Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.090
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Elife ; 122023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719185

RESUMO

Aging affects iron homeostasis, as evidenced by tissue iron loading and anemia in the elderly. Iron needs in mammals are met primarily by iron recycling from senescent red blood cells (RBCs), a task chiefly accomplished by splenic red pulp macrophages (RPMs) via erythrophagocytosis. Given that RPMs continuously process iron, their cellular functions might be susceptible to age-dependent decline, a possibility that has been unexplored to date. Here, we found that 10- to 11-month-old female mice exhibit iron loading in RPMs, largely attributable to a drop in iron exporter ferroportin, which diminishes their erythrophagocytosis capacity and lysosomal activity. Furthermore, we identified a loss of RPMs during aging, underlain by the combination of proteotoxic stress and iron-dependent cell death resembling ferroptosis. These impairments lead to the retention of senescent hemolytic RBCs in the spleen, and the formation of undegradable iron- and heme-rich extracellular protein aggregates, likely derived from ferroptotic RPMs. We further found that feeding mice an iron-reduced diet alleviates iron accumulation in RPMs, enhances their ability to clear erythrocytes, and reduces damage. Consequently, this diet ameliorates hemolysis of splenic RBCs and reduces the burden of protein aggregates, mildly increasing serum iron availability in aging mice. Taken together, we identified RPM collapse as an early hallmark of aging and demonstrated that dietary iron reduction improves iron turnover efficacy.


Assuntos
Ferro , Fagocitose , Feminino , Animais , Camundongos , Ferro/metabolismo , Fagocitose/fisiologia , Agregados Proteicos , Eritrócitos/fisiologia , Hemólise , Envelhecimento , Mamíferos/metabolismo
3.
Anat Rec (Hoboken) ; 305(11): 3199-3211, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35521832

RESUMO

The assumption that the coronary capillary blood flow is exclusively regulated by precapillary vessels is not supported by recent data. Rather, the complex coronary capillary bed has unique structural and geometric characteristics that invalidate many assumptions regarding red blood cell (RBC) transport, for example, data based on a single capillary or that increases in flow are the result of capillary recruitment. It is now recognized that all coronary capillaries are open and that their variations in flow are due to structural differences, local O2 demand and delivery, and variations in hematocrit. Recent data reveal that local mechanisms within the capillary bed regulate flow via signaling mechanisms involving RBC signaling and endothelial-associated pericytes that contract and relax in response to humoral and neural signaling. The discovery that pericytes respond to vasoactive signals (e.g., nitric oxide, phenylephrine, and adenosine) underscores the role of these cells in regulating capillary diameter and consequently RBC flux and oxygen delivery. RBCs also affect blood flow by sensing P O 2 and releasing nitric oxide to facilitate relaxation of pericytes and a consequential capillary dilation. New data indicate that these signaling mechanisms allow control of blood flow in specific coronary capillaries according to their oxygen requirements. In conclusion, mechanisms in the coronary capillary bed facilitate RBC density and transit time, hematocrit, blood flow and O2 delivery, factors that decrease capillary heterogeneity. These findings have important clinical implications for myocardial ischemia and infarction, as well as other vascular diseases.


Assuntos
Capilares , Óxido Nítrico , Adenosina , Eritrócitos/fisiologia , Oxigênio , Fenilefrina
4.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055067

RESUMO

α-hemolysin (HlyA) of E. coli binds irreversibly to human erythrocytes and induces cell swelling, ultimately leading to hemolysis. We characterized the mechanism involved in water transport induced by HlyA and analyzed how swelling and hemolysis might be coupled. Osmotic water permeability (Pf) was assessed by stopped-flow light scattering. Preincubation with HlyA strongly reduced Pf in control- and aquaporin 1-null red blood cells, although the relative Pf decrease was similar in both cell types. The dynamics of cell volume and hemolysis on RBCs was assessed by electrical impedance, light dispersion and hemoglobin release. Results show that HlyA induced erythrocyte swelling, which is enhanced by purinergic signaling, and is coupled to osmotic hemolysis. We propose a mathematical model of HlyA activity where the kinetics of cell volume and hemolysis in human erythrocytes depend on the flux of osmolytes across the membrane, and on the maximum volume that these cells can tolerate. Our results provide new insights for understanding signaling and cytotoxicity mediated by HlyA in erythrocytes.


Assuntos
Tamanho Celular , Eritrócitos/citologia , Eritrócitos/fisiologia , Proteínas de Escherichia coli/farmacologia , Proteínas Hemolisinas/farmacologia , Modelos Biológicos , Trifosfato de Adenosina/metabolismo , Biomarcadores , Morte Celular/efeitos dos fármacos , Morte Celular/imunologia , Relação Dose-Resposta a Droga , Proteínas de Escherichia coli/imunologia , Proteínas Hemolisinas/imunologia , Hemólise , Interações Hospedeiro-Patógeno , Humanos , Cinética , Permeabilidade
5.
Elife ; 112022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34984980

RESUMO

Dark caves lacking primary productivity can expose subterranean animals to hypoxia. We used the surface-dwelling (surface fish) and cave-dwelling (cavefish) morphs of Astyanax mexicanus as a model for understanding the mechanisms of hypoxia tolerance in the cave environment. Primitive hematopoiesis, which is restricted to the posterior lateral mesoderm in other teleosts, also occurs in the anterior lateral mesoderm in Astyanax, potentially pre-adapting surface fish for hypoxic cave colonization. Cavefish have enlarged both hematopoietic domains and develop more erythrocytes than surface fish, which are required for normal development in both morphs. Laboratory-induced hypoxia suppresses growth in surface fish but not in cavefish. Both morphs respond to hypoxia by overexpressing hypoxia-inducible factor 1 (hif1) pathway genes, and some hif1 genes are constitutively upregulated in normoxic cavefish to similar levels as in hypoxic surface fish. We conclude that cavefish cope with hypoxia by increasing erythrocyte development and constitutive hif1 gene overexpression.


Assuntos
Adaptação Fisiológica/genética , Cavernas , Characidae/genética , Meio Ambiente , Eritrócitos/fisiologia , Hipóxia/genética , Animais , Evolução Biológica , Characidae/sangue , Characidae/imunologia , Feminino , Hipóxia/sangue , Masculino
6.
Thromb Haemost ; 122(1): 80-91, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33940654

RESUMO

Hemolytic disorders characterized by complement-mediated intravascular hemolysis, such as autoimmune hemolytic anemia and paroxysmal nocturnal hemoglobinuria, are often complicated by life-threatening thromboembolic complications. Severe hemolytic episodes result in the release of red blood cell (RBC)-derived proinflammatory and oxidatively reactive mediators (e.g., extracellular hemoglobin, heme, and iron) into plasma. Here, we studied the role of these hemolytic mediators in coagulation activation by measuring factor Xa (FXa) and thrombin generation in the presence of RBC lysates. Our results show that hemolytic microvesicles (HMVs) formed during hemolysis stimulate thrombin generation through a mechanism involving FVIII and FIX, the so-called intrinsic tenase complex. Iron scavenging during hemolysis using deferoxamine decreased the ability of the HMVs to enhance thrombin generation. Furthermore, the addition of ferric chloride (FeCl3) to plasma propagated thrombin generation in a FVIII- and FIX-dependent manner suggesting that iron positively affects blood coagulation. Phosphatidylserine (PS) blockade using lactadherin and iron chelation using deferoxamine reduced intrinsic tenase activity in a purified system containing HMVs as source of phospholipids confirming that both PS and iron ions contribute to the procoagulant effect of the HMVs. Finally, the effects of FeCl3 and HMVs decreased in the presence of ascorbate and glutathione indicating that oxidative stress plays a role in hypercoagulability. Overall, our results provide evidence for the contribution of iron ions derived from hemolytic RBCs to thrombin generation. These findings add to our understanding of the pathogenesis of thrombosis in hemolytic diseases.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Micropartículas Derivadas de Células/metabolismo , Cisteína Endopeptidases/metabolismo , Ferro/metabolismo , Proteínas de Neoplasias/metabolismo , Coagulação Sanguínea/fisiologia , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/efeitos dos fármacos , Micropartículas Derivadas de Células/fisiologia , Cisteína Endopeptidases/efeitos adversos , Cisteína Endopeptidases/fisiologia , Eritrócitos/química , Eritrócitos/metabolismo , Eritrócitos/fisiologia , Hemólise/fisiologia , Humanos , Ferro/sangue , Proteínas de Neoplasias/efeitos adversos , Proteínas de Neoplasias/fisiologia , Trombose/metabolismo , Trombose/fisiopatologia
7.
Biotechnol Bioeng ; 119(2): 626-635, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34750809

RESUMO

Macrophages play an important role in the adaptive immune system. Their ability to neutralize cellular targets through Fc receptor-mediated phagocytosis has relied upon immunotherapy that has become of particular interest for the treatment of cancer and autoimmune diseases. A detailed investigation of phagocytosis is the key to the improvement of the therapeutic efficiency of existing medications and the creation of new ones. A promising method for studying the process is imaging flow cytometry (IFC) that acquires thousands of cell images per second in up to 12 optical channels and allows multiparametric fluorescent and morphological analysis of samples in the flow. However, conventional IFC data analysis approaches are based on a highly subjective manual choice of masks and other processing parameters that can lead to the loss of valuable information embedded in the original image. Here, we show the application of a Faster region-based convolutional neural network (CNN) for accurate quantitative analysis of phagocytosis using imaging flow cytometry data. Phagocytosis of erythrocytes by peritoneal macrophages was chosen as a model system. CNN performed automatic high-throughput processing of datasets and demonstrated impressive results in the identification and classification of macrophages and erythrocytes, despite the variety of shapes, sizes, intensities, and textures of cells in images. The developed procedure allows determining the number of phagocytosed cells, disregarding cases with a low probability of correct classification. We believe that CNN-based approaches will enable powerful in-depth investigation of a wide range of biological processes and will reveal the intricate nature of heterogeneous objects in images, leading to completely new capabilities in diagnostics and therapy.


Assuntos
Citometria de Fluxo/métodos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Fagocitose/fisiologia , Algoritmos , Animais , Eritrócitos/citologia , Eritrócitos/fisiologia , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/fisiologia , Camundongos
8.
Bull Exp Biol Med ; 172(1): 5-8, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34792712

RESUMO

We performed a detailed analysis of changes in the profiles of osmotic deformability using the method of gradient ektacytometry. Changes in all determinants that form the deformation properties of red blood cells in Wistar rats in the juvenile period and before puberty were determined. The dynamics of the formation of the rheological properties of the blood after birth is characterized by a wave-like change in the studied determinants. The changes are explained by adaptive reactions to extrauterine life as a result of hematopoiesis activation and the transition of the red bone marrow to a new level of functioning with the predominant replacement of physiological reticulocytosis in newborns with mature erythrocytes. The most critical period is from 10 days to 1 month after birth. Starting from the second month, the deformation parameters of erythrocytes are stabilized.


Assuntos
Deformação Eritrocítica/fisiologia , Índices de Eritrócitos/fisiologia , Hematopoese/fisiologia , Reticulócitos/citologia , Reticulócitos/fisiologia , Envelhecimento , Animais , Medula Óssea/fisiologia , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Eritrócitos/citologia , Eritrócitos/fisiologia , Feminino , Ratos , Ratos Wistar
9.
Sci Rep ; 11(1): 19446, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593849

RESUMO

Even in nonexcitable cells, the membrane potential Vm is fundamental to cell function, with roles from ion channel regulation, development, to cancer metastasis. Vm arises from transmembrane ion concentration gradients; standard models assume homogeneous extracellular and intracellular ion concentrations, and that Vm only exists across the cell membrane and has no significance beyond it. Using red blood cells, we show that this is incorrect, or at least incomplete; Vm is detectable beyond the cell surface, and modulating Vm produces quantifiable and consistent changes in extracellular potential. Evidence strongly suggests this is due to capacitive coupling between Vm and the electrical double layer, rather than molecular transporters. We show that modulating Vm changes the extracellular ion composition, mimicking the behaviour if voltage-gated ion channels in non-excitable channels. We also observed Vm-synchronised circadian rhythms in extracellular potential, with significant implications for cell-cell interactions and cardiovascular disease.


Assuntos
Eritrócitos/fisiologia , Potenciais da Membrana/fisiologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ritmo Circadiano , Fenômenos Eletrofisiológicos , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Humanos , Neuraminidase/farmacologia , Valinomicina/farmacologia
10.
BMC Neurosci ; 22(1): 57, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525969

RESUMO

RESEARCH AIM: To study the RBCs functional and metabolic parameters and the microcirculatory brain structure at traumatic brain injury (TBI) under the action of 2-ethyl-6-methyl-3-hydroxypyridine succinate. METHODS: A closed TBI was modeled by the free fall of a load on the parietooccipital regions of head. We made studies of the influence of 2-ethil-6-methil-3-hydroxipiridin succinate on aggregation and electrophoretic mobility of RBCs, catalase activity, malonic dialdehyde concentration, adenosine triphosphate and 2.3-biphosphoglycerate (2.3 - BPG) concentrations in RBCs. The state of parenchyma and microcirculatory brain mainstream in post-traumatic period of TBI have been studied on micro-preparations. RESULTS: The use of 2-ethyl-6-methyl-3-hydroxypyridine succinate under conditions of head injury leads to a decrease in MDA concentration and in aggregation of RBCs, to an increase in the 2.3-BPG concentration and RBC electrophoretic mobility compared to the control (group value). The most pronounced changes under the action of 2-ethyl-6-methyl-3-hydroxypyridine succinate were observed 3-7 days after the TBI. Significant indicators of the restoration of the microvasculature and brain tissue provoked by the use of 2-ethyl-6-methyl-3-hydroxypyridine succinate of were evident from the 7th day unlike the control group, where the restoration of structural morphological parameters was observed only on the 12th day of the post-traumatic period. Fast recovery of blood flow under the action of 2-ethyl-6-methyl-3-hydroxypyridine succinate ensured effective restoration of neurons and glia in comparison with the control group. CONCLUSIONS: Early and long-term cytoprotective correction intensifies the oxygen transport function of the blood, prevents and / or reduces disorders of microvessels, neurons and glia in the post-traumatic period, thereby provides correction of hypoxic state and drives to the restoration of brain tissues homeostasis.


Assuntos
Antioxidantes/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Citoproteção/fisiologia , Eritrócitos/fisiologia , Microcirculação/fisiologia , Picolinas/uso terapêutico , Animais , Antioxidantes/farmacologia , Lesões Encefálicas Traumáticas/fisiopatologia , Capilares/efeitos dos fármacos , Capilares/fisiologia , Citoproteção/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Feminino , Microcirculação/efeitos dos fármacos , Picolinas/farmacologia , Ratos
11.
Int J Biol Macromol ; 190: 101-112, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34478790

RESUMO

The development of selenized polysaccharides is a promising strategy for the dietary selenium supplementation. The purpose of this research is to determine the influence of selenium on the structure and bioactivity of a polysaccharide fraction (MPN) isolated from Ganoderma lucidum mycelia. After biological selenium enrichment, the selenium content in the selenized polysaccharide (SeMPN) was 18.91 ± 1.8 µg/g. SeMPN had a slightly lower molecular weight than MPN, but the carbohydrate content and monosaccharide composition remained identical. Additionally, the band at 606 cm-1 in MPN changed to 615 cm-1 in SeMPN as revealed by FT-IR spectra. No significant changes were observed in the types and ratios of glycosidic linkages, as determined by NMR spectroscopy. Extracellular and intracellular antioxidant assays demonstrated that SeMPN was more effective than MPN in scavenging free radicals, inhibiting AAPH-induced erythrocyte hemolysis, and protecting catalase (CAT) and glutathione peroxidase (GSH-Px) activity in H2O2-injured PC12 cells. Additionally, SeMPN had a higher increase effect on RAW 264.7 cells's pinocytic and phagocytic capacity, as well as their production of NO, TNF-α, and IL-6. SeMPN could be as potential functional selenium supplementation.


Assuntos
Micélio/química , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Reishi/química , Selênio/química , Animais , Antioxidantes/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Catalase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/fisiologia , Glutationa Peroxidase/metabolismo , Glicosídeos/química , Hemólise/efeitos dos fármacos , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Peso Molecular , Monossacarídeos/análise , Óxido Nítrico/biossíntese , Células PC12 , Fagocitose/efeitos dos fármacos , Pinocitose/efeitos dos fármacos , Células RAW 264.7 , Ratos , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Fator de Necrose Tumoral alfa/metabolismo
12.
Genes (Basel) ; 12(9)2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34573346

RESUMO

The production of around 2.5 million red blood cells (RBCs) per second in erythropoiesis is one of the most intense activities in the body. It continuously consumes large amounts of iron, approximately 80% of which is recycled from aged erythrocytes. Therefore, similar to the "making", the "breaking" of red blood cells is also very rapid and represents one of the key processes in mammalian physiology. Under steady-state conditions, this important task is accomplished by specialized macrophages, mostly liver Kupffer cells (KCs) and splenic red pulp macrophages (RPMs). It relies to a large extent on the engulfment of red blood cells via so-called erythrophagocytosis. Surprisingly, we still understand little about the mechanistic details of the removal and processing of red blood cells by these specialized macrophages. We have only started to uncover the signaling pathways that imprint their identity, control their functions and enable their plasticity. Recent findings also identify other myeloid cell types capable of red blood cell removal and establish reciprocal cross-talk between the intensity of erythrophagocytosis and other cellular activities. Here, we aimed to review the multiple and emerging facets of iron recycling to illustrate how this exciting field of study is currently expanding.


Assuntos
Eritrócitos/fisiologia , Hemólise/fisiologia , Ferro/metabolismo , Macrófagos/fisiologia , Fagocitose/fisiologia , Animais , Eritrócitos/patologia , Humanos , Células de Kupffer/fisiologia , Fígado/citologia , Fígado/fisiologia , Macrófagos/imunologia
13.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298979

RESUMO

Platelet extravasation during inflammation is under-appreciated. In wild-type (WT) mice, a central corneal epithelial abrasion initiates neutrophil (PMN) and platelet extravasation from peripheral limbal venules. The same injury in mice expressing low levels of the ß2-integrin, CD18 (CD18hypo mice) shows reduced platelet extravasation with PMN extravasation apparently unaffected. To better define the role of CD18 on platelet extravasation, we focused on two relevant cell types expressing CD18: PMNs and mast cells. Following corneal abrasion in WT mice, we observed not only extravasated PMNs and platelets but also extravasated erythrocytes (RBCs). Ultrastructural observations of engorged limbal venules showed platelets and RBCs passing through endothelial pores. In contrast, injured CD18hypo mice showed significantly less venule engorgement and markedly reduced platelet and RBC extravasation; mast cell degranulation was also reduced compared to WT mice. Corneal abrasion in mast cell-deficient (KitW-sh/W-sh) mice showed less venule engorgement, delayed PMN extravasation, reduced platelet and RBC extravasation and delayed wound healing compared to WT mice. Finally, antibody-induced depletion of circulating PMNs prior to corneal abrasion reduced mast cell degranulation, venule engorgement, and extravasation of PMNs, platelets, and RBCs. In summary, in the injured cornea, platelet and RBC extravasation depends on CD18, PMNs, and mast cell degranulation.


Assuntos
Plaquetas/fisiologia , Antígenos CD18/fisiologia , Degranulação Celular , Córnea/irrigação sanguínea , Eritrócitos/fisiologia , Hiperemia/fisiopatologia , Mastócitos/fisiologia , Neutrófilos/fisiologia , Migração Transendotelial e Transepitelial/fisiologia , Vasculite/imunologia , Vênulas/metabolismo , Animais , Antígenos CD18/deficiência , Movimento Celular , Quimiotaxia de Leucócito , Lesões da Córnea/metabolismo , Lesões da Córnea/patologia , Epitélio Corneano/fisiologia , Feminino , Hiperemia/sangue , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação , Microscopia Eletrônica , Modelos Animais , Fagocitose , Regeneração/fisiologia , Vasculite/sangue , Vênulas/patologia , Cicatrização/fisiologia
14.
J Immunol ; 206(8): 1878-1889, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33741688

RESUMO

Excessive release of heme from RBCs is a key pathophysiological feature of several disease states, including bacterial sepsis, malaria, and sickle cell disease. This hemolysis results in an increased level of free heme that has been implicated in the inflammatory activation of monocytes, macrophages, and the endothelium. In this study, we show that extracellular heme engages the human inflammatory caspases, caspase-1, caspase-4, and caspase-5, resulting in the release of IL-1ß. Heme-induced IL-1ß release was further increased in macrophages from patients with sickle cell disease. In human primary macrophages, heme activated caspase-1 in an inflammasome-dependent manner, but heme-induced activation of caspase-4 and caspase-5 was independent of canonical inflammasomes. Furthermore, we show that both caspase-4 and caspase-5 are essential for heme-induced IL-1ß release, whereas caspase-4 is the primary contributor to heme-induced cell death. Together, we have identified that extracellular heme is a damage-associated molecular pattern that can engage canonical and noncanonical inflammasome activation as a key mediator of inflammation in macrophages.


Assuntos
Anemia Falciforme/metabolismo , Caspases Iniciadoras/metabolismo , Caspases/metabolismo , Eritrócitos/fisiologia , Inflamassomos/metabolismo , Inflamação/metabolismo , Macrófagos/imunologia , Alarminas/metabolismo , Morte Celular , Células Cultivadas , Heme/metabolismo , Hemólise , Humanos , Interleucina-1beta/metabolismo , Regulação para Cima
15.
Nagoya J Med Sci ; 83(1): 75-86, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33727739

RESUMO

MYH9 disorders are characterized by giant platelets, thrombocytopenia, and Döhle body-like cytoplasmic inclusion bodies in granulocytes. However, whether these disorders cause any changes in erythroid cells has yet to be determined. This study analyzed the influence of Myh9 R702C, as one of the most commonly detected MYH9 disorders, on erythroid cells in a mouse model. Knock-in mice expressing Myh9 R702C mutation either systemically or specific to hematological cells (R702C and R702C vav1 mice, respectively) were used in this study. Both displayed lower hemoglobin and higher erythropoietin levels than wild-type (WT) mice, along with significant splenomegaly. Flow cytometric analysis revealed erythroblasts present at a higher rate than WT mice in the spleen. However, no obvious abnormalities were seen in erythroid differentiation from megakaryocyte/erythroid progenitor to erythrocyte. Cell culture assay by fetal liver and colony assay also showed normal progression of erythroid differentiation from erythroid burst-forming unit to red blood cell. In conclusion, R702C and R702C vav1 mice displayed erythroid abnormality with splenomegaly. However, erythroid differentiation showed no obvious abnormality. Further research is required to elucidate the underlying mechanisms.


Assuntos
Diferenciação Celular/genética , Eritroblastos/fisiologia , Cadeias Pesadas de Miosina/genética , Esplenomegalia/genética , Animais , Medula Óssea/patologia , Contagem de Eritrócitos , Eritrócitos/fisiologia , Eritropoetina/sangue , Técnicas de Introdução de Genes , Hemoglobinas/metabolismo , Masculino , Camundongos , Mutação
16.
Sci Rep ; 11(1): 2642, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514847

RESUMO

Aggregation of human red blood cells (RBC) is central to various pathological conditions from bacterial infections to cancer. When left at low shear conditions or at hemostasis, RBCs form aggregates, which resemble stacks of coins, known as 'rouleaux'. We experimentally examined the interfacial dielectric dispersion of aggregating RBCs. Hetastarch, an RBC aggregation agent, is used to mimic conditions leading to aggregation. Hetastrach concentration is incrementally increased in blood from healthy donors to measure the sensitivity of the technique. Time lapse electrical impedance measurements were conducted as red blood cells form rouleaux and sediment in a PDMS chamber. Theoretical modeling was used for obtaining complex permittivity of an effective single red blood cell aggregate at various concentrations of hetastarch. Time response of red blood cells' impedance was also studied to parametrize the time evolution of impedance data. Single aggregate permittivity at the onset of aggregation, evolution of interfacial dispersion parameters, and sedimentation kinetics allowed us to distinguish differential aggregation in blood.


Assuntos
Sedimentação Sanguínea/efeitos dos fármacos , Agregação Eritrocítica/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Derivados de Hidroxietil Amido/farmacologia , Agregação Eritrocítica/fisiologia , Eritrócitos/fisiologia , Hemorreologia , Hemostasia/efeitos dos fármacos , Humanos , Cinética , Modelos Teóricos , Fenômenos Físicos
17.
IEEE/ACM Trans Comput Biol Bioinform ; 18(4): 1405-1415, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31670675

RESUMO

Despite fluorescent cell-labelling being widely employed in biomedical studies, some of its drawbacks are inevitable, with unsuitable fluorescent probes or probes inducing a functional change being the main limitations. Consequently, the demand for and development of label-free methodologies to classify cells is strong and its impact on precision medicine is relevant. Towards this end, high-throughput techniques for cell mechanical phenotyping have been proposed to get a multidimensional biophysical characterization of single cells. With this motivation, our goal here is to investigate the extent to which an unsupervised machine learning methodology, which is applied exclusively on morpho-rheological markers obtained by real-time deformability and fluorescence cytometry (RT-FDC), can address the difficult task of providing label-free discrimination of reticulocytes from mature red blood cells. We focused on this problem, since the characterization of reticulocytes (their percentage and cellular features) in the blood is vital in multiple human disease conditions, especially bone-marrow disorders such as anemia and leukemia. Our approach reports promising label-free results in the classification of reticulocytes from mature red blood cells, and it represents a step forward in the development of high-throughput morpho-rheological-based methodologies for the computational categorization of single cells. Besides, our methodology can be an alternative but also a complementary method to integrate with existing cell-labelling techniques.


Assuntos
Biologia Computacional/métodos , Eritrócitos , Citometria por Imagem/métodos , Aprendizado de Máquina não Supervisionado , Biomarcadores , Eritrócitos/citologia , Eritrócitos/fisiologia , Humanos , Reticulócitos/citologia , Reticulócitos/fisiologia , Reologia
18.
Dev Comp Immunol ; 114: 103831, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32818608

RESUMO

The expression of genes related to the Toll-like receptors (TLRs) signaling pathway were determined. Group A, B and C fed with basal diet and group D, E and F induced TD by feeding a basal diet containing 100 mg·kg-1 thiram. rGSTA3 protein was injected at 20 µg·kg-1 in group B, E and at 50 µg·kg-1 in C, F. Results suggested that lameness and death of chondrocytes were significant on day 14. TLRs signaling pathway related genes were screened based on the transcriptome enrichment, and validated on qPCR. IL-7, TLR2, 3, 4, 5, 7, 15, MyD88, MHC-II, MDA5 and TRAF6 were significantly (p < 0.05) expressed in group E and F as compared to group D on day 14 and 23. IL-7, MHCII, TRAF6, TLR3, TLR5, TLR7, and TLR15 determined insignificant in group D compared to group A on day 23. TD occur in an early phase and alleviated in the later period. rGSTA3 protein can prevent apoptosis and repair degraded chondrocytes.


Assuntos
Proteínas Aviárias/metabolismo , Galinhas/imunologia , Condrócitos/fisiologia , Eritrócitos/fisiologia , Glutationa Transferase/metabolismo , Osteocondrodisplasias/imunologia , Doenças das Aves Domésticas/imunologia , Proteínas Recombinantes/metabolismo , Receptores Toll-Like/metabolismo , Animais , Apoptose , Proteínas Aviárias/genética , Glutationa Transferase/genética , Imunidade Inata , Transdução de Sinais/genética , Tiram/metabolismo , Transcriptoma
19.
Shock ; 55(6): 766-774, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32890311

RESUMO

INTRODUCTION: In this study, using burn patient's peripheral blood mononuclear cells (PBMCs), we have shown that the Epo independent stage of terminal enucleation to reticulocyte formation is impeded in the presence of autologous plasma (BP). Furthermore, substitution with allogeneic control plasma (CP) from the healthy individual in place of BP rectified this enucleation defect. The exclusive role of burn microenvironment in late-stage erythropoiesis defect was further demarcated through control healthy human bone marrow cells cultured in the presence of CP, BP, and cytokines. METHODS: PBMCs and human bone marrow (huBM) were differentiated ex vivo to enucleated reticulocytes in the presence of required growth factors and 5% CP or BP. Effect of systemic mediators in burn microenvironment like IL-6, IL-15, and TNFα was also explored. Neutralization experiments were carried out by adding varying concentrations (25 ng-400 ng/mL) of Anti-TNFα Ab to either CP+TNFα or BP. RESULTS: Reticulocyte proportion and maturation index were significantly improved upon substituting BP with CP during differentiation of burn PBMCs. In the huBM ex vivo culture, addition of IL-6 and IL-15 to CP inhibited the proliferation stages of erythropoiesis, whereas TNFα supplementation caused maximum diminution at erythroblast enucleation stage. Supplementation with anti-TNFα in the BP showed significant but partial restoration in the enucleation process, revealing the possibility of other crucial microenvironmental factors that could impact RBC production in burn patients. CONCLUSION: Exogenous TNFα impairs late-stage erythropoiesis by blocking enucleation, but neutralization of TNFα in BP only partially restored terminal enucleation indicating additional plasma factor(s) impair(s) late-stage RBC maturation in burn patients.


Assuntos
Queimaduras/sangue , Eritroblastos/fisiologia , Eritrócitos/fisiologia , Leucócitos Mononucleares/fisiologia , Fator de Necrose Tumoral alfa/sangue , Adulto , Diferenciação Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
Burns ; 47(1): 127-132, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33082023

RESUMO

BACKGROUND: Hemostasis during burn surgery is difficult to achieve, and high blood loss commonly occurs. Bleeding control measures are limited, and many patients require allogeneic blood transfusions. Cell salvage is a well-known method used to reduce transfusions. However, its evidence in burns is limited. Therefore, this study aimed to examine the feasibility of cell salvage during burn surgery. STUDY DESIGN AND METHODS: A prospective, observational study was conducted with 16 patients (20 measurements) scheduled for major burn surgery. Blood was recovered by washing saturated gauze pads with heparinized saline, which was then processed using the Cell Saver. Erythrocyte concentrate quality was analyzed by measuring hemoglobin, hematocrit, potassium, and free hemoglobin concentration. Microbial contamination was assessed based on cultures at every step of the process. Differences in blood samples were tested using the Student's t-test. RESULTS: The red blood cell mass recovered was 29 ± 11% of the mass lost. Patients' preoperative hemoglobin and hematocrit levels were 10.5 ± 1.8 g/dL and 0.33 ± 0.05 L/L, respectively. The erythrocyte concentrate showed hemoglobin and hematocrit levels of 13.2 ± 3.9 g/dL and 0.40 ± 0.11 L/L thus showing a concentration effect. The potassium level was lower in the erythrocyte concentrate (2.5 ± 1.5 vs. 4.1 ± 0.4 mmol/L, p < 0.05). The free hemoglobin level was low (0.16 ± 0.21 µmol/L). All cultures of the erythrocyte concentrate showed bacterial growth compared to 21% of wound cultures. CONCLUSION: Recovering erythrocytes during burn excisional surgery using cell salvage is possible. Despite strict sterile handling, erythrocyte concentrates of all patients showed bacterial contamination. The consequence of this contamination remains unclear and should be investigated in future studies.


Assuntos
Perda Sanguínea Cirúrgica/fisiopatologia , Corpo Celular/patologia , Reparo do DNA/fisiologia , Eritrócitos/microbiologia , Terapia de Salvação/métodos , Adulto , Idoso , Transfusão de Sangue , Eritrócitos/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA