Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
1.
Int Ophthalmol ; 44(1): 287, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937293

RESUMO

PURPOSE: Equol is metabolized by intestinal bacteria from soy isoflavones and is chemically similar to estrogen. Dietary habits, such as consumption of soy products, influence equol production. A relationship between glaucoma and estrogen has been identified; here, we investigated the relationship between equol production status and glaucoma in Japan. METHODS: We recruited 68 normal-tension glaucoma (NTG) patients (male to female ratio 26:42, average age 63.0 ± 7.6 years) and 31 controls (male to female ratio 13:18, average age 66.0 ± 6.3 years) from our hospital. All women included were postmenopausal. Urinary equol concentration was quantified with the ELISA method. MD was calculated based on the Humphrey visual field. The association between MD and equol was analyzed with Spearman's rank correlation coefficient. The Mann-Whitney U test was used to compare the equol-producing (> 1 µM) and non-producing (< 1 µM) subjects. We also investigated the association between equol and glaucoma with a logistic regression analysis. RESULTS: There was a significant association between equol and MD (r = 0.36, P < 0.01) in the NTG patients. Glaucoma, represented by MD, was significantly milder in the equol-producing subjects than the non-equol producing subjects (P = 0.03). A multivariate analysis revealed the independent contributions of equol, cpRNFLT, and IOP to MD (P = 0.03, P = 0.04, and P < 0.01, respectively). CONCLUSION: Our results suggest that equol, acting through estrogen receptor-mediated neuroprotective effects, might be involved in suppressing the progression of NTG. This result also adds to evidence that glaucoma may be influenced by lifestyle.


Assuntos
Equol , Pressão Intraocular , Glaucoma de Baixa Tensão , Humanos , Glaucoma de Baixa Tensão/metabolismo , Glaucoma de Baixa Tensão/fisiopatologia , Feminino , Pessoa de Meia-Idade , Idoso , Masculino , Equol/metabolismo , Equol/biossíntese , Pressão Intraocular/fisiologia , Campos Visuais/fisiologia , Japão/epidemiologia , Ensaio de Imunoadsorção Enzimática
2.
Low Urin Tract Symptoms ; 16(3): e12518, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38777796

RESUMO

OBJECTIVES: This study evaluates the impact of equol, a metabolite of soy isoflavone, on bladder dysfunction in rats with bladder outlet obstruction (BOO). In addition, we investigate its potential as a neuroprotective agent for the obstructed bladder and discuss its applicability in managing overactive bladder (OAB). METHODS: Eighteen male Sprague-Dawley rats were divided into three groups (six rats per group) during the rearing period. The Sham and C-BOO groups received an equol-free diet, while the E-BOO group received equol supplementation (0.25 g/kg). At 8 weeks old, rats underwent BOO surgery, followed by continuous cystometry after 4 weeks of rearing. The urinary oxidative stress markers (8-hydroxy-2'-deoxyguanosine and malondialdehyde) were measured, and the bladder histology was analyzed using hematoxylin-eosin, Masson's trichrome, and immunohistochemical staining (neurofilament heavy chain for myelinated nerves, peripherin for unmyelinated nerves, and malondialdehyde). RESULTS: Equol reduced BOO-induced smooth muscle layer fibrosis, significantly prolonged the micturition interval (C-BOO: 193 s, E-BOO: 438 s) and increased the micturition volume (C-BOO: 0.54 mL, E-BOO: 1.02 mL) compared to the C-BOO group. Equol inhibited the increase in urinary and bladder tissue malondialdehyde levels. While the C-BOO group exhibited reduced peripherin alone positive nerve fibers within the smooth muscle layer, equol effectively attenuated this decline. CONCLUSIONS: Equol reduces lipid peroxidation and smooth muscle layer fibrosis in the bladder and exhibited neuroprotective effects on bladder nerves (peripheral nerves) and prevented the development of bladder dysfunction associated with BOO in rats. Consumption of equol is promising for the prevention of OAB associated with BOO.


Assuntos
Modelos Animais de Doenças , Equol , Estresse Oxidativo , Ratos Sprague-Dawley , Obstrução do Colo da Bexiga Urinária , Bexiga Urinária , Animais , Masculino , Equol/farmacologia , Obstrução do Colo da Bexiga Urinária/tratamento farmacológico , Obstrução do Colo da Bexiga Urinária/patologia , Ratos , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/patologia , Estresse Oxidativo/efeitos dos fármacos , Bexiga Urinária Hiperativa/etiologia , Bexiga Urinária Hiperativa/prevenção & controle , Bexiga Urinária Hiperativa/tratamento farmacológico , Malondialdeído/metabolismo , Fármacos Neuroprotetores/farmacologia , Micção/efeitos dos fármacos , Fibrose
3.
Clin Chim Acta ; 557: 117885, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38527713

RESUMO

BACKGROUND AND AIMS: No studies have compared various definitions of "equol producers" until now. Therefore, we aimed to explore the accuracy of five different definitions of equol producers (EQP) and their associations with health benefits. METHODS: This is a cross-sectional study of 466 healthy Japanese men and women aged between 22 and 88 years. Equol producer proportions were calculated from their serum and urine isoflavone concentrations using five commonly used definitions. We then examined their accuracy, and associations with the blood parameters. RESULTS: Proportions of equol ranged from 29 % in the most stringent definition to 47.6 % in the most sensitive definition. EQP identified under all definitions had significantly low serum PSA1 levels compared to nonequol producers (NEQP). The most stringent definition, which is defined as the urinary equol level of 1.0 µM and above, corresponded to the highest median serum equol level and was associated with better health outcomes. Male EQP identified by this definition seemed to have reduced risk of LDL2-hypercholesterolemia by 50 %, and female EQP identified by this definition seemed to have lower risk of high hs-CRP,3 compared to NEQP. Both the first and second stringent definition, which is defined as the serum equol level of 1.0 ng/mL and above, was associated with lower thyroid stimulating hormone level. CONCLUSIONS: More stringent definitions were associated with better parameters in general. Combined with the dietary inquires, a reliable definition for equol producer is crucial to evaluate the health benefits of equol.


Assuntos
Equol , Isoflavonas , Feminino , Masculino , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Equol/urina , Estudos Transversais , Isoflavonas/urina , Dieta
4.
PLoS One ; 19(3): e0288946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38536793

RESUMO

Equol is produced from daidzein by the action of gut bacteria on soy isoflavones. However, not all people can produce equol, and metabolism differs even among the producers. We aimed to examine the equol producer status in both men and women, and investigate the relationships among the serum and urinary isoflavones as well as to other biomedical parameters. In this study, we measured the equol and daidzein concentrations from the blood and urine of 292 men and 174 women aged between 22 and 88 years by liquid chromatography-tandem mass spectrometry (LC‒MS/MS). We then analysed the cut-off value for equol producers in both sexes, the relationship of serum and urinary equol concentrations, and other parameters, such as sex, age, endocrine function, glucose metabolism, lipid metabolism, and renal function with regards to equol-producing ability, among the different age groups. Equol producers were defined as those whose log ratio of urinary equol and daidzein concentration or log (equol/daidzein) was -1.42 or higher. Among 466 participants, 195 were equol producers (42%). The proportion of equol producers was larger in women. The cut-off value for equol producers was consistent in both sexes. Positive relationships were noted between serum and urinary equol levels in equol producers of both sexes; however, such a relationship was not detected in nonproducers. Lipid and uric acid abnormalities were more common with non equol producers in both men and women. Prostate specific antigen (PSA) levels in men were significantly lower in equol producers, especially in those in their 40 s. This study suggests a relationship between equol-producing ability and reduced risk of prostate disease as well as positive effects of equol on blood lipids and uric acid levels. However, lack of dietary information and disperse age groups were major drawbacks in generalizing the results of this study.


Assuntos
Equol , Isoflavonas , Masculino , Humanos , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Equol/metabolismo , Japão , Cromatografia Líquida , Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem , Ácido Úrico , Isoflavonas/metabolismo
5.
Food Funct ; 15(5): 2645-2654, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38362621

RESUMO

Daidzein, an isoflavone found abundantly in legumes, may benefit from bypassing upper gut absorption to reach the colon where it can be metabolized into the potent estrogen equol by the gut microbiome. To achieve this, we developed mucin coated protein-tannin multilayer microcarriers. Highly porous functionalized calcium carbonate (FCC) microparticles efficiently absorbed daidzein from a dimethyl sulfoxide solution, with a loading capacity of 21.6 ± 1.8 wt% as measured by ultra-high pressure liquid chromatography - mass spectrometry (UPLC-MS). Daidzein-containing FCC microparticles were then coated with a bovine serum albumin (BSA)-tannin n-layer film terminated with mucin ((BSA-TA)n-mucin) by layer-by-layer deposition from corresponding aqueous solutions followed by FCC decomposition with HCl. Raman spectroscopy confirmed mucin-tannin complexation involving both hydrophobic interactions and hydrogen bonding. The resulting multilayer microcarriers contained 54 wt% of nanocrystalline daidzein as confirmed by X-ray diffraction and UPLC-MS. Preliminary screening of several types of mucin coatings using an in vitro INFOGEST digestion model demonstrated that mucin type III from porcine stomach provided the highest protection against upper intestinal digestion. (BSA-TA)8-mucin and (BSA-TA)4-mucin microcarriers retained 71 ± 16.4% and 68 ± 4.6% of daidzein, respectively, at the end of the small intestinal phase. Mucin-free (BSA-TA)8 retained a lower daidzein amount of 46%. Daidzein release and further conversion into equol were observed during in vitro colonic studies with fecal microbiota from a healthy non-equol-producing donor and Slackia equolifaciens. The developed approach has potential for encapsulating other hydrophobic nutraceuticals or therapeutics, enhancing their bioaccessibility in the colon.


Assuntos
Equol , Isoflavonas , Cromatografia Líquida , Mucinas , Taninos , Espectrometria de Massas em Tandem , Isoflavonas/metabolismo , Polifenóis
6.
Mol Nutr Food Res ; 68(6): e2300688, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342595

RESUMO

The human gut microbiota regulates estrogen metabolism through the "estrobolome," the collection of bacterial genes that encode enzymes like ß-glucuronidases and ß-glucosidases. These enzymes deconjugate and reactivate estrogen, influencing circulating levels. The estrobolome mediates the enterohepatic circulation and bioavailability of estrogen. Alterations in gut microbiota composition and estrobolome function have been associated with estrogen-related diseases like breast cancer, enometrial cancer, and polycystic ovarian syndrome (PCOS). This is likely due to dysregulated estrogen signaling partly contributed by the microbial impacts on estrogen metabolism. Dietary phytoestrogens also undergo bacterial metabolism into active metabolites like equol, which binds estrogen receptors and exhibits higher estrogenic potency than its precursor daidzein. However, the ability to produce equol varies across populations, depending on the presence of specific gut microbes. Characterizing the estrobolome and equol-producing genes across populations can provide microbiome-based biomarkers. Further research is needed to investigate specific components of the estrobolome, phytoestrogen-microbiota interactions, and mechanisms linking dysbiosis to estrogen-related pathology. However, current evidence suggests that the gut microbiota is an integral regulator of estrogen status with clinical relevance to women's health and hormonal disorders.


Assuntos
Neoplasias da Mama , Microbioma Gastrointestinal , Feminino , Humanos , Fitoestrógenos , Microbioma Gastrointestinal/fisiologia , Equol/metabolismo , Estrogênios/metabolismo , Neoplasias da Mama/metabolismo
7.
PLoS One ; 18(12): e0295185, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38048315

RESUMO

Lignan polyphenols derived from plants are metabolized by bacteria in the gut to mammalian lignans, such as enterolactone (ENL) and enterodiol (END). Mammalian lignan intake has been reported to be associated with obesity and low blood glucose levels. However, the factors that are responsible for individual differences in the metabolic capacity for ENL and END are not well understood. In the present study, the effects of enterotypes of isoflavone metabolism, equol producers (EQP) and O-desmethylangolensin producers (O-DMAP), on lignan metabolism were examined. EQP was defined by urinary daidzein (DAI) and equol concentrations as log(equol/DAI) ≥ -1.42. O-DMAP was defined by urinary DAI and O-DMA concentrations as O-DMA/DAI > 0.018. Isoflavone and lignan concentrations in urine samples from 440 Japanese women were measured by gas chromatography-mass spectrometry. Metabolic enterotypes were determined from the urinary equol and O-DMA concentrations. Urinary END and ENL concentrations were compared in four groups, combinations of EQP (+/-) and O-DMAP (+/-). The urinary lignan concentration was significantly higher in the O-DMAP/EQP group (ENL: P<0.001, END: P<0.001), and this association remained significant after adjusting for several background variables (END: ß = 0.138, P = 0.00607 for EQP and ß = 0.147, P = 0.00328 for O-DMAP; ENL: ß = 0.312, P<0.001 for EQP and ß = 0.210, P<0.001 for O-DMAP). The ENL/END ratio was also highest in the O-DMAP/EQP group, indicating that equol and O-DMA metabolizing gut bacteria may be involved in lignan metabolism. In conclusion, urinary lignan concentrations were significantly higher in groups containing either EQP or O-DMAP than in the non-EQP/non-O-DMAP group. The variables and participants in this study were limited, which the possibility of confounding by other variables cannot be ruled out. However, there are no established determinants of lignan metabolism to date. Further research is needed to determine what factors should be considered, and to examine in different settings to confirm the external validity.


Assuntos
Isoflavonas , Lignanas , Animais , Humanos , Feminino , Equol , Estudos Transversais , Disponibilidade Biológica , Polifenóis , Isoflavonas/metabolismo , Bactérias/metabolismo , Mamíferos/metabolismo
8.
Nutrients ; 15(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068715

RESUMO

A possible link between diet and cancer has long been considered, with growing interest in phytochemicals. Soy isoflavones have been associated with a reduced risk of prostate cancer in Asian populations. Of the soy isoflavones, genistein and daidzein, in particular, have been studied, but recently, equol as a derivative has gained interest because it is more biologically potent. Different mechanisms of action have already been studied for the different isoflavones in multiple conditions, such as breast, gastrointestinal, and urogenital cancers. Many of these mechanisms of action could also be demonstrated in the prostate, both in vitro and in vivo. This review focuses on the known mechanisms of action at the cellular level and compares them between genistein, daidzein, and equol. These include androgen- and estrogen-mediated pathways, regulation of the cell cycle and cell proliferation, apoptosis, angiogenesis, and metastasis. In addition, antioxidant and anti-inflammatory effects and epigenetics are addressed.


Assuntos
Isoflavonas , Neoplasias da Próstata , Masculino , Humanos , Genisteína/farmacologia , Equol , Glycine max , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico
9.
BMC Womens Health ; 23(1): 261, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179289

RESUMO

BACKGROUND: Uterine leiomyomata (UL) is a common gynecological disease in women. Studied on the relationship between single metabolites of urinary phytoestrogens and UL, especially for the combined effects of mixed metabolites on UL still are insufficient. METHODS: In this cross-sectional study, we included 1,579 participants from the National Health and Nutrition Examination Survey. Urinary phytoestrogens were assessed by measuring urinary excretion of daidzein, genistein, equol, O-desmethylangolensin, enterodiol and enterolactone. The outcome was defined as UL. Weighted logistic regression was used to analyze the association between single metabolites of urinary phytoestrogens and UL. Notably, we adopted the weighted quantile sum (WQS) regression, Bayesian kernel machine regression (BKMR), and quantile g-computation (qgcomp) models, to investigate the combined effects of six mixed metabolites on UL. RESULTS: The prevalence of UL was approximately 12.92%. After adjusting age, race/ethnicity, marital status, drinking status, body mass index, waist circumference, menopausal status, ovary removed status, use of female hormones, hormones/hormone modifiers, total energy, daidzein, genistein, O-desmethylangolensin, enterodiol, and enterolactone, the association of equol with UL was significant [Odds ratio (OR) = 1.92, 95% confidence interval (CI): 1.09-3.38]. In the WQS model, mixed metabolites of urinary phytoestrogen had a positive association with UL (OR = 1.68, 95%CI: 1.12-2.51), with the highest weighted chemical of equol. In the gpcomp model, equol had the largest positive weight, followed by genistein and enterodiol. In the BKMR model, equol and enterodiol have positive correlation on UL risk, while enterolactone has negative correlation. CONCLUSION: Our results implied a positive association between the mixed metabolites of urinary phytoestrogen and UL. This study provides evidence that urinary phytoestrogen-metabolite mixture was closely related to the risk of female UL.


Assuntos
Leiomioma , Fitoestrógenos , Humanos , Feminino , Fitoestrógenos/urina , Genisteína , Equol , Estudos Transversais , Inquéritos Nutricionais , Teorema de Bayes , Leiomioma/epidemiologia
10.
Nutrients ; 15(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37111176

RESUMO

Soybean is the most economically important legume globally, providing a major source of plant protein for millions of people; it offers a high-quality, cost-competitive and versatile base-protein ingredient for plant-based meat alternatives. The health benefits of soybean and its constituents have largely been attributed to the actions of phytoestrogens, which are present at high levels. Additionally, consumption of soy-based foods may also modulate gastrointestinal (GI) health, in particular colorectal cancer risk, via effects on the composition and metabolic activity of the GI microbiome. The aim of this narrative review was to critically evaluate the emerging evidence from clinical trials, observational studies and animal trials relating to the effects of consuming soybeans, soy-based products and the key constituents of soybeans (isoflavones, soy proteins and oligosaccharides) on measures of GI health. Our review suggests that there are consistent favourable changes in measures of GI health for some soy foods, such as fermented rather than unfermented soy milk, and for those individuals with a microbiome that can metabolise equol. However, as consumption of foods containing soy protein isolates and textured soy proteins increases, further clinical evidence is needed to understand whether these foods elicit similar or additional functional effects on GI health.


Assuntos
Isoflavonas , Proteínas de Soja , Animais , Proteínas de Soja/farmacologia , Isoflavonas/farmacologia , Equol/metabolismo , Fitoestrógenos/farmacologia , Glycine max/metabolismo
11.
Crit Rev Food Sci Nutr ; 63(14): 2203-2215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34470513

RESUMO

The benefits to health attributed to the intake of phytoestrogens (PEs) have been demonstrated in previous studies with significant physiological concentrations of bioactive PEs, such as genistein, equol, enterolignans and urolithins in plasma. However, the achievement of high bioactive PE levels in plasma is restricted to a select population group, mainly due to the low intake of plant PEs and/or the absence, or inhibition, of the microbiota capable of producing these bioactive forms. In this study, the intake of plant PEs, the concentration of bioactive PEs in plasma, the ability of the intestinal microbiota to produce bioactive PEs, as well as the different mechanisms used by GRAS bacteria to increase the level of bioactive PEs were evaluated concluding that the use of GRAS bacteria bioactive PE producers and the development of fermented foods enriched in bioactive PEs in addition to a high intake of plant PEs and taking care of the intestinal microbiota, are some of the different strategies to achieve significant physiological concentrations of bioactive PEs in the intestine and, subsequently, in plasma and targets organs which are essential to improve menopausal symptoms or reduce the risk of some pathologies such as breast and colon cancer, or cardiovascular disease.


Assuntos
Genisteína , Fitoestrógenos , Equol , Intestinos/microbiologia
12.
Phytomedicine ; 108: 154509, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36288653

RESUMO

BACKGROUD: Estrogen deficiency is the leading cause of postmenopausal osteoporosis(PMOP) and phytoestrogens soy isoflavones (SI) have been shown to improve PMOP. Equol (Eq), an in vivo metabolite of phytoestrogens soy isoflavones (SI), has a more stable structure and stronger biological activity than its parent compound and has the greatest estrogenic activity. However, there are few studies on the therapeutic effect of Eq on PMOP. PURPOSE: To explore the therapeutic effect and mechanisms of Eq on POMP. METHODS: Osteoblast-like cells ROS1728 were cultured with different doses of Eq, estradiol (E2), separately. The effect of Eq on the proliferation, apoptosis, cell cycle of osteoblasts were detected by CCK-8 and flow cytometry, and the expression of OPG/RANK/RANKL signaling pathway of osteoblasts was detected by Quantitative real-time PCR (qRT-PCR) and Western blot (WB), and RNA silencing technology were carried out to explore the receptors through which Eq plays a role. Then PMOP rat model was established and treated by Eq or E2 to further verification of the effect and mechanism of Eq on PMOP. RESULT: Eq promoted the proliferation and inhibited the apoptosis of osteoblasts and increased the proportion of osteoblasts in the S phase and G2/M phase in a dose-dependent manner. Mechanistically, Eq treatment upregulated the expression of OPG and OPG/RANKL ratio in osteoblasts and this regulatory effect was mainly mediated through the ERß receptor. Furthermore, in vivo study, Eq improved microstructure and BMD of the femur of PMOP rat model, which imitated the osteoprotective effect of E2. Moreover, the Eq or E2 treatment increased serum levels of Ca, 1,25(OH)2D3, bone Gla-protein(BGP), and Type I procollagen (PC1), and reduced serum levels of phosphorus (P), parathyroid hormone(PTH), pyridinol (PYD), tartrate-resistant acid phosphatase (TRAP) and urinary level of deoxypyridinoline (DPD) in the treatment OVX group compared with the untreated OVX group. Meanwhile, Eq or E2 markedly induced the mRNA and protein expression of OPG and OPG/RANKL ratio. CONCLUSION: Eq can combine with ERß and exert a protective effect on PMOP by upregulating OPG/RANKL pathway.


Assuntos
Osteoporose Pós-Menopausa , Humanos , Feminino , Ratos , Animais , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose Pós-Menopausa/prevenção & controle , Osteoprotegerina/metabolismo , Equol/farmacologia , Equol/metabolismo , Receptor beta de Estrogênio/metabolismo , Fitoestrógenos/farmacologia , Ligante RANK/metabolismo , Osteoblastos
13.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36233223

RESUMO

S-equol, a metabolite of soy isoflavone daidzein transformed by the gut microbiome, is the most biologically potent among all soy isoflavones and their metabolites. Soy isoflavones are phytoestrogens and exert their actions through estrogen receptor-ß. Epidemiological studies in East Asia, where soy isoflavones are regularly consumed, show that dietary isoflavone intake is inversely associated with cognitive decline and dementia; however, randomized controlled trials of soy isoflavones in Western countries did not generally show their cognitive benefit. The discrepant results may be attributed to S-equol production capability; after consuming soy isoflavones, 40-70% of East Asians produce S-equol, whereas 20-30% of Westerners do. Recent observational and clinical studies in Japan show that S-equol but not soy isoflavones is inversely associated with multiple vascular pathologies, contributing to cognitive impairment and dementia, including arterial stiffness and white matter lesion volume. S-equol has better permeability to the blood-brain barrier than soy isoflavones, although their affinity to estrogen receptor-ß is similar. S-equol is also the most potent antioxidant among all known soy isoflavones. Although S-equol is available as a dietary supplement, no long-term trials in humans have examined the effect of S-equol supplementation on arterial stiffness, cerebrovascular disease, cognitive decline, or dementia.


Assuntos
Disfunção Cognitiva , Demência , Microbioma Gastrointestinal , Isoflavonas , Antioxidantes , Disfunção Cognitiva/prevenção & controle , Demência/prevenção & controle , Equol/metabolismo , Receptor beta de Estrogênio , Humanos , Isoflavonas/metabolismo , Isoflavonas/farmacologia , Fitoestrógenos/metabolismo , Receptores de Estrogênio
14.
Nutrients ; 14(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36297001

RESUMO

Epigenetic mechanisms play an important role in the etiology of colorectal cancer (CRC) and other malignancies due, in part, to deregulated bromodomain (BRD) functions. Inhibitors of the bromodomain and extraterminal (BET) family have entered into clinical trials as anticancer agents, and interest has grown in other acetyl 'reader' proteins as therapeutic targets, including non-BET member bromodomain-containing protein 9 (BRD9). We report here that overexpression of BRD9 is associated with poor prognosis in CRC patients, and that siRNA-mediated knockdown of BRD9 decreased cell viability and activated apoptosis in human colon cancer cells, coincident with increased DNA damage. Seeking natural compounds as BRD9 antagonists, molecular docking in silico identified several polyphenols such as Epigallocatechin-3-gallate (EGCG), Equol, Quercetin, and Aspalathin, with favorable binding energies, supported by BROMOscan® (DiscoverX) and isothermal titration calorimetry experiments. Polyphenols mimicked BRD9 knockdown and iBRD9 treatment in reducing colon cancer cell viability, inhibiting colony formation, and enhancing DNA damage and apoptosis. Normal colonic epithelial cells were unaffected, signifying cancer-specific effects. These findings suggest that natural polyphenols recognize and target BRD9 for inhibition, and might serve as useful lead compounds for bromodomain therapeutics in the clinical setting.


Assuntos
Antineoplásicos , Neoplasias do Colo , Humanos , Polifenóis/farmacologia , Simulação de Acoplamento Molecular , RNA Interferente Pequeno , Equol , Quercetina , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Apoptose , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Dano ao DNA
15.
Metabolomics ; 18(11): 84, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289122

RESUMO

INTRODUCTION: Phytoestrogens found in soy, fruits, peanuts, and other legumes, have been identified as metabolites capable of providing beneficial effects in multiple pathological conditions due to their ability to mimic endogenous estrogen. Interestingly, the health-promoting effects of some phytoestrogens, such as isoflavones, are dependent on the presence of specific gut bacteria. Specifically, gut bacteria can metabolize isoflavones into equol, which has a higher affinity for endogenous estrogen receptors compared to dietary isoflavones. We have previously shown that patients with multiple sclerosis (MS), a neuroinflammatory disease, lack gut bacteria that are able to metabolize phytoestrogen. Further, we have validated the importance of both isoflavones and phytoestrogen-metabolizing gut bacteria in disease protection utilizing an animal model of MS. Specifically, we have shown that an isoflavone-rich diet can protect from neuroinflammatory diseases, and that protection was dependent on the ability of gut bacteria to metabolize isoflavones into equol. Additionally, mice on a diet with isoflavones showed an anti-inflammatory response compared to the mice on a diet lacking isoflavones. However, it is unknown how isoflavones and/or equol mediates their protective effects, especially their effects on host metabolite levels. OBJECTIVES: In this study, we utilized untargeted metabolomics to identify metabolites found in plasma that were modulated by the presence of dietary isoflavones. RESULTS: We found that the consumption of isoflavones increased anti-inflammatory monounsaturated fatty acids and beneficial polyunsaturated fatty acids while reducing pro-inflammatory glycerophospholipids, sphingolipids, phenylalanine metabolism, and arachidonic acid derivatives. CONCLUSION: Isoflavone consumption alters the systemic metabolic landscape through concurrent increases in monounsaturated fatty acids and beneficial polyunsaturated fatty acids plus reduction in pro-inflammatory metabolites and pathways. This highlights a potential mechanism by which an isoflavone diet may modulate immune-mediated disease.


Assuntos
Isoflavonas , Animais , Camundongos , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Equol/metabolismo , Fitoestrógenos/metabolismo , Metabolismo dos Lipídeos , Receptores de Estrogênio/metabolismo , Fenilalanina/metabolismo , Metabolômica , Estrogênios , Bactérias/metabolismo , Inflamação/tratamento farmacológico , Ácidos Graxos Monoinsaturados , Esfingolipídeos , Glicerofosfolipídeos , Ácidos Araquidônicos
16.
Cells ; 11(18)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139478

RESUMO

The metabolites produced by the gut microbiota have been reported as crucial agents against obesity; however, their key targets have not been revealed completely in complex microbiome systems. Hence, the aim of this study was to decipher promising prebiotics, probiotics, postbiotics, and more importantly, key target(s) via a network pharmacology approach. First, we retrieved the metabolites related to gut microbes from the gutMGene database. Then, we performed a meta-analysis to identify metabolite-related targets via the similarity ensemble approach (SEA) and SwissTargetPrediction (STP), and obesity-related targets were identified by DisGeNET and OMIM databases. After selecting the overlapping targets, we adopted topological analysis to identify core targets against obesity. Furthermore, we employed the integrated networks to microbiota-substrate-metabolite-target (MSMT) via R Package. Finally, we performed a molecular docking test (MDT) to verify the binding affinity between metabolite(s) and target(s) with the Autodock 1.5.6 tool. Based on holistic viewpoints, we performed a filtering step to discover the core targets through topological analysis. Then, we implemented protein-protein interaction (PPI) networks with 342 overlapping target, another subnetwork was constructed with the top 30% degree centrality (DC), and the final core networks were obtained after screening the top 30% betweenness centrality (BC). The final core targets were IL6, AKT1, and ALB. We showed that the three core targets interacted with three other components via the MSMT network in alleviating obesity, i.e., four microbiota, two substrates, and six metabolites. The MDT confirmed that equol (postbiotics) converted from isoflavone (prebiotics) via Lactobacillus paracasei JS1 (probiotics) can bind the most stably on IL6 (target) compared with the other four metabolites (3-indolepropionic acid, trimethylamine oxide, butyrate, and acetate). In this study, we demonstrated that the promising substate (prebiotics), microbe (probiotics), metabolite (postbiotics), and target are suitable for obsesity treatment, providing a microbiome basis for further research.


Assuntos
Microbioma Gastrointestinal , Obesidade , Prebióticos , Probióticos , Butiratos , Equol , Humanos , Interleucina-6 , Simulação de Acoplamento Molecular , Farmacologia em Rede , Obesidade/terapia
17.
J Nutr ; 152(8): 1831-1842, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35675296

RESUMO

BACKGROUND: Equol, a metabolite of daidzein, binds to the estrogen receptor with greater affinity than daidzein and exhibits various biological properties. It exists as an enantiomer, either (S)-equol or (R)-equol. OBJECTIVES: We have previously shown that the inhibitory effect of (S)-equol on bone fragility is stronger than that of racemic equol in ovariectomized (OVX) mice; however, the effect of (R)-equol has not been elucidated. The aim of this study was to compare the activities of equol enantiomers on bone metabolism in vitro and in vivo. METHODS: Bone marrow cells (BMCs) and RAW 264.7 cells were treated with equol enantiomers. The number of osteoclasts and caspase-3/7 activity were measured. We examined the effect of equol enantiomers on osteoblast differentiation in MC3T3-E1 cells. In vivo, 8-wk-old female ddY mice were assigned to 4 groups: sham-operated (sham), OVX, OVX + 0.5 mg/d of (S)-equol (S-eq), and OVX + 0.5 mg/d of (R)-equol (R-eq). Four weeks after the intervention, femoral bone mineral density (BMD) and osteoclastic gene expression were analyzed, along with concentrations of equol enantiomers in the serum and tissues. RESULTS: (S)-equol and (R)-equol inhibited osteoclast differentiation in BMCs (97% and 60%, P < 0.05) and RAW 264.7 cells (83% and 68%, P < 0.05). (S)-equol promoted apoptosis of mature osteoclasts by inducing caspase-3/7 activity (29%, P < 0.05) and enhanced osteoblast differentiation (29%, P < 0.05). In OVX mice, BMD was ameliorated in (S)-equol-treated mice (11%, P < 0.05), but not in (R)-equol-treated mice. The concentrations of (S)-equol were greater than those of (R)-equol in the serum, tibia, liver, and kidney (by 148%, 80%, 22%, and 139%, respectively). CONCLUSIONS: These results suggest that (S)-equol is more effective than (R)-equol in inhibiting osteoclast formation and enhancing osteoclast apoptosis in vitro, supporting the beneficial effect of (S)-equol to reduce estrogen deficiency-induced bone loss in OVX mice.


Assuntos
Doenças Ósseas Metabólicas , Reabsorção Óssea , Animais , Apoptose , Densidade Óssea , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/prevenção & controle , Caspase 3 , Caspase 7 , Equol/farmacologia , Equol/uso terapêutico , Estrogênios/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos , Osteoclastos , Ovariectomia
18.
Phytomedicine ; 102: 154164, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35597026

RESUMO

BACKGROUND: Many extracts and purified alkaloids of M. cordata (Papaveraceae family) have been reported to display promising anti-tumor effects by inhibiting cancer cell growth and inducing apoptosis in many cancer types. However, no evidence currently exists for anti-pancreatic cancer activity of alkaloids extracted from M. cordata, including a novel alkaloid named 6­methoxy dihydrosphingosine (6-Methoxydihydroavicine, 6-ME) derived from M. cordata fruits. PURPOSE: The aim of this study was to investigate the anti-tumor effects of 6-ME on PC cells and the underlying mechanism. METHODS: CCK-8, RTCA, and colony-formation assays were used to analyze PC cell growth. Cell death ratios, changes in MMP and ROS levels were measured by flow cytometry within corresponding detection kits. A Seahorse XFe96 was employed to examine the effects of 6-ME on cellular bioenergetics. Western blot and q-RT-PCR were conducted to detect changes in target molecules. RESULTS: 6-ME effectively reduced the growth of PC cells and promoted PCD by activating RIPK1, caspases, and GSDME. Specifically, 6-ME treatment caused a disruption of OAA metabolism and increased ROS production, thereby affecting mitochondrial homeostasis and reducing aerobic glycolysis. These responses resulted in mitophagy and RIPK1-mediated cell death. CONCLUSION: 6-ME exhibited specific anti-tumor effects through interrupting OAA metabolic homeostasis to trigger ROS/RIPK1-dependent cell death and mitochondrial dysfunction, suggesting that 6-ME could be considered as a highly promising compound for PC intervention.


Assuntos
Alcaloides , Antineoplásicos , Caspases , Equol/análogos & derivados , Ácido Oxaloacético , Neoplasias Pancreáticas , Espécies Reativas de Oxigênio , Proteína Serina-Treonina Quinases de Interação com Receptores , Alcaloides/farmacologia , Antineoplásicos/farmacologia , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Equol/farmacologia , Humanos , Ácido Oxaloacético/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Papaveraceae/química , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
19.
Beijing Da Xue Xue Bao Yi Xue Ban ; 54(2): 244-248, 2022 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-35435186

RESUMO

OBJECTIVE: To investigate the effects and mechanisms of equol and its enantiomers on urethane-induced lung cancer in mice. METHODS: A total of 120 5-week-old male C57BL/6 mice were randomly divided into 8 groups: lung cancer tumor control group (CG), genistein control group (GCG), low dose racemic equol group (LEG), high dose racemic equol group (HEG), low dose R-equol group (LRE), high dose R-equol group (HRE), low dose S-equol group (LSE) and high dose S-equol group (HSE). Urethane was injected subcutaneously twice a week for 4 weeks to induce lung cancer and then the mice were fed for 4 months. The body weight and food intake of each group were measured and recorded weekly. After the mice were sacrificed, the blood, livers and lungs of the mice were collected. The incidence of lung cancer in each group was recorded. The concentration of serum superoxide dismutase (SOD), malondialdehyde (MDA) and 8-hydroxydeoxygunosine (8-OHdG) were detected by the corresponding kits. Western blotting was used to detect the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in the livers. Between-group differences in body weight and food intake of the mice were compared using repeated measures ANOVA, and ANOVA for the differences between non-repeated measurements, with post hoc analysis using Tukey's method if there were between-group differences. Comparisons of categorical data were performed by chi-square test, and if there were differences between the groups, the Bonferroni method was used for pairwise comparison. RESULTS: A total of 49 in the 120 mice developed lung cancer. The overall incidence of lung cancer was 40.8%. Compared with the control group, the incidence of lung cancers in each experimental group was lower, and the difference was statistically significant. The incidence of lung cancer in the high-dose experimental group was significantly lower than that in the low-dose experimental group. However, the incidence of lung cancer was similar in the three equol groups and the genistein group at the same dose. Compared with the control group, the high-dose experimental group had higher serum SOD concentration, lower MDA and 8-OHdG concentrations, and the differences were statistically significant. Western blotting analysis showed that the expression levels of Nrf2 protein in the experimental groups were higher than those in the control group except the low-dose racemic equol group, and the Nrf2 protein expression level in the high-dose equol groups was higher than that in the low-dose equol groups. CONCLUSION: Racemic equol and its enantiomers mayinhibit lung carcinogenesis through antioxidant effects.


Assuntos
Equol , Neoplasias Pulmonares , Animais , Peso Corporal , Genisteína , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2 , Superóxido Dismutase , Uretana/toxicidade
20.
Anim Sci J ; 93(1): e13720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35417088

RESUMO

Dairy cows feed on isoflavones as physiologically active substances present in legumes. However, the influences of isoflavones (biochanin A, genistein, formononetin, and daidzein) and their metabolites (p-ethylphenol and equol) on milk components production, tight junctions (TJs), and their regulatory pathways are unclear in bovine mammary epithelial cells (BMECs). In this study, we investigated the influences of isoflavones and their metabolites in BMECs using an in vitro culture model. The influences of isoflavones on milk components production, TJ proteins, and STAT5/STAT3 signaling pathways were different in a type-specific manner. Biochanin A decreased the mRNA expression and secretion of both ß-casein and lactoferrin while a decrease in activated STAT5 and an increase in activated STAT3. In contrast, equol increased claudin-3, which is the main components for less-permeable TJs in lactation, while an increase in activated STAT5. In addition, a mixture of multiple isoflavones based on the intake of red clover increased secretion of lactoferrin, mRNA expression of ß-casein, and amount of claudin-3, but a mixture based on soy did not affect the BMECs. Thus, these results indicate that isoflavones in legumes and the metabolic activity of isoflavones in dairy cows when feeding legumes may affect the milk production ability in BMECs.


Assuntos
Isoflavonas , Fator de Transcrição STAT5 , Animais , Caseínas/metabolismo , Bovinos , Claudina-3/metabolismo , Células Epiteliais/metabolismo , Equol/metabolismo , Feminino , Isoflavonas/farmacologia , Lactoferrina/metabolismo , Glândulas Mamárias Animais , Leite/metabolismo , RNA Mensageiro/metabolismo , Fator de Transcrição STAT5/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA