Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol Lett ; 295: 237-248, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30008432

RESUMO

Hyperammonemia is a common finding in patients with methylmalonic acidemia. However, its contribution to methylmalonate (MMA)-induced neurotoxicity is poorly understood. The aim of this study was evaluate whether an acute metabolic damage to brain during the neonatal period may disrupt cerebral development, leading to neurodevelopmental disorders, as memory deficit. Mice received a single intracerebroventricular dose of MMA and/or NH4Cl, administered 12 hs after birth. The maze tests showed that MMA and NH4Cl injected animals (21 and 40 days old) exhibited deficit in the working memory test, but not in the reference memory test. Furthermore, MMA and NH4Cl increased the levels of 2',7'-dichlorofluorescein-diacetate (DCF), TNF-α, IL-1ß in the cortex, hippocampus and striatum of mice. MMA and NH4Cl also increased glial proliferation in all structures. Since the treatment of MMA and ammonia increased cytokines levels, we suggested that it might be a consequence of the glial activation induced by the acid and ammonia, leading to delay in the developing brain and contributing to behavioral alterations. However, this hypothesis is speculative in nature and more studies are needed to clarify this possibility.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Amônia/metabolismo , Encéfalo/metabolismo , Hiperamonemia/metabolismo , Neuroglia/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/induzido quimicamente , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Erros Inatos do Metabolismo dos Aminoácidos/psicologia , Cloreto de Amônio , Animais , Comportamento Animal , Encéfalo/patologia , Encéfalo/fisiopatologia , Proliferação de Células , Modelos Animais de Doenças , Fluoresceínas/metabolismo , Hiperamonemia/induzido quimicamente , Hiperamonemia/patologia , Hiperamonemia/psicologia , Interleucina-1beta/metabolismo , Masculino , Malonatos , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Transtornos da Memória/psicologia , Memória de Curto Prazo , Camundongos , Neuroglia/patologia , Compostos de Amônio Quaternário , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
3.
Hippocampus ; 24(7): 840-52, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24687756

RESUMO

The hippocampus is a brain area characterized by its high plasticity, observed at all levels of organization: molecular, synaptic, and cellular, the latter referring to the capacity of neural precursors within the hippocampus to give rise to new neurons throughout life. Recent findings suggest that promoter methylation is a plastic process subjected to regulation, and this plasticity seems to be particularly important for hippocampal neurogenesis. We have detected the enzyme GNMT (a liver metabolic enzyme) in the hippocampus. GNMT regulates intracellular levels of SAMe, which is a universal methyl donor implied in almost all methylation reactions and, thus, of prime importance for DNA methylation. In addition, we show that deficiency of this enzyme in mice (Gnmt-/-) results in high SAMe levels within the hippocampus, reduced neurogenic capacity, and spatial learning and memory impairment. In vitro, SAMe inhibited neural precursor cell division in a concentration-dependent manner, but only when proliferation signals were triggered by bFGF. Indeed, SAMe inhibited the bFGF-stimulated MAP kinase signaling cascade, resulting in decreased cyclin E expression. These results suggest that alterations in the concentration of SAMe impair neurogenesis and contribute to cognitive decline.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/psicologia , Cognição/fisiologia , Glicina N-Metiltransferase/deficiência , Hipocampo/enzimologia , Proteínas do Tecido Nervoso/fisiologia , Neurogênese/fisiologia , S-Adenosilmetionina/fisiologia , Animais , Ciclina E/biossíntese , Ciclina E/genética , Fator 2 de Crescimento de Fibroblastos/antagonistas & inibidores , Fator 2 de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica , Glicina N-Metiltransferase/genética , Glicina N-Metiltransferase/fisiologia , Hipocampo/fisiopatologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/enzimologia , Transtornos da Memória/etiologia , Metionina/metabolismo , Metionina Adenosiltransferase/deficiência , Metionina Adenosiltransferase/genética , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal , Teste de Desempenho do Rota-Rod , S-Adenosilmetionina/biossíntese
4.
J Inherit Metab Dis ; 37(3): 383-90, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24173411

RESUMO

Although hyperprolinemia type-II has a discriminative metabolic phenotype and is frequently associated with neurological system involvement, the casual relation between the metabolic abnormalities and the clinical features, except for those of the secondary B6 deficiency, has been frequently debated. In order to evaluate disease frequency and the neuro-metabolic outcome we searched our laboratory database between 1992 and 2010, including 20,991 urinary organic acid profiles. From these individuals 16,720 parallel blood samples were available, and were investigated by serum amino acid analysis. We also evaluated the clinical, neurological, psychological features, laboratory data and vitamin levels and therapeutic effect in metabolically confirmed hyperprolinemia. Due to the mitochondrial localization of both ALDH4A1 and PRODH mitochondrial enzyme complex activity was evaluated and oxygen consumption was measured to assess ATP production in patient-fibroblasts. The Mitochondrial Disease Score was used to evaluate clinical mitochondrial dysfunction. The child behavior checklist was used to screen for psychopathology. We found four patients with increased urinary P5C diagnosed with hyperprolinemia type II, and only one patient had hyperprolinemia type I. All children with hyperprolinemia type II had low normal B6 concentration, and three of the patients had biochemical markers suggesting mitochondrial dysfunction. Mitochondrial dysfunction was confirmed in a muscle biopsy in one case. Intellectual disability was found in two adolescent patients. All patients showed seizures and significant behavioral problems, including anxiety and hallucinations. The clinical course was non-progressive and independent from the B6 concentration and B6 therapy. Hyperprolinemia is a rare inborn error. Individuals with hyperprolinemia should be monitored closely due to their frequent behavioral problems.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Doenças Mitocondriais/etiologia , Prolina Oxidase/deficiência , 1-Pirrolina-5-Carboxilato Desidrogenase/deficiência , Trifosfato de Adenosina/biossíntese , Adolescente , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Erros Inatos do Metabolismo dos Aminoácidos/psicologia , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Biópsia , Criança , Feminino , Humanos , Masculino , Mitocôndrias/metabolismo , Doenças Mitocondriais/diagnóstico , Músculos/patologia , Prolina Oxidase/metabolismo , Resultado do Tratamento , Vitamina B 6/administração & dosagem
5.
Immunobiology ; 218(9): 1175-83, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23726524

RESUMO

The methylmalonic acidemia is an inborn error of metabolism (IEM) characterized by methylmalonic acid (MMA) accumulation in body fluids and tissues, causing neurological dysfunction, mitochondrial failure and oxidative stress. Although neurological evidence demonstrate that infection and/or inflammation mediators facilitate metabolic crises in patients, the involvement of neuroinflammatory processes in the neuropathology of this organic acidemia is not yet established. In this experimental study, we used newborn Wistar rats to induce a model of chronic acidemia via subcutaneous injections of methylmalonate (MMA, from 5th to 28th day of life, twice a day, ranged from 0.72 to 1.67 µmol/g as a function of animal age). In the following days (29th-31st) animal behavior was assessed in the object exploration test and elevated plus maze. It was performed differential cell and the number of neutrophils counting and interleukin-1 beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α) levels in the blood, as well as levels of IL-1ß, TNF-α, inducible nitric oxide synthase (iNOS) and 3-nitrotyrosine (3-NT) in the cerebral cortex were measured. Behavioral tests showed that animals injected chronically with MMA have a reduction in the recognition index (R.I.) when the objects were arranged in a new configuration space, but do not exhibit anxiety-like behaviors. The blood of MMA-treated animals showed a decrease in the number of polymorphonuclear and neutrophils, and an increase in mononuclear and other cell types, as well as an increase of IL-1ß and TNF-α levels. Concomitantly, MMA increased levels of IL-1ß, TNF-α, and expression of iNOS and 3-NT in the cerebral cortex of rats. The overall results indicate that chronic administration of MMA increased pro-inflammatory markers in the cerebral cortex, reduced immune system defenses in blood, and coincide with the behavioral changes found in young rats. This leads to speculate that, through mechanisms not yet elucidated, the neuroinflammatory processes during critical periods of development may contribute to the progression of cognitive impairment in patients with methylmalonic acidemia.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/imunologia , Erros Inatos do Metabolismo dos Aminoácidos/psicologia , Córtex Cerebral/metabolismo , Mediadores da Inflamação/metabolismo , Transtornos da Memória/induzido quimicamente , Ácido Metilmalônico/toxicidade , Comportamento Espacial/efeitos dos fármacos , Erros Inatos do Metabolismo dos Aminoácidos/induzido quimicamente , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Córtex Cerebral/imunologia , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/metabolismo , Ácido Metilmalônico/administração & dosagem , Neuroimunomodulação , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA