Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
1.
Viruses ; 16(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39339884

RESUMO

A novel tick-borne orthonairovirus called the Yezo virus (YEZV), primarily transmitted by the Ixodes persulcatus tick, has been recently discovered and poses significant threats to human health. The YEZV is considered endemic in Japan and China. Clinical symptoms associated with this virus include thrombocytopenia, fatigue, headache, leukopenia, fever, depression, and neurological complications ranging from mild febrile illness to severe outcomes like meningitis and encephalitis. At present, there is no treatment or vaccine readily accessible for this pathogenic virus. Therefore, this research employed an immunoinformatics approach to pinpoint potential vaccine targets within the YEZV through an extensive examination of its structural proteins. Three structural proteins were chosen using specific criteria to pinpoint T-cell and B-cell epitopes, which were subsequently validated through interferon-gamma induction. Six overlapping epitopes for cytotoxic T-lymphocytes (CTL), helper T-lymphocytes (HTL), and linear B-lymphocytes (LBL) were selected to construct a multi-epitope vaccine, achieving a 92.29% coverage of the global population. These epitopes were then fused with the 50S ribosomal protein L7/L12 adjuvant to improve protection against international strains. The three-dimensional structure of the designed vaccine construct underwent an extensive evaluation through structural analysis. Following molecular docking studies, the YEZV vaccine construct emerged as a candidate for further investigation, showing the lowest binding energy (-78.7 kcal/mol) along with favorable physiochemical and immunological properties. Immune simulation and molecular dynamics studies demonstrated its stability and potential to induce a strong immune response within the host cells. This comprehensive analysis indicates that the designed vaccine construct could offer protection against the YEZV. It is crucial to conduct additional in vitro and in vivo experiments to verify its safety and effectiveness.


Assuntos
Biologia Computacional , Epitopos de Linfócito B , Epitopos de Linfócito T , Vacinas Virais , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Animais , Vacinas Virais/imunologia , Vacinas Virais/química , Humanos , Proteínas Estruturais Virais/imunologia , Proteínas Estruturais Virais/química , Camundongos , Linfócitos T Citotóxicos/imunologia , Simulação de Acoplamento Molecular , Imunoinformática
2.
Viruses ; 16(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39066193

RESUMO

Puumala orthohantavirus (PUUV) is an emerging zoonotic virus endemic to Europe and Russia that causes nephropathia epidemica, a mild form of hemorrhagic fever with renal syndrome (HFRS). There are limited options for treatment and diagnosis of orthohantavirus infection, making the search for potential immunogenic candidates crucial. In the present work, various bioinformatics tools were employed to design conserved immunogenic peptides containing multiple epitopes of PUUV nucleocapsid protein. Eleven conserved peptides (90% conservancy) of the PUUV nucleocapsid protein were identified. Three conserved peptides containing multiple T and B cell epitopes were selected using a consensus epitope prediction algorithm. Molecular docking using the HPEP dock server demonstrated strong binding interactions between the epitopes and HLA molecules (ten alleles for each class I and II HLA). Moreover, an analysis of population coverage using the IEDB database revealed that the identified peptides have over 90% average population coverage across six continents. Molecular docking and simulation analysis reveal a stable interaction with peptide constructs of chosen immunogenic peptides and Toll-like receptor-4. These computational analyses demonstrate selected peptides' immunogenic potential, which needs to be validated in different experimental systems.


Assuntos
Simulação de Acoplamento Molecular , Proteínas do Nucleocapsídeo , Peptídeos , Virus Puumala , Virus Puumala/imunologia , Virus Puumala/genética , Peptídeos/imunologia , Peptídeos/química , Humanos , Proteínas do Nucleocapsídeo/imunologia , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/genética , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Febre Hemorrágica com Síndrome Renal/imunologia , Febre Hemorrágica com Síndrome Renal/virologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/química , Biologia Computacional , Sequência Conservada , Sequência de Aminoácidos , Ligação Proteica
3.
Methods Mol Biol ; 2821: 9-32, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38997477

RESUMO

B-cell epitope prediction is key to developing peptide-based vaccines and immunodiagnostics along with antibodies for prophylactic, therapeutic and/or diagnostic use. This entails estimating paratope binding affinity for variable-length peptidic sequences subject to constraints on both paratope accessibility and antigen conformational flexibility, as described herein for the HAPTIC2/HEPTAD User Toolkit (HUT). HUT comprises the Heuristic Affinity Prediction Tool for Immune Complexes 2 (HAPTIC2), the HAPTIC2-like Epitope Prediction Tool for Antigen with Disulfide (HEPTAD) and the HAPTIC2/HEPTAD Input Preprocessor (HIP). HIP enables tagging of residues (e.g., in hydrophobic blobs, ordered regions and glycosylation motifs) for exclusion from downstream analyses by HAPTIC2 and HEPTAD. HAPTIC2 estimates paratope binding affinity for disulfide-free disordered peptidic antigens (by analogy between flexible-ligand docking and protein folding), from terms attributed to compaction (in view of sequence length, charge and temperature-dependent polyproline-II helical propensity), collapse (disfavored by residue bulkiness) and contact (with glycine and proline regarded as polar residues that hydrogen bond with paratopes). HEPTAD analyzes antigen sequences that each contain two cysteine residues for which the impact of disulfide pairing is estimated as a correction to the free-energy penalty of compaction. All of HUT is freely accessible online ( https://freeshell.de/~badong/hut.htm ).


Assuntos
Epitopos de Linfócito B , Peptídeos , Software , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Peptídeos/química , Peptídeos/imunologia , Humanos , Mapeamento de Epitopos/métodos , Ligação Proteica , Biologia Computacional/métodos
4.
Methods Mol Biol ; 2821: 165-177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38997488

RESUMO

Vaccination is an effective means of inducing immune protection to prevent transmissible diseases. During the Covid-19 pandemic, immunizations using traditional and novel vaccine platforms such as the inactivated SARSCo-V-2 vaccine, adenoviral-vectored, and nucleic acid-based mRNA vaccines have been relatively successful in controlling the rates of infection and hospitalizations. Nevertheless, the danger posed by the emergence of SARS-CoV-2 variants would set the stage for the design of next generation vaccines. To overcome the lack of efficacy of current vaccines against emerging SARS-CoV-2 variants, new vaccines must be able to overcome the reduced effectiveness of the current vaccines. Since the current Covid-19 vaccines are dependent on the whole S-protein of Wuhan strain as the antigen, mutations have rendered the current Covid-19 vaccines less effective against variants of concern (VoCs). Instead of using the whole S-protein, peptide-based epitopes could be predicted using immunoinformatic approaches, simulation of the 3D structures, overlapping peptides covering the whole length of the S-protein or peptide arrays based on synthetic peptide combinatorial libraries comprising peptides recognizable by monoclonal antibodies. B-cell epitopes were predicted, and immunogenicity of peptides was validated in mice by immunizing mice with peptides conjugated to keyhole limpet hemocyanin (KLH) mixed with Montanide 51 as an adjuvant. The immunogenicity of epitopes that could elicit peptide specific IgGs was determined by peptide-based ELISA. Neutralizing activities were determined by cPass and pseudovirus-based neutralization assays.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Epitopos de Linfócito B , Peptídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , SARS-CoV-2/imunologia , Camundongos , Anticorpos Antivirais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Humanos , Peptídeos/imunologia , Peptídeos/química , Vacinas contra COVID-19/imunologia , Mapeamento de Epitopos/métodos
5.
J Mol Model ; 30(8): 295, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083139

RESUMO

CONTEXT: Flaviviruses cause severe encephalitic or hemorrhagic diseases in humans. Its members, Kyasanur forest disease virus (KFDV) and Alkhumra hemorrhagic fever virus (ALKV), cause hemorrhagic fever and are prevalent in India and Saudi Arabia, respectively, while the tick-borne encephalitis virus (TBEV) causes a dangerous encephalitic infection in Europe and Asia. However, little information is available about the targets of immune responses for these deadly viruses. Here, we predict potential antigenic peptide epitopes of viral envelope protein for inducing a cell-mediated and humoral immune response. METHODS: Using the Immune Epitope Database and Analysis Resource (IEDB-AR), we identified 13 MHC-I and two MHC-II dominant conserved epitopes in KFDV and ALKV and six MHC-I and three MHC-II epitopes in TBEV envelope proteins. Parallelly, we also predicted B-cell linear and discontinuous envelope protein epitopes for these viruses. Interestingly, the epitopes are conserved in all three viral envelope proteins. Further, the discontinuous epitopes are structurally compared with the available DENV, ZIKV, WNV, TBEV, and LIV envelope protein antibody structures. Overall structural comparison analyses highlight (i) lateral ridge epitope in the ED-III domain of E protein, and (ii) envelope dimer epitope (EDE) could be targeted for developing potent vaccine candidates as well as therapeutic antibody production. Moreover, existing structural and biochemical functions of the same epitopes in homologous viruses are predicted to have a reduced antibody-dependent enhancement (ADE) effect on flaviviral infection.


Assuntos
Flavivirus , Flavivirus/imunologia , Humanos , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/química , Biologia Computacional , Sequência de Aminoácidos , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Homologia de Sequência de Aminoácidos , Epitopos/imunologia , Epitopos/química , Modelos Moleculares , Vírus da Encefalite Transmitidos por Carrapatos/imunologia
6.
Mol Diagn Ther ; 28(5): 633-643, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38980575

RESUMO

BACKGROUND AND OBJECTIVE: Dengue is a major infectious disease with potential for outbreaks and epidemics. A specific and sensitive diagnosis is a prerequisite for clinical management of the disease. We designed our study to identify epitopes on the Dengue virus (DENV) envelope (E) and non-structural protein 1 (NS1) with potential for diagnosis. METHODS: Serology and immunoinformatic approaches were employed. We collected DENV-positive, DENV-negative and Japanese encephalitis virus-positive samples from collaborating hospitals in 2019 and 2022-2023. Seropositive peptides in 15-18 mer peptide arrays of E and NS1 proteins of DENV2 were determined by an indirect enzyme-linked immunosorbent assay. B-cell linear and conformational epitopes were predicted using BepiPred2.0 and ElliPro, respectively. A consensus recombinant peptide was designed, synthesised and evaluated for its diagnostic potential using patient sera. RESULTS: Eight peptides of E protein and six peptides of NS1 protein were identified to be the most frequently recognised by Dengue-positive patients. These peptide sequences were compared with B-cell epitope regions and found to be overlapped with predicted B-cell linear and conformational epitopes. EP11 and NSP15 showed a 100% amino acid sequence overlap with B-cell epitopes. EP1 and NSP15 had 14 whereas EP28, EP31, EP60 16, NSP12 and NSP32 had more than 15 interacting interface residues with a neutralising antibody, suggesting a strength of interaction. Interestingly, potential epitopes identified were localised on the surface of proteins as visualised by PyMOL. Validation with a recombined synthetic peptide yielded 92.3% sensitivity and 91.42% specificity. CONCLUSIONS: Immunodominant regions identified by serology and computationally predicted epitopes overlapped, thereby showing the robustness of the methodology and the peptide designed for diagnosis.


Assuntos
Anticorpos Antivirais , Vírus da Dengue , Dengue , Epitopos de Linfócito B , Epitopos Imunodominantes , Peptídeos , Proteínas do Envelope Viral , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/imunologia , Humanos , Vírus da Dengue/imunologia , Epitopos Imunodominantes/imunologia , Dengue/diagnóstico , Dengue/imunologia , Dengue/virologia , Dengue/sangue , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Peptídeos/imunologia , Peptídeos/química , Ensaio de Imunoadsorção Enzimática
7.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732010

RESUMO

L-asparaginase is an essential drug used to treat acute lymphoid leukemia (ALL), a cancer of high prevalence in children. Several adverse reactions associated with L-asparaginase have been observed, mainly caused by immunogenicity and allergenicity. Some strategies have been adopted, such as searching for new microorganisms that produce the enzyme and applying protein engineering. Therefore, this work aimed to elucidate the molecular structure and predict the immunogenic profile of L-asparaginase from Penicillium cerradense, recently revealed as a new fungus of the genus Penicillium and producer of the enzyme, as a motivation to search for alternatives to bacterial L-asparaginase. In the evolutionary relationship, L-asparaginase from P. cerradense closely matches Aspergillus species. Using in silico tools, we characterized the enzyme as a protein fragment of 378 amino acids (39 kDa), including a signal peptide containing 17 amino acids, and the isoelectric point at 5.13. The oligomeric state was predicted to be a homotetramer. Also, this L-asparaginase presented a similar immunogenicity response (T- and B-cell epitopes) compared to Escherichia coli and Dickeya chrysanthemi enzymes. These results suggest a potentially useful L-asparaginase, with insights that can drive strategies to improve enzyme production.


Assuntos
Asparaginase , Simulação por Computador , Penicillium , Asparaginase/química , Asparaginase/imunologia , Asparaginase/metabolismo , Penicillium/imunologia , Penicillium/enzimologia , Sequência de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/imunologia , Proteínas Fúngicas/metabolismo , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Humanos , Aspergillus/imunologia , Aspergillus/enzimologia , Escherichia coli/genética , Dickeya chrysanthemi/enzimologia , Dickeya chrysanthemi/imunologia , Modelos Moleculares
8.
Microbiol Spectr ; 12(6): e0046524, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38700327

RESUMO

Smallpox is a highly contagious human disease caused by the variola virus. Although the disease was eliminated in 1979 due to its highly contagious nature and historical pathogenicity, with a mortality rate of up to 30%, this virus is an important candidate for biological weapons. Currently, vaccines are the critical measures to prevent this virus infection and spread. In this study, we designed a peptide vaccine using immunoinformatics tools, which have the potential to activate human immunity against variola virus infection efficiently. The design of peptides derives from vaccine-candidate proteins showing protective potential in vaccinia WR strains. Potential non-toxic and nonallergenic T-cell and B-cell binding and cytokine-inducing epitopes were then screened through a priority prediction using special linkers to connect B-cell epitopes and T-cell epitopes, and an appropriate adjuvant was added to the vaccine construction to enhance the immunogenicity of the peptide vaccine. The 3D structure display, docking, and free energy calculation analysis indicate that the binding affinity between the vaccine peptide and Toll-like receptor 3 is high, and the vaccine receptor complex is highly stable. Notably, the vaccine we designed is obtained from the protective protein of the vaccinia and combined with preventive measures to avoid side effects. This vaccine is highly likely to produce an effective and safe immune response against the variola virus infection in the body. IMPORTANCE: In this work, we designed a vaccine with a cluster of multiple T-cell/B-cell epitopes, which should be effective in inducing systematic immune responses against variola virus infection. Besides, this work also provides a reference in vaccine design for preventing monkeypox virus infection, which is currently prevalent.


Assuntos
Biologia Computacional , Epitopos de Linfócito B , Epitopos de Linfócito T , Vacina Antivariólica , Varíola , Vacinas de Subunidades Antigênicas , Vírus da Varíola , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/genética , Humanos , Vacina Antivariólica/imunologia , Vírus da Varíola/imunologia , Vírus da Varíola/genética , Varíola/prevenção & controle , Varíola/imunologia , Linfócitos T/imunologia , Linfócitos B/imunologia , Simulação de Acoplamento Molecular , Peptídeos/imunologia , Peptídeos/química , Imunoinformática
9.
Int J Biol Macromol ; 267(Pt 2): 131517, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621559

RESUMO

Infection with the hepatitis C virus (HCV) is one of the causes of liver cancer, which is the world's sixth most prevalent and third most lethal cancer. The current treatments do not prevent reinfection; because they are expensive, their usage is limited to developed nations. Therefore, a prophylactic vaccine is essential to control this virus. Hence, in this study, an immunoinformatics method was applied to design a multi-epitope vaccine against HCV. The best B- and T-cell epitopes from conserved regions of the E2 protein of seven HCV genotypes were joined with the appropriate linkers to design a multi-epitope vaccine. In addition, cholera enterotoxin subunit B (CtxB) was included as an adjuvant in the vaccine construct. This study is the first to present this epitopes-adjuvant combination. The vaccine had acceptable physicochemical characteristics. The vaccine's 3D structure was predicted and validated. The vaccine's binding stability with Toll-like receptor 2 (TLR2) and TLR4 was confirmed using molecular docking and molecular dynamics (MD) simulation. The immune simulation revealed the vaccine's efficacy by increasing the population of B and T cells in response to vaccination. In silico expression in Escherichia coli (E. coli) was also successful.


Assuntos
Epitopos de Linfócito B , Epitopos de Linfócito T , Hepatite C , Imunoinformática , Vacinas contra Hepatite Viral , Humanos , Simulação por Computador , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Hepacivirus/imunologia , Hepatite C/prevenção & controle , Hepatite C/imunologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/química , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/química , Vacinas contra Hepatite Viral/imunologia , Vacinas contra Hepatite Viral/química
10.
Biotechnol Lett ; 46(3): 315-354, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403788

RESUMO

The HIV-1 virus has been regarded as a catastrophe for human well-being. The global incidence of HIV-1-infected individuals is increasing. Hence, development of effective immunostimulatory molecules has recently attracted an increasing attention in the field of vaccine design against HIV-1 infection. In this study, we explored the impacts of CD40L and IFN-γ as immunostimulatory adjuvants for our candidate HIV-1 Nef vaccine in human and mouse using immunoinformatics analyses. Overall, 18 IFN-γ-based vaccine constructs (9 constructs in human and 9 constructs in mouse), and 18 CD40L-based vaccine constructs (9 constructs in human and 9 constructs in mouse) were designed. To find immunogenic epitopes, important characteristics of each component (e.g., MHC-I and MHC-II binding, and peptide-MHC-I/MHC-II molecular docking) were determined. Then, the selected epitopes were applied to create multiepitope constructs. Finally, the physicochemical properties, linear and discontinuous B cell epitopes, and molecular interaction between the 3D structure of each construct and CD40, IFN-γ receptor or toll-like receptors (TLRs) were predicted. Our data showed that the full-length CD40L and IFN-γ linked to the N-terminal region of Nef were capable of inducing more effective immune response than multiepitope vaccine constructs. Moreover, molecular docking of the non-allergenic full-length- and epitope-based CD40L and IFN-γ constructs to their cognate receptors, CD40 and IFN-γ receptors, and TLRs 4 and 5 in mouse were more potent than in human. Generally, these findings suggest that the full forms of these adjuvants could be more efficient for improvement of HIV-1 Nef vaccine candidate compared to the designed multiepitope-based constructs.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , Interferon gama , Vacinas de Subunidades Proteicas , Produtos do Gene nef do Vírus da Imunodeficiência Humana , Animais , Humanos , Camundongos , Adjuvantes Imunológicos/farmacologia , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/química , Ligante de CD40/imunologia , Ligante de CD40/química , Simulação por Computador , Epitopos/imunologia , Epitopos/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1 , Interferon gama/metabolismo , Interferon gama/imunologia , Simulação de Acoplamento Molecular , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/química , Vacinas de Subunidades Proteicas/química , Vacinas de Subunidades Proteicas/imunologia
11.
J Virol Methods ; 324: 114855, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013021

RESUMO

The L1 protein of Human papillomavirus (HPV), the main capsid protein, induces the formation of neutralizing antibodies. In this study, HPV52 L1 protein was induced to be expressed. Monoclonal antibody (mAb) 6A7 against L1 protein were screened by cell fusion techniques. Western Blot and immunofluorescence assay (IFA) demonstrated the specificity of the mAb. The L1 protein was truncated for prokaryotic expression (N1∼N7) and Dot-ELISA showed that 6A7 recognized N3 (aa 200-350). The immunodominant regions were truncated again for expression, with 6A7 recognizing N6 (aa 251-305). The N6 proteins were further truncated and then were constructed an four-segment eukaryotic expression vector. IFA showed that 6A7 could recognize amino acid 262-279. Amino acid 262-279 was selected to be truncated into short peptides P1 and P2. Finally, Peptide-ELISA and Dot-ELISA showed that the epitope regions of mAb 6A7 were amino acid 262-273. The mAbs with defined epitopes can lay the foundation for the analysis of antigenic epitope characteristics and promote the development of epitope peptide vaccines.


Assuntos
Proteínas do Capsídeo , Epitopos de Linfócito B , Humanos , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/química , Anticorpos Monoclonais , Papillomaviridae , Aminoácidos , Anticorpos Antivirais , Mapeamento de Epitopos
12.
J Virol ; 97(10): e0092923, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37737588

RESUMO

IMPORTANCE: Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and pneumonia in infants, infecting all children by age 5. RSV also causes substantial morbidity and mortality in older adults, and a vaccine for older adults based on a prefusion-stabilized form of the viral F glycoprotein was recently approved by the FDA. Here, we investigate a set of antibodies that belong to the same public clonotype and were isolated from individuals vaccinated with a prefusion-stabilized RSV F protein. Our results reveal that these antibodies are highly potent and recognize a previously uncharacterized antigenic site on the prefusion F protein. Vaccination with prefusion RSV F proteins appears to boost the elicitation of these neutralizing antibodies, which are not commonly elicited by natural infection.


Assuntos
Anticorpos Antivirais , Epitopos de Linfócito B , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Vacinação , Proteínas Virais de Fusão , Humanos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/metabolismo
13.
Angew Chem Int Ed Engl ; 62(21): e202301147, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36961090

RESUMO

Peptide vaccines have advantages in easy fabrication and high safety, but their effectiveness is hampered by the poor immunogenicity of the epitopes themselves. Herein, we constructed a series of framework nucleic acids (FNAs) with regulated rigidity and size to precisely organize epitopes in order to reveal the influence of epitope spacing and carrier rigidity on the efficiency of peptide vaccines. We found that assembling epitopes on rigid tetrahedral FNAs (tFNAs) with the appropriate size could efficiently enhance their immunogenicity. Further, by integrating epitopes from SARS-CoV-2 on preferred tFNAs, we constructed a COVID-19 peptide vaccine which could induce high titers of IgG against the receptor binding domain (RBD) of SARS-CoV-2 spike protein and increase the ratio of memory B and T cells in mice. Considering the good biocompatibility of tFNAs, our research provides a new idea for developing efficient peptide vaccines against viruses and possibly other diseases.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Camundongos , COVID-19/prevenção & controle , SARS-CoV-2/metabolismo , Epitopos de Linfócito T/química , Epitopos de Linfócito T/metabolismo , Epitopos de Linfócito B/química , Peptídeos , Vacinas de Subunidades Antigênicas
14.
Med Oncol ; 40(3): 105, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823384

RESUMO

Immunotherapy is revamping the therapeutic strategies for TNBC owing to its higher mutational burden and tumour-associated antigens. One of the most intriguing developments in cancer immunotherapy is the focus on peptide-based cancer vaccines. Thus, the current work aims to develop an efficient peptide-based vaccine against TNBC that targets Sema4A, which has recently been identified as a major regulator of TNBC progression. Initially, the antigenic peptides derived from Sema4A were determined and evaluated based on their capability to provoke immunological responses. The assessed epitopes were then linked with a suitable adjuvant (RpfB and RpfE) and appropriate linkers (AAY, GPGPG, KK and EAAAK) to preclude junctional immunogenicity. Eventually, docking and dynamics simulations are performed against TLR-2, TLR-4, TLR-7 and TLR-9 to assess the interaction between the vaccine construct and TLR receptors, as the TLR signalling pathway is critical in the host immune response. The developed vaccine was then exposed to in silico cloning and immune simulation analysis. The findings suggest that the designed vaccine could potentially evoke significant humoral and cellular immune responses in the intended organism. Considering these outcomes, the final multi-epitope vaccine could be employed to serve as an effective choice for TNBC management and may open new avenues for further studies.


Assuntos
Semaforinas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/terapia , Epitopos de Linfócito T/química , Simulação por Computador , Vacinas de Subunidades Antigênicas/química , Peptídeos , Simulação de Acoplamento Molecular , Biologia Computacional , Epitopos de Linfócito B/química
15.
Mol Divers ; 27(4): 1829-1842, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36214961

RESUMO

Immunotherapies are a promising treatment option especially for the management of TNBC owing to its higher levels of tumour-associated antigens together with higher mutational load. Of note, the administration of preventive vaccines in the early stage of the cancer holds promise for effective disease management. Therefore, the present study aimed to develop a novel multi-epitope peptide-based vaccination against TNBC employing SOX9, which has recently been recognized as a key regulator of TNBC metastasis. The immunodominant regions from the SOX9 protein were computed and assessed based on their ability to elicit both T and B lymphocyte mediated responses. The resultant epitopes were fused using appropriate linkers (EAAAK, KK, AAY and GPGPG) and adjuvant (50S ribosomal protein L7/L12) to enhance the vaccine's immunogenicity. The physicochemical properties and population coverage were also anticipated for the constructed vaccine. Adding together, docking and dynamics simulation studies were performed on the modelled vaccine against TLR-4 to provide insight into the stability. Finally, the designed vaccine was cloned into the pET28 (+) vector and immunological simulation studies were carried out. These results demonstrate that our designed vaccine had the potency to trigger humoral and cellular immune responses. Based on these collective evidences, the final proposed vaccine could be an interesting therapeutics for the management of TNBC in the near future. Schematic representation of an efficient vaccine design framework by combining the range of immunoinformatics strategies.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/prevenção & controle , Epitopos de Linfócito T/química , Epitopos de Linfócito B/química , Simulação de Acoplamento Molecular , Biologia Computacional/métodos , Fatores de Transcrição SOX9
16.
Artigo em Inglês | MEDLINE | ID: mdl-36293632

RESUMO

Epstein-Barr Virus (EBV) is a human pathogen that has a morbidity rate of 90% in adults worldwide. Infectious mononucleosis is caused by EBV replication in B cells and epithelial cells of the host. EBV has also been related to autoimmune illnesses, including multiple sclerosis and cancers like nasopharyngeal carcinomas and Burkitt's lymphoma. Currently, no effective medications or vaccinations are available to treat or prevent EBV infection. Thus, the current study focuses on a bioinformatics approach to design an mRNA-based multi-epitope (MEV) vaccine to prevent EBV infections. For this purpose, we selected six antigenic proteins from the EBV proteome based on their role in pathogenicity to predict, extract, and analyze T and B cell epitopes using immunoinformatics tools. The epitopes were directed through filtering parameters including allergenicity, toxicity, antigenicity, solubility, and immunogenicity assessment, and finally, the most potent epitopes able to induce T and B cell immune response were selected. In silico molecular docking of prioritized T cell peptides with respective Human Leukocytes Antigens molecules, were carried out to evaluate the individual peptide's binding affinity. Six CTL, four HTL, and ten linear B cell epitopes fulfilled the set parameters and were selected for MEV-based mRNA vaccine. The prioritized epitopes were joined using suitable linkers to improve epitope presentation. The immune simulation results affirmed the designed vaccine's capacity to elicit a proper immune response. The MEV-based mRNA vaccine constructed in this study offers a promising choice for a potent vaccine against EBV.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/genética , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética , Infecções por Vírus Epstein-Barr/prevenção & controle , Simulação de Acoplamento Molecular , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/química , RNA Mensageiro/genética , Proteoma , Imunidade , Peptídeos , Biologia Computacional/métodos , Vacinas de mRNA
17.
Transfusion ; 62(11): 2349-2362, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36205403

RESUMO

BACKGROUND: The immunogenicities of polypeptide blood group antigens vary, despite most being created by single amino acid (AA) substitutions. To study the basis of these differences, we employed an immunoinformatics approach to determine whether AA substitution sites of blood group antigens have structural features typical of B-cell epitopes and whether the extent of B-cell epitope properties is positively related to immunogenicity. STUDY DESIGN AND METHODS: Fifteen structural property prediction programs were used to determine the likelihood of ß-turns, surface accessibility, flexibility, hydrophilicity, particular AA composition and AA pairs, and other B-cell epitope properties at AA substitution sites of polypeptide blood group antigens. RESULTS: AA substitution sites of Lua , Jka , E, c, M, Fya , C, and S were each located in regions with at least two structural features typical of B-cell epitopes. The substitution site of K, the most immunogenic non-ABO/D antigen, scored the lowest for most B-cell epitope properties and was the only one not predicted to be part of a linear B-cell epitope. The most immunogenic antigens studied (K, Jka , Lua , E) had B-cell epitope structural properties determined by the fewest programs; the least immunogenic antigens (e.g., Fya , S, C, c) had B-cell epitope properties according to the most programs. DISCUSSION: Counter to prediction, the immunogenicity of polypeptide blood group antigens was not positively related to B-cell epitope structural features present at their AA-substitution sites. Instead, it tended to be negatively related. The AA-substitution site of the most immunogenic non-ABO/D antigen, K, had the least B-cell epitope features.


Assuntos
Antígenos de Grupos Sanguíneos , Humanos , Epitopos de Linfócito B/química , Peptídeos/química , Substituição de Aminoácidos
18.
Microbiol Spectr ; 10(5): e0115122, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36094198

RESUMO

Epstein-Barr virus (EBV) is a lymphotropic virus responsible for numerous epithelial and lymphoid cell malignancies, including gastric carcinoma, Hodgkin's lymphoma, nasopharyngeal carcinoma, and Burkitt lymphoma. Hundreds of thousands of people worldwide get infected with this virus, and in most cases, this viral infection leads to cancer. Although researchers are trying to develop potential vaccines and drug therapeutics, there is still no effective vaccine to combat this virus. In this study, the immunoinformatics approach was utilized to develop a potential multiepitope subunit vaccine against the two most common subtypes of EBV, targeting three of their virulent envelope glycoproteins. Eleven cytotoxic T lymphocyte (CTL) epitopes, 11 helper T lymphocyte (HTL) epitopes, and 10 B-cell lymphocyte (BCL) epitopes were predicted to be antigenic, nonallergenic, nontoxic, and fully conserved among the two subtypes, and nonhuman homologs were used for constructing the vaccine after much analysis. Later, further validation experiments, including molecular docking with different immune receptors (e.g., Toll-like receptors [TLRs]), molecular dynamics simulation analyses (including root means square deviation [RMSD], root mean square fluctuation [RMSF], radius of gyration [Rg], principal-component analysis [PCA], dynamic cross-correlation [DCC], definition of the secondary structure of proteins [DSSP], and Molecular Mechanics Poisson-Boltzmann Surface Area [MM-PBSA]), and immune simulation analyses generated promising results, ensuring the safe and stable response of the vaccine with specific immune receptors after potential administration within the human body. The vaccine's high binding affinity with TLRs was revealed in the docking study, and a very stable interaction throughout the simulation proved the potential high efficacy of the proposed vaccine. Further, in silico cloning was also conducted to design an efficient mass production strategy for future bulk industrial vaccine production. IMPORTANCE Epstein-Barr virus (EBV) vaccines have been developing for over 30 years, but polyphyletic and therapeutic vaccines have failed to get licensed. Our vaccine surpasses the limitations of many such vaccines and remains very promising, which is crucial because the infection rate is higher than most viral infections, affecting a whopping 90% of the adult population. One of the major identifications covers a holistic analysis of populations worldwide, giving us crucial information about its effectiveness for everyone's unique immunological system. We targeted three glycoproteins that enhance the virulence of the virus to design an epitope-based polyvalent vaccine against two different strains of EBV, type 1 and 2. Our methodology in this study is nonconventional yet swift to show effective results while designing vaccines.


Assuntos
Infecções por Vírus Epstein-Barr , Vacinas Virais , Humanos , Herpesvirus Humano 4 , Simulação de Acoplamento Molecular , Infecções por Vírus Epstein-Barr/prevenção & controle , Vacinas de Subunidades Antigênicas/química , Epitopos de Linfócito B/química , Epitopos de Linfócito B/metabolismo , Epitopos de Linfócito T/química , Epitopos de Linfócito T/metabolismo , Vacinas Combinadas , Biologia Computacional/métodos
19.
Comput Biol Med ; 150: 106128, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36179514

RESUMO

Epstein-Barr virus (EBV) is widely known due to its role in the etiology of infectious mononucleosis. However, it is the first oncovirus that was identified and has been implicated in the etiology of several types of cancers. Globally, EBV infection is associated with more than 200, 000 new cancer cases and 150, 000 deaths yearly. A prophylactic or therapeutic vaccine targeting tumors associated with EBV infection is currently lacking. Therefore, this study aimed to develop a multiepitope-based polyvalent vaccine against EBV-associated tumors using immunoinformatics approach. The latency-associated proteins (LAP) of three strains of the virus were used in this study. Potential epitopes predicted from the proteins were analyzed and selected based on several predicted properties. Thirty viable B-cell and T-cell epitopes were selected and conjugated using various linkers alongside beta-defensin 3 as an adjuvant and pan HLA DR-binding epitope (PADRE) sequence to improve the immunogenicity of the vaccine construct. Molecular docking studies of the vaccine construct against toll-like receptors (TLRs) showed it is capable of inducing immune response via recognition by TLRs while immune simulation studies showed it could induce both cellular and humoral immune responses. Furthermore, molecular dynamics study of the complex formed by the vaccine candidate and TLR-4 showed that the complex was stable. Ultimately, the designed vaccine showed desirable properties based on in silico evaluation; however, experimental studies are needed to validate the efficacy of the vaccine against EBV-associated tumors.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Simulação de Acoplamento Molecular , Infecções por Vírus Epstein-Barr/prevenção & controle , Epitopos de Linfócito B/química , Simulação de Dinâmica Molecular , Biologia Computacional
20.
Cancer Immunol Immunother ; 71(10): 2535-2548, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35294591

RESUMO

BACKGROUND: Bovine leukemia virus (BLV) is an oncogenic delta-retrovirus causing bovine leucosis. Studies on BLV have shown the association with human breast cancer. However, the exact molecular mechanism is neither known nor their appropriate preventative measure to halt the disease initiation and progression. In this study, we designed a multi-epitope vaccine against BLV using a computational analyses. METHODS: Following a rigorous assessment, the vaccine was constructed using the T-cell epitopes from each BLV-derived protein with suitable adjuvant and linkers. Both physicochemistry and immunogenic potency as well as the safeness of the vaccine candidate were assessed. Population coverage was done to evaluate the vaccine probable efficiency in eliciting the immune response worldwide. After homology modeling, the three-dimensional structure was refined and validated to determine the quality of the designed vaccine. The vaccine protein was then subjected to molecular docking with Toll-like receptor 3 (TLR3) to evaluate the binding efficiency followed by dynamic simulation for stable interaction. RESULTS: Our vaccine construct has the potential immune response and good physicochemical properties. The vaccine is antigenic and immunogenic, and has no allergenic or toxic effect on the human body. This novel vaccine contains a significant interactions and binding affinity with the TLR3 receptor. CONCLUSIONS: The proposed vaccine candidate would be structurally stable and capable of generating an effective immune response to combat BLV infections. However, experimental evaluations are essential to validate the exact safety and immunogenic profiling of this vaccine.


Assuntos
Vírus da Leucemia Bovina , Simulação de Dinâmica Molecular , Biologia Computacional/métodos , Epitopos de Linfócito B/química , Epitopos de Linfócito T , Humanos , Simulação de Acoplamento Molecular , Vacinas de Subunidades Antigênicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA