Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 371
Filtrar
1.
J Clin Immunol ; 43(8): 2062-2075, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37726596

RESUMO

BACKGROUND: Purine nucleoside phosphorylase (PNP) deficiency is a rare autosomal recessive combined immunodeficiency. The phenotype is profound T cell deficiency with variable B and NK cell functions and results in recurrent and persistent infections that typically begin in the first year of life. Neurologic findings occur in approximately two-thirds of patients. The mechanism of neurologic abnormalities is unclear. Hematopoietic stem cell transplantation (HSCT) is the only curative treatment for PNP deficiency. METHODS: We report here six patients from five unrelated families with PNP deficiency treated in two centers in Turkey. We evaluated the neurological status of patients and compared to post-transplantation period if available. Then, we performed PubMed, Google Scholar, and Researchgate searches using the terms "PNP" and "hematopoietic stem cell transplantation" to find all reported cases of PNP transplantation and compared to our cohort. RESULTS: Six patients were treated in two centers in Turkey. One patient died from post-transplant complications. The other four patients underwent successful HSCT with good immune reconstitution after transplantation (follow-up 21-48 months) and good neurological outcomes. The other patient with a new mutation is still waiting for a matching HLA donor. DISCUSSION: In PNP deficiency, clinical manifestations are variable, and this disease should be considered in the presence of many different clinical findings. Despite the comorbidities that occurred before transplantation, HSCT currently appears to be the only treatment option for this disease. HSCT not only cures immunologic disorders, but probably also improves or at least stabilizes the neurologic status of patients.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Doenças da Imunodeficiência Primária , Erros Inatos do Metabolismo da Purina-Pirimidina , Humanos , Purina-Núcleosídeo Fosforilase/genética , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Doenças da Imunodeficiência Primária/diagnóstico , Doenças da Imunodeficiência Primária/terapia , Doenças da Imunodeficiência Primária/etiologia , Erros Inatos do Metabolismo da Purina-Pirimidina/terapia
2.
Am J Med Genet A ; 191(1): 234-237, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271826

RESUMO

Adenylosuccinase deficiency is a rare inborn error of metabolism. We present a newborn who died at 52 days of age with clinical features suggestive of severe epileptic encephalopathy and leukodystrophy of unknown cause. Post-mortem examination showed an unusual vacuolar appearance of the brain. A molecular autopsy performed via singleton clinical exome analysis revealed a known pathogenic and a variant of uncertain significance in ADSL that encodes adenylosuccinase. Tests on previously stored plasma samples showed elevated succinyladenosine and succinylaminoimidazole carboxamide riboside levels. Adenylosuccinase activity in stored fibroblasts was only ~5% of control confirming the diagnosis of adenylosuccinase deficiency in the child. The parents opted for a chorionic villus biopsy in a subsequent pregnancy and had a child unaffected by adenylosuccinase deficiency. This report adds vacuolating leukodystrophy as a novel feature of adenylosuccinase deficiency and shows the power of biochemical investigations directed by genomic studies to achieve accurate diagnosis. Importantly, this case demonstrates the importance of anticipatory banking of biological samples for reverse biochemical phenotyping in individuals with undiagnosed disorders who may not survive.


Assuntos
Adenilossuccinato Liase , Transtorno Autístico , Erros Inatos do Metabolismo da Purina-Pirimidina , Criança , Recém-Nascido , Lactente , Humanos , Autopsia , Adenilossuccinato Liase/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/genética
3.
Arch Iran Med ; 26(12): 712-716, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38431953

RESUMO

Two Iranian patients with purine nucleoside phosphorylase (PNP) deficiency are described in terms of their clinical and molecular evaluations. PNP deficiency is a rare form of combined immunodeficiency with a profound cellular defect. Patients with PNP deficiency suffer from variable recurrent infections, hypouricemia, and neurological manifestations. Furthermore, patient 1 developed mild cortical atrophy, and patient 2 presented developmental delay, general muscular hypotonia, and food allergy. The two unrelated patients with developed autoimmune hemolytic anemia and T cells lymphopenia and eosinophilia were referred to Immunology, Asthma and Allergy Research Institute (IAARI) in 2019. After taking blood and DNA extraction, genetic analysis of patient 1 was performed by PCR and direct sequencing and whole exome sequencing was applied for patient 2 and the result was confirmed by direct sequencing in the patient and his parents. The genetic result showed two novel variants in exon 3 (c.246_285+9del) and exon 5 (c.569G>T) PNP (NM_000270.4) in the patients, respectively. These variants are considered likely pathogenic based on the American College of Medical Genetics and Genomics (ACMG) guideline. PNP deficiency has a poor prognosis; therefore, early diagnosis would be vital to receive hematopoietic stem cell transplantation (HSCT) as a prominent and successful treatment.


Assuntos
Anemia Hemolítica Autoimune , Doenças da Imunodeficiência Primária , Purina-Núcleosídeo Fosforilase , Humanos , Anemia Hemolítica Autoimune/genética , Eosinofilia/genética , Irã (Geográfico) , Mutação , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/deficiência , Erros Inatos do Metabolismo da Purina-Pirimidina/genética
4.
Methods Mol Biol ; 2546: 421-430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36127609

RESUMO

Inborn errors of purine metabolism, either deficiencies of synthesis or catabolism pathways, lead to a wide spectrum of clinical presentations: urolithiasis (adenine phosphoribosyltransferase), primary immune deficiency (adenosine deaminase deficiency and purine nucleoside phosphorylase deficiency), severe intellectual disability, and other neurological symptoms (Lesch-Nyhan disease, adenylosuccinase deficiency, and molybdenum cofactor deficiency). A rapid quantitative purine assay was developed using UPLC-MS/MS to determine purine nucleoside and base concentrations in urine. Taking advantages of ultra-performance liquid chromatography, we achieved satisfactory analyte separation and recovery with a polar T3 column in a short run time with no requirement of time-consuming sample preparation or derivatization. This targeted assay is intended for diagnosis and management of purine diseases, newborn screening follow-up of SCID, and evaluation of autism spectrum disorders.


Assuntos
Erros Inatos do Metabolismo da Purina-Pirimidina , Espectrometria de Massas em Tandem , Adenina Fosforribosiltransferase , Cromatografia Líquida , Humanos , Recém-Nascido , Nucleosídeos de Purina , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Erros Inatos do Metabolismo da Purina-Pirimidina/urina
5.
Sci Rep ; 12(1): 9084, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641516

RESUMO

Purine nucleoside phosphorylase (PNP) is an important enzyme in the purine degradation and salvage pathway. PNP deficiency results in marked T lineage lymphopenia and severe immunodeficiency. Additionally, PNP-deficient patients and mice suffer from diverse non-infectious neurological abnormalities of unknown etiology. To further investigate the cause for these neurologic abnormalities, induced pluripotent stem cells (iPSC) from two PNP-deficient patients were differentiated into neurons. The iPSC-derived PNP-deficient neurons had significantly reduced soma and nuclei volumes. The PNP-deficient neurons demonstrated increased spontaneous and staurosporine-induced apoptosis, measured by cleaved caspase-3 expression, together with decreased mitochondrial membrane potential and increased cleaved caspase-9 expression, indicative of enhanced intrinsic apoptosis. Greater expression of tumor protein p53 was also observed in these neurons, and inhibition of p53 using pifithrin-α prevented the apoptosis. Importantly, treatment of the iPSC-derived PNP-deficient neurons with exogenous PNP enzyme alleviated the apoptosis. Inhibition of ribonucleotide reductase (RNR) in iPSC derived from PNP-proficient neurons with hydroxyurea or with nicotinamide and trichostatin A increased the intrinsic neuronal apoptosis, implicating RNR dysfunction as the potential mechanism for the damage caused by PNP deficiency. The findings presented here establish a potential mechanism for the neurological defects observed in PNP-deficient patients and reinforce the critical role that PNP has for neuronal viability.


Assuntos
Apoptose , Células-Tronco Pluripotentes Induzidas , Neurônios , Purina-Núcleosídeo Fosforilase , Proteína Supressora de Tumor p53 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/citologia , Doenças da Imunodeficiência Primária , Purina-Núcleosídeo Fosforilase/deficiência , Purina-Núcleosídeo Fosforilase/metabolismo , Erros Inatos do Metabolismo da Purina-Pirimidina , Proteína Supressora de Tumor p53/genética
6.
Eur J Med Genet ; 65(3): 104428, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35063692

RESUMO

Purine nucleoside phosphorylase (PNP) is a key enzyme in the purine salvage pathway. PNP deficiency, caused by the autosomal recessive mutations in the PNP gene, can lead to severe combined immunodeficiency (SCID). PNP deficiency patients typically have profound T-cell deficiency with variable B and NK cell functions. They present clinically with recurrent infections, failure to thrive, various neurological disorders, malignancies, and autoimmune diseases. Hematopoietic stem cell transplantation (HSCT) is the only available cure for patients with PNP deficiency. We present three patients, two of whom were successfully treated with HSCT. One patient died prior to HSCT due to EBV-associated lymphoma. Over the course of post-HSCT, there was no further aggravation of the patients' neurological symptoms. Although both of the patients still had mild developmental delay, new developmental milestones were achieved.


Assuntos
Síndromes de Imunodeficiência , Doenças da Imunodeficiência Primária , Erros Inatos do Metabolismo da Purina-Pirimidina , Humanos , Síndromes de Imunodeficiência/genética , Doenças da Imunodeficiência Primária/genética , Purina-Núcleosídeo Fosforilase/deficiência , Purina-Núcleosídeo Fosforilase/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Erros Inatos do Metabolismo da Purina-Pirimidina/genética
7.
Mol Genet Metab ; 136(3): 190-198, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34998670

RESUMO

Purines are essential molecules that are components of vital biomolecules, such as nucleic acids, coenzymes, signaling molecules, as well as energy transfer molecules. The de novo biosynthesis pathway starts from phosphoribosylpyrophosphate (PRPP) and eventually leads to the synthesis of inosine monophosphate (IMP) by means of 10 sequential steps catalyzed by six different enzymes, three of which are bi-or tri-functional in nature. IMP is then converted into guanosine monophosphate (GMP) or adenosine monophosphate (AMP), which are further phosphorylated into nucleoside di- or tri-phosphates, such as GDP, GTP, ADP and ATP. This review provides an overview of inborn errors of metabolism pertaining to purine synthesis in humans, including either phosphoribosylpyrophosphate synthetase (PRS) overactivity or deficiency, as well as adenylosuccinate lyase (ADSL), 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC), phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), and adenylosuccinate synthetase (ADSS) deficiencies. ITPase deficiency is being described as well. The clinical spectrum of these disorders is broad, including neurological impairment, such as psychomotor retardation, epilepsy, hypotonia, or microcephaly; sensory involvement, such as deafness and visual disturbances; multiple malformations, as well as muscle presentations or consequences of hyperuricemia, such as gouty arthritis or kidney stones. Clinical signs are often nonspecific and, thus, overlooked. It is to be hoped that this is likely to be gradually overcome by using sensitive biochemical investigations and next-generation sequencing technologies.


Assuntos
Adenilossuccinato Liase , Erros Inatos do Metabolismo da Purina-Pirimidina , Adenilossuccinato Liase/deficiência , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Transtorno Autístico , Humanos , Inosina Monofosfato , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/metabolismo , Purinas
8.
Artigo em Inglês | MEDLINE | ID: mdl-34643162

RESUMO

In June 2021, the Purine and Pyrimidine Society (PPS) organized the 19th biennial symposium on Purine and Pyrimidine metabolism (PP21). Due to the ongoing pandemic, the conference was organized as a webinar over 3 days with sessions dealing with enzymes, cancer, inborn errors, gout among others. The current issue of Nucleosides, Nucleotides & Nucleic Acids is a special issue covering proceedings from PP21-presentations and other PPS-related manuscripts, and in this editorial, we will give an overview of the scientific program of the meeting.


Assuntos
Gota , Erros Inatos do Metabolismo da Purina-Pirimidina , Humanos , Erros Inatos do Metabolismo da Purina-Pirimidina/metabolismo , Purinas/metabolismo , Pirimidinas/metabolismo
9.
J. pediatr. (Rio J.) ; 97(supl.1): 75-83, Mar.-Apr. 2021. tab
Artigo em Inglês | LILACS | ID: biblio-1250223

RESUMO

Abstract Objectives: The aim of the report is to describe the main immunodeficiencies with syndromic characteristics according to the new classification of Inborn Errors of Immunity. Data source: The data search was centered on the PubMed platform on review studies, meta-analyses, systematic reviews, case reports and a randomized study published in the last 10 years that allowed the characterization of the several immunological defects included in this group. Data synthesis: Immunodeficiencies with syndromic characteristics include 65 immunological defects in 9 subgroups. The diversity of clinical manifestations is observed in each described disease and may appear early or later, with variable severity. Congenital thrombocytopenia, syndromes with DNA repair defect, immuno-osseous dysplasias, thymic defects, Hyper IgE Syndrome, anhidrotic ectodermal dysplasia with immunodeficiency and purine nucleoside phosphorylase deficiency were addressed. Conclusions: Immunological defects can present with very different characteristics; however, the occurrence of infectious processes, autoimmune disorders and progression to malignancy may suggest diagnostic research. In the case of diseases with gene mutations, family history is of utmost importance.


Assuntos
Humanos , Erros Inatos do Metabolismo da Purina-Pirimidina , Doenças da Imunodeficiência Primária , Síndromes de Imunodeficiência/genética , Fenótipo , Purina-Núcleosídeo Fosforilase/genética
11.
J Pediatr (Rio J) ; 97 Suppl 1: S75-S83, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33347837

RESUMO

OBJECTIVES: The aim of the report is to describe the main immunodeficiencies with syndromic characteristics according to the new classification of Inborn Errors of Immunity. DATA SOURCE: The data search was centered on the PubMed platform on review studies, meta-analyses, systematic reviews, case reports and a randomized study published in the last 10 years that allowed the characterization of the several immunological defects included in this group. DATA SYNTHESIS: Immunodeficiencies with syndromic characteristics include 65 immunological defects in 9 subgroups. The diversity of clinical manifestations is observed in each described disease and may appear early or later, with variable severity. Congenital thrombocytopenia, syndromes with DNA repair defect, immuno-osseous dysplasias, thymic defects, Hyper IgE Syndrome, anhidrotic ectodermal dysplasia with immunodeficiency and purine nucleoside phosphorylase deficiency were addressed. CONCLUSIONS: Immunological defects can present with very different characteristics; however, the occurrence of infectious processes, autoimmune disorders and progression to malignancy may suggest diagnostic research. In the case of diseases with gene mutations, family history is of utmost importance.


Assuntos
Síndromes de Imunodeficiência , Doenças da Imunodeficiência Primária , Erros Inatos do Metabolismo da Purina-Pirimidina , Humanos , Síndromes de Imunodeficiência/genética , Fenótipo , Purina-Núcleosídeo Fosforilase/genética
12.
Kidney360 ; 2(11): 1793-1806, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-35372998

RESUMO

Background: Xanthinuria type II is a rare autosomal purine disorder. This recessive defect of purine metabolism remains an under-recognized disorder. Methods: Mice with targeted disruption of the molybdenum cofactor sulfurase (Mocos) gene were generated to enable an integrated understanding of purine disorders and evaluate pathophysiologic functions of this gene which is found in a large number of pathways and is known to be associated with autism. Results: Mocos-deficient mice die with 4 weeks of age due to renal failure of distinct obstructive nephropathy with xanthinuria, xanthine deposits, cystic tubular dilation, Tamm-Horsfall (uromodulin) protein (THP) deposits, tubular cell necrosis with neutrophils, and occasionally hydronephrosis with urolithiasis. Obstructive nephropathy is associated with moderate interstitial inflammatory and fibrotic responses, anemia, reduced detoxification systems, and important alterations of the metabolism of purines, amino acids, and phospholipids. Conversely, heterozygous mice expressing reduced MOCOS protein are healthy with no apparent pathology. Conclusions: Mocos-deficient mice develop a lethal obstructive nephropathy associated with profound metabolic changes. Studying MOCOS functions may provide important clues about the underlying pathogenesis of xanthinuria and other diseases requiring early diagnosis.


Assuntos
Nefropatias , Erros Inatos do Metabolismo da Purina-Pirimidina , Urolitíase , Animais , Nefropatias/genética , Camundongos , Erros Inatos do Metabolismo da Purina-Pirimidina/complicações , Urolitíase/genética , Xantina , Xantina Desidrogenase
13.
Front Immunol ; 11: 1257, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695102

RESUMO

Introduction: Complete or near complete absence of the purine nucleoside phosphorylase (PNP) enzyme causes a profound T cell immunodeficiency and neurological abnormalities that are often lethal in infancy and early childhood. We hypothesized that patients with partial PNP deficiency, characterized by a late and mild phenotype due to residual PNP enzyme, would provide important information about the minimal PNP activity needed for normal development. Methods: Three siblings with a homozygous PNP gene mutation (c.769C>G, p.His257Asp) resulting in partial PNP deficiency were investigated. PNP activity was semi-quantitively assayed by the conversion of [14C]inosine in hemolysates, mononuclear cells, and lymphoblastoid B cells. PNP protein expression was determined by Western Blotting in lymphoblastoid B cells. DNA repair was quantified by measuring viability of lymphoblastoid B cells following ionizing irradiation. Results: A 21-year-old female was referred for recurrent sino-pulmonary infections while her older male siblings, aged 25- and 28- years, did not suffer from significant infections. Two of the siblings had moderately reduced numbers of T, B, and NK cells, while the other had near normal lymphocyte subset numbers. T cell proliferations were normal in the two siblings tested. Hypogammaglobulinemia was noted in two siblings, including one that required immunoglobulin replacement. All siblings had typical (normal) neurological development. PNP activity in various cells from two patients were 8-11% of the normal level. All siblings had normal blood uric acid and increased PNP substrates in the urine. PNP protein expression in cells from the two patients examined was similar to that observed in cells from healthy controls. The survival of lymphoblastoid B cells from 2 partial PNP-deficient patients after irradiation was similar to that of PNP-proficient cells and markedly higher than the survival of cells from a patient with absent PNP activity or a patient with ataxia telangiectasia. Conclusions: Patients with partial PNP deficiency can present in the third decade of life with mild-moderate immune abnormalities and typical development. Near-normal immunity might be achieved with relatively low PNP activity.


Assuntos
Neurogênese , Doenças da Imunodeficiência Primária/imunologia , Doenças da Imunodeficiência Primária/metabolismo , Purina-Núcleosídeo Fosforilase/deficiência , Purina-Núcleosídeo Fosforilase/metabolismo , Erros Inatos do Metabolismo da Purina-Pirimidina/imunologia , Erros Inatos do Metabolismo da Purina-Pirimidina/metabolismo , Adulto , Alelos , Análise Mutacional de DNA , Ativação Enzimática , Feminino , Genótipo , Humanos , Imunofenotipagem , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/efeitos da radiação , Masculino , Mutação , Neurogênese/genética , Neurogênese/imunologia , Linhagem , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/terapia , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/imunologia , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/terapia , Purinas/química , Tolerância a Radiação , Adulto Jovem
14.
J Clin Immunol ; 40(6): 833-839, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514656

RESUMO

BACKGROUND: Purine nucleoside phosphorylase (PNP) deficiency accounts for about 4% of severe combined immunodeficiency diseases. PNP deficiency is a variable disease with recurrent infections and neurodevelopmental delay. Autoimmunity and malignancy can still occur in one-third of patients. METHODS: Case report. CASE PRESENTATION: An 8-year-old Saudi female who was apparently healthy presented at the age of 7 years with confirmed systemic lupus erythematosus (SLE) and lupus nephritis that were poorly controlled with conventional therapy. She also had frequent sinopulmonary and varicella infections. Preliminary immunological workup showed severe lymphopenia and depressed lymphocyte proliferation assay. The uric acid was within normal levels at 179 µmol/L (normal range, 150 to 350 µmol/L) 6 weeks after blood transfusion. Genetic study revealed a homozygous missense mutation c.265G>A in the PNP gene, resulting in a substitution of glutamic acid to lysine at amino acid 89 of the encoded protein (E89K). The PNP serum level was 798 nmol/h/mg (normal level 1354 ± 561 nmol/h/mg) 6 weeks after blood transfusion. Hematopoietic stem cell transplantation (HSCT) was planned from a matched unrelated donor; however, she developed an EBV and varicella meningoencephalitis. Atypical malignant cells suggestive of lymphoma were discovered, likely induced by EBV, and suspicious lesions were shown on brain MRI and PET scan. Unfortunately, she passed away before HSCT due to multiorgan failure. CONCLUSION: This report emphasizes the challenges in recognizing PNP deficiency in a patient suffering from SLE.


Assuntos
Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/genética , Linfoma/complicações , Linfoma/genética , Doenças da Imunodeficiência Primária/diagnóstico , Doenças da Imunodeficiência Primária/etiologia , Purina-Núcleosídeo Fosforilase/deficiência , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Erros Inatos do Metabolismo da Purina-Pirimidina/etiologia , Alelos , Autoimunidade , Biomarcadores , Criança , Suscetibilidade a Doenças , Feminino , Transplante de Células-Tronco Hematopoéticas , Homozigoto , Humanos , Imageamento por Ressonância Magnética , Mutação , Tomografia por Emissão de Pósitrons , Doenças da Imunodeficiência Primária/terapia , Purina-Núcleosídeo Fosforilase/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/terapia
15.
Sci Rep ; 10(1): 8765, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32472082

RESUMO

Metabolic myopathies are muscle disorders caused by a biochemical defect of the skeletal muscle energy system resulting in exercise intolerance. The primary aim of this research was to evaluate the oxygen cost (∆V'O2/∆Work-Rate) during incremental exercise in patients with metabolic myopathies as compared with patients with non-metabolic myalgia and healthy subjects. The study groups consisted of eight patients with muscle glycogenoses (one Tarui and seven McArdle diseases), seven patients with a complete and twenty-two patients with a partial myoadenylate deaminase (MAD) deficiency in muscle biopsy, five patients with a respiratory chain deficiency, seventy-three patients with exercise intolerance and normal muscle biopsy (non-metabolic myalgia), and twenty-eight healthy controls. The subjects underwent a cardiopulmonary exercise test (CPX Medgraphics) performed on a bicycle ergometer. Pulmonary V'O2 was measured breath-by-breath throughout the incremental test. The ∆V'O2/∆Work-Rate slope for exercise was determined by linear regression analysis. Lower oxygen consumption (peak percent of predicted, mean ± SD; p < 0.04, one-way ANOVA) was seen in patients with glycogenoses (62.8 ± 10.2%) and respiratory chain defects (70.8 ± 23.3%) compared to patients with non-metabolic myalgia (100.0 ± 15.9%) and control subjects (106.4 ± 23.5%). ∆V'O2/∆Work-Rate slope (mLO2.min-1.W-1) was increased in patients with MAD absent (12.6 ± 1.5), MAD decreased (11.3 ± 1.1), glycogenoses (14.0 ± 2.5), respiratory chain defects (13.1 ± 1.2), and patients with non-metabolic myalgia (11.3 ± 1.3) compared with control subjects (10.2 ± 0.7; p < 0.001, one-way ANOVA). In conclusion, patients with metabolic myopathies display an increased oxygen cost during exercise and therefore can perform less work for a given VO2 consumption during daily life-submaximal exercises.


Assuntos
Tolerância ao Exercício , Exercício Físico/fisiologia , Doenças Musculares/fisiopatologia , AMP Desaminase/deficiência , Adolescente , Adulto , Antropometria , Teste de Esforço , Feminino , Doença de Depósito de Glicogênio Tipo V/fisiopatologia , Doença de Depósito de Glicogênio Tipo VII/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/fisiopatologia , Mialgia/fisiopatologia , Consumo de Oxigênio , Erros Inatos do Metabolismo da Purina-Pirimidina/fisiopatologia , Adulto Jovem
16.
Mol Genet Metab ; 129(4): 272-277, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32151545

RESUMO

Methylmalonate semialdehyde dehydrogenase deficiency (MMSDD; MIM 614105) is a rare autosomal recessive defect of valine and pyrimidine catabolism. Four prior MMSDD cases are published. We present a fifth case, along with functional and metabolomic analysis. The patient, born to non-consanguineous parents of East African origin, was admitted at two weeks of age for failure to thrive. She was nondysmorphic, had a normal brain MRI, and showed mild hypotonia. Gastroesophageal reflux occurred with feeding. Urine organic acid assessment identified excess 3-hydroxyisobutyrate and 3-hydroxypropionate, while urine amino acid analysis identified elevated concentrations of ß-aminoisobutyrate and ß-alanine. Plasma amino acids showed an elevated concentration of ß-aminoisobutyrate with undetectable ß-alanine. ALDH6A1 gene sequencing identified a homozygous variant of uncertain significance, c.1261C > T (p.Pro421Ser). Management with valine restriction led to reduced concentration of abnormal analytes in blood and urine, improved growth, and reduced gastroesophageal reflux. Western blotting of patient fibroblast extracts demonstrated a large reduction of methylmalonate semialdehyde dehydrogenase (MMSD) protein. Patient cells displayed compromised mitochondrial function with increased superoxide production, reduced oxygen consumption, and reduced ATP production. Metabolomic profiles from patient fibroblasts demonstrated over-representation of fatty acids and fatty acylcarnitines, presumably due to methylmalonate semialdehyde shunting to ß-alanine and subsequently to malonyl-CoA with ensuing increase of fatty acid synthesis. Previously reported cases of MMSDD have shown variable clinical presentation. Our case continues the trend as clinical phenotypes diverge from prior cases. Recognition of mitochondrial dysfunction and novel metabolites in this patient provide the opportunity to assess future patients for secondary changes that may influence clinical outcome.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Metabolômica , Metilmalonato-Semialdeído Desidrogenase (Acilante)/deficiência , Mitocôndrias/metabolismo , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Erros Inatos do Metabolismo da Purina-Pirimidina/metabolismo , Biópsia , Linhagem Celular , Feminino , Fibroblastos/metabolismo , Humanos , Recém-Nascido , Metilmalonato-Semialdeído Desidrogenase (Acilante)/metabolismo , Fenótipo , Pele/patologia , Valina/sangue , Valina/metabolismo , Valina/urina
17.
J Clin Rheumatol ; 26(2): e49-e52, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32073534
18.
Clin Rheumatol ; 39(3): 949-956, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31773495

RESUMO

Pyrophosphate synthetase-1(PRS-1) is a crucial enzyme that catalyzes the synthesis of phosphoribosylpyrophosphate (PRPP) with substrate: adenosine triphosphate (ATP) and ribose-5-phophate(R5P) in the de novo pathways of purine and pyrimidine nucleotide synthesis. Mutation in PRPS1 can result in a series of diseases of purine metabolism, which includes PRS-1 superactivity. The common clinical phenotypes are hyperuricemia and hyperuricosuria. We identified a novel missense mutation in X-chromosomal gene PRPS1 in a young Chinese woman while her mother has heterogeneous genotype and phenotype. A 24-year-old Chinese female patient suffered hyperuricemia, gout, and recurrent hyperpyrexia for more than 6 years, and then was diagnosed with hyperandrogenism, insulin resistance (IR), and polycystic ovary syndrome (PCOS). A novel missense mutation, c.521(exon)G>T, p.(Gly174Val) was detected by next-generation sequencing (NGS) and confirmed by Sanger sequencing in the patient and her parents. Interestingly, her mother has the same heterozygous missense mutation but without uric acid overproduction which can be explained by the phenomenon of the skewed X-chromosome inactivation. The substituted amino acid Val for Gly174 is positioned in the pyrophosphate (PPi) binding loop, and this mutation impacts the binding rate of Mg2+-ATP complex to PRS-1, thus the assembling of homodimer is affected by changed Val174 leading to the instability of the allosteric site. Our report highlights the X-linked inheritance of gout in females caused by mutation in PRPS1 accompanied with severe metabolic disorders and recurrent hyperpyrexia.


Assuntos
Gota/etiologia , Hiperuricemia/congênito , Hiperuricemia/genética , Ribose-Fosfato Pirofosfoquinase/genética , Ácido Úrico/sangue , Povo Asiático , Feminino , Genes Ligados ao Cromossomo X , Humanos , Hiperuricemia/patologia , Mutação de Sentido Incorreto , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Adulto Jovem
19.
J Clin Immunol ; 40(1): 123-130, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31707514

RESUMO

PURPOSE: Purine nucleoside phosphorylase (PNP) is a known yet rare cause of combined immunodeficiency with a heterogeneous clinical presentation. We aim to add to the expanding clinical spectrum of disease, and to summarize the available data on bone marrow transplant for this condition. METHODS: Data was collected from patient files retrospectively. A review of the literature of hematopoietic stem cell transplantation (HSCT) for PNP deficiency was conducted. RESULTS: Four patients were treated in two centers in Israel. One patient died of EBV-related lymphoma with CNS involvement prior to transplant. The other three patients underwent successful HSCT with good immune reconstitution post-transplant (follow-up 8-108 months) and excellent neurological outcomes. CONCLUSION: PNP is a variable immunodeficiency and should be considered in various clinical contexts, with or without neurological manifestations. HSCT offers a good treatment option, with excellent clinical outcomes, when preformed in a timely manner.


Assuntos
Doenças da Imunodeficiência Primária/genética , Purina-Núcleosídeo Fosforilase/deficiência , Purina-Núcleosídeo Fosforilase/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Imunodeficiência Combinada Severa/genética , Transplante de Medula Óssea/métodos , Pré-Escolar , Feminino , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Lactente , Israel , Masculino , Estudos Retrospectivos , Condicionamento Pré-Transplante/métodos
20.
Xenobiotica ; 50(1): 101-109, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31682552

RESUMO

The thiopurine drugs azathioprine and mercaptopurine are effective in the treatment of disorders of immune regulation and acute lymphoblastic leukaemia. Although developed in the 1950s, thiopurines remained relevant in the anti-tumour necrosis factor biologic era, finding widespread use as a co-immunomodulator. Step changes in the management of patients treated with thiopurines have reduced the incidence of severe, sometimes life-threatening toxicity. Testing for thiopurine methyltransferase (TPMT) deficiency directs a safe initial dose for therapy. The introduction of red cell thioguanine nucleotide (TGN) monitoring provides a basis for dose adjustment and the identification of patients with high levels of red cell methylmercaptopurine (MMP) and an increase in the MMP:TGN ratio. These patients are at risk for hepatotoxicity and where TGN levels are sub-therapeutic, non-response to therapy. Switching thiopurine hypermethylators to low-dose thiopurine and allopurinol combination therapy resolves hepatoxicity and increases sub-therapeutic TGN levels to regain clinical response. NUDT15 variants are a common cause of severe myelotoxicity in Asian populations where the frequency of TPMT deficiency is low. There is increasing evidence that testing for NUDT15 and TPMT deficiency in all populations prior to the start of thiopurine therapy is clinically useful and should be the first step in personalising thiopurine therapy.


Assuntos
Hipersensibilidade a Drogas/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Purinas/uso terapêutico , Azatioprina/efeitos adversos , Azatioprina/uso terapêutico , Eritrócitos , Feminino , Genótipo , Humanos , Masculino , Mercaptopurina/efeitos adversos , Mercaptopurina/análogos & derivados , Mercaptopurina/uso terapêutico , Metiltransferases , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Purinas/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA