoclonais , Interleucina-13 , Microscopia Crioeletrônica , Interleucina-4 , Antígenos , Epitopos/química
16.
Front Immunol ; 14: 1170462, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37207206

RESUMO

MHC class I "single-chain trimer" molecules, coupling MHC heavy chain, ß2-microglobulin, and a specific peptide into a single polypeptide chain, are widely used in research. To more fully understand caveats associated with this design that may affect its use for basic and translational studies, we evaluated a set of engineered single-chain trimers with combinations of stabilizing mutations across eight different classical and non-classical human class I alleles with 44 different peptides, including a novel human/murine chimeric design. While, overall, single-chain trimers accurately recapitulate native molecules, care was needed in selecting designs for studying peptides longer or shorter than 9-mers, as single-chain trimer design could affect peptide conformation. In the process, we observed that predictions of peptide binding were often discordant with experiment and that yields and stabilities varied widely with construct design. We also developed novel reagents to improve the crystallizability of these proteins and confirmed novel modes of peptide presentation.


Assuntos
Antígenos de Histocompatibilidade Classe I , Peptídeos , Humanos , Camundongos , Animais , Antígenos de Histocompatibilidade Classe I/genética , Peptídeos/metabolismo , Epitopos/química
17.
Curr Microbiol ; 80(5): 188, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37074450

RESUMO

Our previous studies found that the H1-50 monoclonal antibody (mAb) of influenza A virus hemagglutinin (HA) cross-reacted with pancreatic tissue and islet ß-cells, and further studies showed that H1-50 mAb binds to prohibitin (PHB) protein of islet ß-cells. These suggest that there are heterophilic epitopes between influenza virus HA and pancreatic tissue, which may be involved in the pathogenesis of type 1 diabetes. To further investigate these heterophilic epitopes, we screened binding epitopes of H1-50 mAb using a phage 12-peptide library. DNA sequencing and comparative analysis were performed on specific positive phage clones, and the sequence of 12-peptide binding to H1-50 mAb was obtained. The binding epitopes of H1-50 mAb in influenza virus HA were determined by sequence analysis and experimental verification, and their distribution within the three-dimensional structure was assessed by PyMOL. The results showed that H1-50 mAb specifically binds to polypeptides (306-SLPFQNIHPITIGK-319) of influenza A virus HA, located in the stem of the HA protein. However, there is no specific binding sequence between H1-50 mAb and the PHB protein of islet ß-cells in the primary structure, and we speculate that the binding of H1-50 mAb to islet ß-cells may depend on the spatial conformation. The identification of the heterophilic epitopes of H1N1 influenza virus hemagglutinin provides a new perspective on type 1 diabetes that may be caused by influenza virus infection, which may contribute to the prevention and control of influenza.


Assuntos
Diabetes Mellitus Tipo 1 , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Humanos , Epitopos/química , Epitopos/genética , Hemaglutininas , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Anticorpos Antivirais , Anticorpos Monoclonais
18.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(4): 363-370, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37087553

RESUMO

Objective To investigate antigen optimization of Shisa like protein 1 (SHISAL1) for preparing mouse anti-human SHISAL1 polyclonal antibody and to identify the specificity of the prepared antibody. Methods Bioinformatics was employed to predict the antigenic epitope region of SHISAL1 protein, and then a polypeptide composed of amino acid residues from the site of 28 to 97 of SHISAL1, termed SHISAL1-N, was selected as the antigen. The coding region of SHISAL1-N was cloned by molecular cloning technique, and then it was inserted into pET-28a to generate pET28a-SHISAL1-N recombinant plasmid. The two recombinant plasmids pET28a-SHISAL1-N and pET28a-SHISAL1 were transformed into BL21 (DE3) bacteria and induced to express by IPTG. The two proteins were purified and immunized to female Kunming mice, respectively. The specificities and sensitivities of the acquired antibodies were detected by Western blot analysis, immunoprecipitation and immunofluorescent cytochemical staining. Results pET28a-SHISAL1-N recombinant plasmid was successfully constructed, and the two fused proteins, SHISAL1 and SHISAL1-N, were induced to express. Moreover, two types of SHISAL1 mouse polyclonal antibodies, derived from SHISAL1-N and SHISAL1 antigens, were obtained. Western blot results showed that the antibody prepared from SHISAL1 antigen was less specific and sensitive compared with the antibody prepared from SHISAL1-N antigen which could specifically identify different endogenous SHISAL1 protein. Immunoprecipitation results showed that SHISAL1-N antibody could specifically pull down SHIISAL1 protein in hepatocellular carcinoma cells and immunofluorescence results demonstrated that SHISAL1-N antibody could specifically bind to SHISAL1 protein in the cytoplasm. Conclusion We have optimized the SHISAL1 antigen and prepared the mouse anti-human SHISAL1 polyclonal antibodies successfully, which can be used for Western blot analysis, immunoprecipitation and immunofluorescence cytochemical staining.


Assuntos
Anticorpos , Epitopos , Animais , Feminino , Humanos , Camundongos , Especificidade de Anticorpos , Western Blotting , Clonagem Molecular , Epitopos/química , Epitopos/genética
19.
Bioinformatics ; 39(5)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37094220

RESUMO

MOTIVATION: Predicting the binding between T-cell receptor (TCR) and peptide presented by human leucocyte antigen molecule is a highly challenging task and a key bottleneck in the development of immunotherapy. Existing prediction tools, despite exhibiting good performance on the datasets they were built with, suffer from low true positive rates when used to predict epitopes capable of eliciting T-cell responses in patients. Therefore, an improved tool for TCR-peptide prediction built upon a large dataset combining existing publicly available data is still needed. RESULTS: We collected data from five public databases (IEDB, TBAdb, VDJdb, McPAS-TCR, and 10X) to form a dataset of >3 million TCR-peptide pairs, 3.27% of which were binding interactions. We proposed epiTCR, a Random Forest-based method dedicated to predicting the TCR-peptide interactions. epiTCR used simple input of TCR CDR3ß sequences and antigen sequences, which are encoded by flattened BLOSUM62. epiTCR performed with area under the curve (0.98) and higher sensitivity (0.94) than other existing tools (NetTCR, Imrex, ATM-TCR, and pMTnet), while maintaining comparable prediction specificity (0.9). We identified seven epitopes that contributed to 98.67% of false positives predicted by epiTCR and exerted similar effects on other tools. We also demonstrated a considerable influence of peptide sequences on prediction, highlighting the need for more diverse peptides in a more balanced dataset. In conclusion, epiTCR is among the most well-performing tools, thanks to the use of combined data from public sources and its use will contribute to the quest in identifying neoantigens for precision cancer immunotherapy. AVAILABILITY AND IMPLEMENTATION: epiTCR is available on GitHub (https://github.com/ddiem-ri-4D/epiTCR).


Assuntos
Antígenos , Peptídeos , Humanos , Peptídeos/metabolismo , Antígenos/química , Epitopos/química , Receptores de Antígenos de Linfócitos T/química , Linfócitos T/metabolismo
20.
Angew Chem Int Ed Engl ; 62(19): e202213938, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36916765

RESUMO

Phospholipids, as fundamental building blocks of the cell membrane, play important roles for molecule transportation, cell recognition, etc. However, due to the structural diversity and amphipathic nature, there are few methods for the specific recognition of lipids as compared to other biomolecules such as proteins and glycans. Herein, we developed a molecular imprinting strategy for controllable imprinting toward the polar head of phospholipid exposed on the surface of cellular membranes for recognition. Phosphatidylserine, as unique lipid on the outer membrane leaflet of exosome and also hallmark for cell apoptosis, was imprinted with the developed method. The phosphatidylserine imprinted materials showed high efficiency and specific targeting capability not only for apoptotic cell imaging but also for the isolation of exosomes. Collectively, the synthesized molecularly imprinted materials have great potential for selective plasma membrane recognition for targeted drug delivery and biomarker discovery.


Assuntos
Impressão Molecular , Fosfolipídeos , Epitopos/química , Fosfatidilserinas , Membrana Celular , Impressão Molecular/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA