Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Ren Fail ; 46(2): 2373271, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39107999

RESUMO

Primary renal hypouricemia (RHUC) is a rare autosomal recessive disorder with a mean duration of end-stage acute kidney injury (EIAKI) of 14 days. The pathogenesis of EIAKI in patients with RHUC remains unclear. Several hypotheses have been proposed, including those related to the renal vasoconvulsive effect and the elevating effect of xanthine oxidase (XO). The effect of xanthine oxidase (XO) is most often observed following strenuous anaerobic exercise, which is frequently accompanied by low back pain, nausea, and acute kidney injury (AKI). Consequently, we postulate that EIAKI could be prevented by avoiding strenuous exercise, thus preventing the onset and recurrence of EIAKI. In this paper, we present a case of recurrent EIAKI in a patient with RHUC and a mutation in the SLC2A9 gene.


Assuntos
Injúria Renal Aguda , Exercício Físico , Erros Inatos do Transporte Tubular Renal , Humanos , Injúria Renal Aguda/etiologia , Erros Inatos do Transporte Tubular Renal/genética , Erros Inatos do Transporte Tubular Renal/complicações , Adolescente , Masculino , Recidiva , Proteínas Facilitadoras de Transporte de Glucose/genética , Xantina Oxidase , Cálculos Urinários/genética , Cálculos Urinários/etiologia , Cálculos Urinários/complicações , China , Mutação , População do Leste Asiático
2.
Yakugaku Zasshi ; 144(6): 659-674, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38825475

RESUMO

Serum urate levels are determined by the balance between uric acid production and uric acid excretion capacity from the kidneys and intestinal tract. Dysuricemia, including hyperuricemia and hypouricemia, develops when the balance shifts towards an increase or a decrease in the uric acid pool. Hyperuricemia is mostly a multifactorial genetic disorder involving several disease susceptibility genes and environmental factors. Hypouricemia, on the other hand, is caused by genetic abnormalities. The main genes involved in dysuricemia are xanthine oxidoreductase, an enzyme that produces uric acid, and the urate transporters urate transporter 1/solute carrier family 22 member 12 (URAT1/SLC22A12), glucose transporter 9/solute carrier family 2 member 9 (GLUT9/SLC2A9) and ATP binding cassette subfamily G member 2 (ABCG2). Deficiency of xanthine oxidoreductase results in xanthinuria, a rare disease with marked hypouricemia. Xanthinuria can be due to a single deficiency of xanthine oxidoreductase or in combination with aldehyde oxidase deficiency as well. The latter is caused by a deficiency in molybdenum cofactor sulfurase, which is responsible for adding sulphur atoms to the molybdenum cofactor required for xanthine oxidoreductase and aldehyde oxidase to exert their action. URAT1/SLC22A12 and GLUT9/SLC2A9 are involved in urate reabsorption and their deficiency leads to renal hypouricemia, a condition that is common in Japanese due to URAT1/SLC22A12 deficiency. On the other hand, ABCG2 is involved in the secretion of urate, and many Japanese have single nucleotide polymorphisms that result in its reduced function, leading to hyperuricemia. In particular, severe dysfunction of ABCG2 leads to hyperuricemia with reduced extrarenal excretion.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas Facilitadoras de Transporte de Glucose , Hiperuricemia , Proteínas de Neoplasias , Transportadores de Ânions Orgânicos , Ácido Úrico , Xantina Desidrogenase , Humanos , Hiperuricemia/etiologia , Hiperuricemia/metabolismo , Hiperuricemia/genética , Ácido Úrico/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Xantina Desidrogenase/metabolismo , Xantina Desidrogenase/genética , Xantina Desidrogenase/deficiência , Animais , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Erros Inatos do Transporte Tubular Renal/genética , Erros Inatos do Transporte Tubular Renal/etiologia , Erros Inatos do Transporte Tubular Renal/metabolismo , Cálculos Urinários/etiologia , Cálculos Urinários/metabolismo , Cálculos Urinários/genética , Erros Inatos do Metabolismo
4.
Genes (Basel) ; 14(9)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37761963

RESUMO

Renal hypouricemia (RHUC) is a rare hereditary disorder caused by loss-of-function mutations in the SLC22A12 (RHUC type 1) or SLC2A9 (RHUC type 2) genes, encoding urate transporters URAT1 and GLUT9, respectively, that reabsorb urate in the renal proximal tubule. The characteristics of this disorder are low serum urate levels, high renal fractional excretion of urate, and occasional severe complications such as nephrolithiasis and exercise-induced acute renal failure. In this study, we report two Spanish (Caucasian) siblings and a Pakistani boy with clinical characteristics compatible with RHUC. Whole-exome sequencing (WES) analysis identified two homozygous variants: a novel pathogenic SLC22A12 variant, c.1523G>A; p.(S508N), in the two Caucasian siblings and a previously reported SLC2A9 variant, c.646G>A; p.(G216R), in the Pakistani boy. Our findings suggest that these two mutations cause RHUC through loss of urate reabsorption and extend the SLC22A12 mutation spectrum. In addition, this work further emphasizes the importance of WES analysis in clinical settings.


Assuntos
Transportadores de Ânions Orgânicos , Erros Inatos do Transporte Tubular Renal , Masculino , Humanos , Sequenciamento do Exoma , Ácido Úrico , Erros Inatos do Transporte Tubular Renal/genética , Biologia Computacional , Doenças Raras , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas Facilitadoras de Transporte de Glucose/genética
5.
Pediatr Nephrol ; 38(9): 3017-3025, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37000195

RESUMO

BACKGROUND: Although hyperuricemia is a widely studied condition with well-known effects on the kidneys, hypouricemia is usually considered a biochemical abnormality of no clinical significance despite the fact that it can be a sign or major finding of serious metabolic or genetic diseases affecting kidney health. In this study, we aimed to investigate and emphasize the clinical significance of hypouricemia. METHODS: Patients were evaluated retrospectively for persistent hypouricemia defined as serum uric acid concentrations of < 2 mg/dL on at least 3 different occasions. According to the blood and urine uric acid (UA) levels, the patients were classified as having hypouricemia due to UA underproduction vs. overexcretion. Demographic, clinical, and genetic characteristics were noted for analysis. RESULTS: Fourteen patients (n = 14; M/F 8/6) with persistent hypouricemia were identified. Hypouricemia due to underproduction was the cause of 42.8% of these cases. All of the patients with a uric acid level of 0 mg/dL (n = 4) had hypouricemia due to underproduction. The median serum uric acid level was 0.85 (0-1.6) mg/dL. Isolated hypouricemia and hypouricemia with metabolic acidosis were equally distributed. Among the patients with hypouricemia due to underproduction, the final diagnoses were xanthine dehydrogenase deficiency (n = 5) and alkaptonuria (n = 1). In the overexcretion group, the final diagnoses were nephropathic cystinosis (n = 6), distal renal tubular acidosis (n = 1), and hereditary renal hypouricemia (n = 1). The diagnostic lag was longer for patients with isolated hypouricemia compared to other patients (p = 0.001). CONCLUSIONS: Hypouricemia may reflect underlying genetic or metabolic diseases, early diagnosis of which could help preserve kidney function. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Acidose Tubular Renal , Azotemia , Erros Inatos do Metabolismo , Erros Inatos do Transporte Tubular Renal , Humanos , Criança , Adolescente , Ácido Úrico , Estudos Retrospectivos , Erros Inatos do Transporte Tubular Renal/diagnóstico , Erros Inatos do Transporte Tubular Renal/genética
7.
Rheumatology (Oxford) ; 61(3): 1276-1281, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34255816

RESUMO

OBJECTIVES: Up to 0.3% of Japanese have hypouricaemia. Most cases appear to result from a hereditary disease, renal hypouricaemia (RHUC), which causes exercise-induced acute kidney injury and urolithiasis. However, to what extent RHUC accounts for hypouricaemia is not known. We therefore investigated its frequency and evaluated its risks by genotyping a general Japanese population. METHODS: A cohort of 4993 Japanese was examined by genotyping the non-functional variants R90H (rs121907896) and W258X (rs121907892) of URAT1/SLC22A12, the two most common causative variants of RHUC in Japanese. RESULTS: Participants' fractional excretion of uric acid and risk allele frequencies markedly increased at lower serum uric acid (SUA) levels. Ten participants (0.200%) had an SUA level ≤2.0 mg/dl and nine had R90H or W258X and were likely to have RHUC. Logistic regression analysis revealed these URAT1 variants to be significantly and independently associated with the risk of hypouricaemia and mild hypouricaemia (SUA ≤3.0 mg/dl) as well as sex, age and BMI, but these URAT1 variants were the only risks in the hypouricaemia population (SUA ≤2.0 mg/dl). W258X was only a risk in males with SUA ≤3.0 mg/dl. CONCLUSION: Our study accurately reveals the prevalence of RHUC and provides genetic evidence for its definition (SUA ≤2.0 mg/dl). We also show that individuals with SUA ≤3.0 mg/dl, especially males, are prone to RHUC. Our findings will help to promote a better epidemiological understanding of RHUC as well as more accurate diagnosis, especially in males with mild hypouricaemia.


Assuntos
Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Erros Inatos do Transporte Tubular Renal/genética , Cálculos Urinários/genética , Feminino , Variação Genética , Genótipo , Humanos , Japão/epidemiologia , Masculino , Erros Inatos do Transporte Tubular Renal/epidemiologia , Cálculos Urinários/epidemiologia
8.
J Pharmacol Sci ; 148(1): 14-18, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34924118

RESUMO

Cyclin M (CNNM) and its prokaryotic ortholog CorC belong to a family of proteins that function as Mg2+-extruding transporters by stimulating Na+/Mg2+ exchange, and thereby control intracellular Mg2+ levels. The Mg2+-extruding function of CNNM is inhibited by the direct binding of an oncogenic protein, phosphatase of regenerating liver (PRL), and this inhibition is responsible for the PRL-driven malignant progression of cancers. Studies with mouse strains deficient for the CNNM gene family revealed the importance of CNNM4 and CNNM2 in maintaining organismal Mg2+ homeostasis by participating in intestinal Mg2+ absorption and renal reabsorption, respectively. Moreover, CNNM proteins are involved in various diseases, and gene mutations in CNNM2 and CNNM4 cause dominant familial hypomagnesemia and Jalili syndrome, respectively. Genome wide association studies have also revealed the importance of CNNM2 in multiple major diseases, such as hypertension and schizophrenia. Collectively, the molecular and biological characterizations of CNNM/CorC show that they are an intriguing therapeutic target; the current status of drug development targeting these proteins is also discussed.


Assuntos
Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/fisiologia , Estudo de Associação Genômica Ampla , Magnésio/metabolismo , Terapia de Alvo Molecular , Neoplasias/genética , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/terapia , Animais , Proteínas de Transporte de Cátions/metabolismo , Distrofias de Cones e Bastonetes/genética , Distrofias de Cones e Bastonetes/terapia , Homeostase/genética , Humanos , Hipercalciúria/genética , Hipercalciúria/terapia , Hipertensão/genética , Hipertensão/terapia , Rim/metabolismo , Camundongos , Mutação , Neoplasias/terapia , Nefrocalcinose/genética , Nefrocalcinose/terapia , Ligação Proteica , Proteínas Tirosina Fosfatases/metabolismo , Erros Inatos do Transporte Tubular Renal/genética , Erros Inatos do Transporte Tubular Renal/terapia , Esquizofrenia/genética , Esquizofrenia/terapia
9.
Eur J Med Genet ; 64(9): 104264, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34161864

RESUMO

BACKGROUND: Maturity onset diabetes of the young (MODY) is the most commonly reported form of monogenic diabetes in the pediatric population. Only a few cases of digenic MODY have been reported up to now. CASE REPORT: A female patient was diagnosed with diabetes at the age of 7 years and was treated with insulin. A strong family history of diabetes was present in the maternal side of the family. The patient also presented hypomagnesemia, glomerulocystic kidney disease and a bicornuate uterus. Genetic testing of the patient revealed that she was a double heterozygous carrier of HNF1A gene variant c.685C > T; (p.Arg229Ter) and a whole gene deletion of the HNF1B gene. Her mother was a carrier of the same HNF1A variant. CONCLUSION: Digenic inheritance of MODY pathogenic variants is probably more common than currently reported in literature. The use of Next Generation Sequencing panels in testing strategies for MODY could unmask such cases that would otherwise remain undiagnosed.


Assuntos
Diabetes Mellitus Tipo 2/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-beta Nuclear de Hepatócito/genética , Doenças Renais Císticas/genética , Nefropatias/genética , Erros Inatos do Transporte Tubular Renal/genética , Criança , Diabetes Mellitus Tipo 2/patologia , Feminino , Heterozigoto , Humanos , Nefropatias/patologia , Doenças Renais Císticas/patologia , Mutação , Fenótipo , Erros Inatos do Transporte Tubular Renal/patologia , Útero/anormalidades
11.
PLoS One ; 15(9): e0239965, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32997713

RESUMO

The maintenance of magnesium (Mg2+) homeostasis is essential for human life. The Cystathionine-ß-synthase (CBS)-pair domain divalent metal cation transport mediators (CNNMs) have been described to be involved in maintaining Mg2+ homeostasis. Among these CNNMs, CNNM2 is expressed in the basolateral membrane of the kidney tubules where it is involved in Mg2+ reabsorption. A total of four patients, two of them with a suspected disorder of calcium metabolism, and two patients with a clinical diagnosis of primary tubulopathy were screened for mutations by Next-Generation Sequencing (NGS). We found one novel likely pathogenic variant in the heterozygous state (c.2384C>A; p.(Ser795*)) in the CNNM2 gene in a family with a suspected disorder of calcium metabolism. In this family, hypomagnesemia was indirectly discovered. Moreover, we observed three novel variants of uncertain significance in heterozygous state in the other three patients (c.557G>C; p.(Ser186Thr), c.778A>T; p.(Ile260Phe), and c.1003G>A; p.(Asp335Asn)). Our study shows the utility of Next-Generation Sequencing in unravelling the genetic origin of rare diseases. In clinical practice, serum Mg2+ should be determined in calcium and PTH-related disorders.


Assuntos
Proteínas de Transporte de Cátions/genética , Magnésio/sangue , Erros Inatos do Transporte Tubular Renal/diagnóstico , Adolescente , Adulto , Proteínas de Transporte de Cátions/química , Códon sem Sentido , Feminino , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Polimorfismo de Nucleotídeo Único , Erros Inatos do Transporte Tubular Renal/genética , Análise de Sequência de DNA
12.
BMC Nephrol ; 21(1): 282, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32677916

RESUMO

BACKGROUND: Renal hypouricemia (RHUC) is a genetic disorder caused by mutations in the SLC22A12 gene, which encodes the major uric acid (UA) transporter, URAT1. The clinical course of related, living donor-derived RHUC in patients undergoing kidney transplantation is poorly understood. Here, we report a case of kidney transplantation from a living relative who had an SLC22A12 mutation. After the transplantation, the recipient's fractional excretion of UA (FEUA) decreased, and chimeric tubular epithelium was observed. CASE PRESENTATION: A 40-year-old man underwent kidney transplantation. His sister was the kidney donor. Three weeks after the transplantation, he had low serum-UA, 148.7 µmol/L, and elevated FEUA, 20.8% (normal: < 10%). The patient's sister had low serum-UA (101.1 µmol/L) and high FEUA (15.8%) before transplant. Suspecting RHUC, we performed next-generation sequencing on a gene panel containing RHUC-associated genes. A heterozygous missense mutation in the SLC22A12 gene was detected in the donor, but not in the recipient. The recipient's serum-UA level increased from 148.7 µmol/L to 231.9 µmol/L 3 months after transplantation and was 226.0 µmol/L 1 year after transplantation. His FEUA decreased from 20.8 to 11.7% 3 months after transplantation and was 12.4% 1 year after transplantation. Fluorescence in situ hybridization of allograft biopsies performed 3 months and 1 year after transplantation showed the presence of Y chromosomes in the tubular epithelial cells, suggesting the recipient's elevated serum-UA levels were owing to a chimeric tubular epithelium. CONCLUSIONS: We reported on a kidney transplant recipient that developed RHUC owing to his donor possessing a heterozygous mutation in the SLC22A12 (URAT1) gene. Despite this mutation, the clinical course was not problematic. Thus, the presence of donor-recipient chimerism in the tubular epithelium might positively affect the clinical course, at least in the short-term.


Assuntos
Transplante de Rim , Túbulos Renais/metabolismo , Doadores Vivos , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Erros Inatos do Transporte Tubular Renal/genética , Ácido Úrico/metabolismo , Cálculos Urinários/genética , Adulto , Quimerismo , Feminino , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mutação de Sentido Incorreto , Eliminação Renal/genética , Erros Inatos do Transporte Tubular Renal/metabolismo , Irmãos , Cálculos Urinários/metabolismo
13.
BMC Med Genet ; 21(1): 91, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375679

RESUMO

BACKGROUND: Renal hypouricemia (RHUC) is a hereditary disorder where mutations in SLC22A12 gene and SLC2A9 gene cause RHUC type 1 (RHUC1) and RHUC type 2 (RHUC2), respectively. These genes regulate renal tubular reabsorption of urates while there exist other genes counterbalancing the net excretion of urates including ABCG2 and SLC17A1. Urate metabolism is tightly interconnected with glucose metabolism, and SLC2A9 gene may be involved in insulin secretion from pancreatic ß-cells. On the other hand, a myriad of genes are responsible for the impaired insulin secretion independently of urate metabolism. CASE PRESENTATION: We describe a 67 year-old Japanese man who manifested severe hypouricemia (0.7 mg/dl (3.8-7.0 mg/dl), 41.6 µmol/l (226-416 µmol/l)) and diabetes with impaired insulin secretion. His high urinary fractional excretion of urate (65.5%) and low urinary C-peptide excretion (25.7 µg/day) were compatible with the diagnosis of RHUC and impaired insulin secretion, respectively. Considering the fact that metabolic pathways regulating urates and glucose are closely interconnected, we attempted to delineate the genetic basis of the hypouricemia and the insulin secretion defect observed in this patient using whole exome sequencing. Intriguingly, we found homozygous Trp258* mutations in SLC22A12 gene causing RHUC1 while concurrent mutations reported to be associated with hyperuricemia were also discovered including ABCG2 (Gln141Lys) and SLC17A1 (Thr269Ile). SLC2A9, that also facilitates glucose transport, has been implicated to enhance insulin secretion, however, the non-synonymous mutations found in SLC2A9 gene of this patient were not dysfunctional variants. Therefore, we embarked on a search for causal mutations for his impaired insulin secretion, resulting in identification of multiple mutations in HNF1A gene (MODY3) as well as other genes that play roles in pancreatic ß-cells. Among them, the Leu80fs in the homeobox gene NKX6.1 was an unreported mutation. CONCLUSION: We found a case of RHUC1 carrying mutations in SLC22A12 gene accompanied with compensatory mutations associated with hyperuricemia, representing the first report showing coexistence of the mutations with opposed potential to regulate urate concentrations. On the other hand, independent gene mutations may be responsible for his impaired insulin secretion, which contains novel mutations in key genes in the pancreatic ß-cell functions that deserve further scrutiny.


Assuntos
Complicações do Diabetes/genética , Proteínas Facilitadoras de Transporte de Glucose/genética , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Erros Inatos do Transporte Tubular Renal/genética , Cálculos Urinários/genética , Idoso , Complicações do Diabetes/complicações , Complicações do Diabetes/patologia , Glucose/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Heterozigoto , Proteínas de Homeodomínio/genética , Homozigoto , Humanos , Insulina/biossíntese , Insulina/genética , Secreção de Insulina/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Mutação/genética , Erros Inatos do Transporte Tubular Renal/complicações , Erros Inatos do Transporte Tubular Renal/patologia , Ácido Úrico/metabolismo , Cálculos Urinários/complicações , Cálculos Urinários/patologia , Sequenciamento do Exoma
14.
Clin Genet ; 97(6): 857-868, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32166738

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is a heterogeneous inherited disease characterized by renal and extrarenal manifestations with progressive fluid-filled cyst development leading to end-stage renal disease. The rate of disease progression in ADPKD exhibits high inter- and intrafamilial variability suggesting involvement of modifier genes and/or environmental factors. Renal hypouricemia (RHUC) is an inherited disorder characterized by impaired tubular uric acid transport with severe complications, such as acute kidney injury and chronic kidney disease (CKD). However, the two disorders have distinct and well-delineated genetic, biochemical, and clinical findings. Only a few cases of coexistence of ADPKD and RHUC (type 1) in a single individual have been reported. We report a family with two members: an ADPKD 24-year-old female which presented bilateral renal cysts in utero and hypouricemia since age 5, and her mother with isolated hypouricemia. Next-generation sequencing identified two mutations in two genes PKD1 and SLC2A9 in this patient and one isolated SLC2A9 mutation in her mother, showing RHUC type 2, associated to CKD. The coexistence of these two disorders provides evidence of SLC2A9 variant could act as a modifier change, with synergistic actions, that could promote cystogenesis and rapid ADPKD progression. This is the first case of coexistence of PKD1 and SLC2A9 mutations treated with tolvaptan.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/genética , Doenças Renais Policísticas/genética , Erros Inatos do Transporte Tubular Renal/genética , Canais de Cátion TRPP/genética , Injúria Renal Aguda/complicações , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Adulto , Pré-Escolar , Feminino , Humanos , Mutação/genética , Doenças Renais Policísticas/complicações , Doenças Renais Policísticas/diagnóstico , Doenças Renais Policísticas/patologia , Rim Policístico Autossômico Dominante/complicações , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Erros Inatos do Transporte Tubular Renal/complicações , Erros Inatos do Transporte Tubular Renal/diagnóstico , Erros Inatos do Transporte Tubular Renal/patologia , Adulto Jovem
15.
BMC Nephrol ; 20(1): 433, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31771519

RESUMO

BACKGROUND: Renal hypouricemia (RHUC) is an inherited heterogenous disorder caused by faulty urate reabsorption transporters in the renal proximal tubular cells. Anaerobic exercise may induce acute kidney injury in individuals with RHUC that is not caused by exertional rhabdomyolysis; it is called acute renal failure with severe loin pain and patchy renal ischemia after anaerobic exercise (ALPE). RHUC is the most important risk factor for ALPE. However, the mechanism of onset of ALPE in patients with RHUC has not been elucidated. The currently known genes responsible for RHUC are SLC22A12 and SLC2A9. CASE PRESENTATION: A 37-year-old man presented with loin pain after exercising. Despite having a healthy constitution from birth, biochemical examination revealed hypouricemia, with a uric acid (UA) level of < 1 mg/dL consistently at every health check. We detected acute kidney injury, with a creatinine (Cr) level of 4.1 mg/dL, and elevated bilirubin; hence, the patient was hospitalized. Computed tomography revealed no renal calculi, but bilateral renal swelling was noted. Magnetic resonance imaging detected cuneiform lesions, indicating bilateral renal ischemia. Fractional excretion values of sodium and UA were 0.61 and 50.5%, respectively. Urinary microscopy showed lack of tubular injury. The patient's older sister had hypouricemia. The patient was diagnosed with ALPE. Treatment with bed rest, fluid replacement, and nutrition therapy improved renal function and bilirubin levels, and the patient was discharged on day 5. Approximately 1 month after onset of ALPE, his Cr, UA, and TB levels were 0.98, 0.8, and 0.9 mg/dL, respectively. We suspected familial RHUC due to the hypouricemia and family history and performed genetic testing but did not find the typical genes responsible for RHUC. A full genetic analysis was opposed by the family. CONCLUSIONS: To the best of our knowledge, this is the first report of ALPE with hyperbilirubinemia. Bilirubin levels may become elevated as a result of heme oxygenase-1 activation, occurring in exercise-induced acute kidney injury in patients with RHUC; this phenomenon suggests renal ischemia-reperfusion injury. A new causative gene coding for a urate transporter may exist, and its identification would be useful to clarify the urate transport mechanism.


Assuntos
Injúria Renal Aguda , Exercício Físico/fisiologia , Hiperbilirrubinemia , Rim , Erros Inatos do Transporte Tubular Renal , Ácido Úrico/sangue , Cálculos Urinários , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/fisiopatologia , Injúria Renal Aguda/terapia , Adulto , Dietoterapia/métodos , Hidratação/métodos , Proteínas Facilitadoras de Transporte de Glucose/genética , Humanos , Hiperbilirrubinemia/diagnóstico , Hiperbilirrubinemia/etiologia , Rim/irrigação sanguínea , Rim/diagnóstico por imagem , Rim/metabolismo , Testes de Função Renal/métodos , Masculino , Anamnese , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Erros Inatos do Transporte Tubular Renal/diagnóstico , Erros Inatos do Transporte Tubular Renal/etiologia , Erros Inatos do Transporte Tubular Renal/genética , Erros Inatos do Transporte Tubular Renal/fisiopatologia , Erros Inatos do Transporte Tubular Renal/terapia , Cálculos Urinários/diagnóstico , Cálculos Urinários/etiologia , Cálculos Urinários/fisiopatologia , Cálculos Urinários/terapia
16.
Mol Med Rep ; 20(6): 5118-5124, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31638209

RESUMO

Idiopathic renal hypouricemia is a rare hereditary condition. Type 2 renal hyperuricemia (RHUC2) is caused by a mutation in the SLC2A9 gene, which encodes a high­capacity glucose and urate transporter, glucose transporter (GLUT)9. RHUC2 predisposes to exercise­induced acute renal failure (EIARF) and nephrolithiasis, which is caused by a defect in renal tubular urate transport and is characterized by increased clearance of renal uric acid. In the present study a case of a 35­year­old Chinese man with EIARF is reported. The patient had isolated renal hypouricemia, with a serum uric acid level of 21 µmol/l and a fractional excretion of uric acid of 200%. The mutational analysis revealed a homozygous mutation (c.857G>A in exon 8) in the SLC2A9 gene. The patient's family members carried the same mutation, but were heterozygous and clinically asymptomatic. In conclusion, to the best of our knowledge, this is the first report of a RHUC2 patient with a GLUT9 mutation, p.W286X, which may be a pathogenic mutation of RHUC2. Further investigation into the functional role of GLUT9 in this novel SLC2A9 mutation is required.


Assuntos
Erros Inatos do Transporte Tubular Renal/diagnóstico , Erros Inatos do Transporte Tubular Renal/genética , Cálculos Urinários/diagnóstico , Cálculos Urinários/genética , Adulto , Alelos , Biomarcadores , Biópsia , Análise Mutacional de DNA , Proteínas Facilitadoras de Transporte de Glucose/genética , Homozigoto , Humanos , Masculino , Modelos Biológicos , Mutação , Linhagem , Doenças Raras , Erros Inatos do Transporte Tubular Renal/metabolismo , Erros Inatos do Transporte Tubular Renal/terapia , Análise de Sequência de DNA , Ultrassonografia , Cálculos Urinários/metabolismo , Cálculos Urinários/terapia
17.
Sci Rep ; 9(1): 14360, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591475

RESUMO

Differentiating between inherited renal hypouricemia and transient hypouricemic status is challenging. Here, we aimed to describe the genetic background of hypouricemia patients using whole-exome sequencing (WES) and assess the feasibility for genetic diagnosis using two founder variants in primary screening. We selected all cases (N = 31) with extreme hypouricemia (<1.3 mg/dl) from a Korean urban cohort of 179,381 subjects without underlying conditions. WES and corresponding downstream analyses were performed for the discovery of rare causal variants for hypouricemia. Two known recessive variants within SLC22A12 (p.Trp258*, pArg90His) were identified in 24 out of 31 subjects (77.4%). In an independent cohort, we identified 50 individuals with hypouricemia and genotyped the p.Trp258* and p.Arg90His variants; 47 of the 50 (94%) hypouricemia cases were explained by only two mutations. Four novel coding variants in SLC22A12, p.Asn136Lys, p.Thr225Lys, p.Arg284Gln, and p.Glu429Lys, were additionally identified. In silico studies predict these as pathogenic variants. This is the first study to show the value of genetic diagnostic screening for hypouricemia in the clinical setting. Screening of just two ethnic-specific variants (p.Trp258* and p.Arg90His) identified 87.7% (71/81) of Korean patients with monogenic hypouricemia. Early genetic identification of constitutive hypouricemia may prevent acute kidney injury by avoidance of dehydration and excessive exercise.


Assuntos
Testes Genéticos , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Erros Inatos do Transporte Tubular Renal/genética , Cálculos Urinários/genética , Idoso , Feminino , Genótipo , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Erros Inatos do Transporte Tubular Renal/diagnóstico , Erros Inatos do Transporte Tubular Renal/patologia , Cálculos Urinários/diagnóstico , Cálculos Urinários/patologia , Desequilíbrio Hidroeletrolítico/genética , Sequenciamento do Exoma
18.
BMC Nephrol ; 20(1): 353, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31500578

RESUMO

BACKGROUND: 17q12 deletion syndrome encompasses a broad constellation of clinical phenotypes, including renal magnesium wasting, maturity-onset diabetes of the young (MODY), renal cysts, genitourinary malformations, and neuropsychiatric illness. Manifestations outside of the renal, endocrine, and nervous systems have not been well described. CASE PRESENTATION: We report a 62-year-old male referred to the Undiagnosed Diseases Program (UDP) at the National Institutes of Health (NIH) who presented with persistent hypermagnesiuric hypomagnesemia and was found to have a 17q12 deletion. The patient exhibited several known manifestations of the syndrome, including severe hypomagnesemia, renal cysts, diabetes and cognitive deficits. Coronary CT revealed extensive coronary calcifications, with a coronary artery calcification score of 12,427. Vascular calcifications have not been previously reported in this condition. We describe several physiologic mechanisms and a review of literature to support the expansion of the 17q12 deletion syndrome to include vascular calcification. CONCLUSION: Extensive coronary and vascular calcifications may be an extension of the 17q12 deletion phenotype, particularly if hypomagnesemia and hyperparathyroidism are prevalent. In patients with 17q12 deletions involving HNF1B, hyperparathyroidism and hypomagnesemia may contribute to significant cardiovascular risk.


Assuntos
Doença das Coronárias/genética , Fator 1-beta Nuclear de Hepatócito/genética , Erros Inatos do Transporte Tubular Renal/genética , Síndrome de Smith-Magenis/genética , Deleção Cromossômica , Cromossomos Humanos Par 17/genética , Doença das Coronárias/complicações , Doença das Coronárias/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Erros Inatos do Transporte Tubular Renal/complicações , Erros Inatos do Transporte Tubular Renal/diagnóstico por imagem , Síndrome de Smith-Magenis/complicações , Síndrome de Smith-Magenis/diagnóstico por imagem
19.
Mol Genet Genomic Med ; 7(7): e00722, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31131560

RESUMO

BACKGROUND: To identify potential causative mutations in SLC2A9 and SLC22A12 that lead to hypouricemia or hyperuricemia (HUA). METHODS: Targeted resequencing of whole exon regions of SLC2A9 and SLC22A12 was performed in three cohorts of 31 hypouricemia, 288 HUA and 280 normal controls. RESULTS: A total of 84 high-quality variants were identified in these three cohorts. Eighteen variants were nonsynonymous or in splicing region, and then included in the following association analysis. For common variants, no significant effects on hypouricemia or HUA were identified. For rare variants, six single nucleotide variations (SNVs) p.T21I and p.G13D in SLC2A9, p.W50fs, p.Q382L, p.V547L and p.E458K in SLC22A12, occurred in totally six hypouricemia subjects and were absent in HUA and normal controls. Allelic and genotypic frequency distributions of the six SNVs differed significantly between the hypouricemia and normal controls even after multiple testing correction, and p.G13D in SLC2A9 and p.V547L in SLC22A12 were newly reported. All these mutations had no significant effects on HUA susceptibility, while the gene-based analyses substantiated the significant results on hypouricemia. CONCLUSION: Our study first presents a comprehensive mutation spectrum of hypouricemia in a large Chinese cohort.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/genética , Hiperuricemia/genética , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Erros Inatos do Transporte Tubular Renal/genética , Cálculos Urinários/genética , Adulto , Idoso , Alelos , Povo Asiático/genética , Estudos de Casos e Controles , China , Suscetibilidade a Doenças , Feminino , Frequência do Gene , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hiperuricemia/patologia , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Erros Inatos do Transporte Tubular Renal/patologia , Cálculos Urinários/patologia
20.
Exp Cell Res ; 376(2): 210-220, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30690028

RESUMO

Cetuximab, an inhibitor of the epidermal growth factor receptor that is used widely to treat human cancers including oral squamous cell carcinoma (OSCC), has characteristic side effects of skin rash and hypomagnesemia. However, the mechanisms of and therapeutic agents for skin rashes and hypomagnesemia are still poorly understood. Our gene expression profiling analyses showed that cetuximab activates the p38 MAPK pathways in human skin cells (human keratinocyte cell line [HaCaT]) and inhibits c-Fos-related signals in human embryonic kidney cells (HEK293). We found that while the p38 inhibitor SB203580 inhibited the expression of p38 MAPK targets in HaCaT cells, flavagline reactivated c-Fos-related factors in HEK293 cells. It is noteworthy that, in addition to not interfering with the effect of cetuximab by both compounds, flavagline has additive effect for OSCC growth inhibition in vivo. Collectively, our results indicate that combination of cetuximab and these potential therapeutic agents for cetuximab-related toxicities could be a promising therapeutic strategy for patients with OSCC.


Assuntos
Antineoplásicos Imunológicos/efeitos adversos , Carcinoma de Células Escamosas/tratamento farmacológico , Cetuximab/efeitos adversos , Inibidores do Crescimento/uso terapêutico , Imidazóis/uso terapêutico , Neoplasias Bucais/tratamento farmacológico , Piridinas/uso terapêutico , Animais , Carcinoma de Células Escamosas/complicações , Linhagem Celular Tumoral , Quimioterapia Combinada , Receptores ErbB/antagonistas & inibidores , Exantema/induzido quimicamente , Exantema/genética , Exantema/prevenção & controle , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Inibidores do Crescimento/efeitos adversos , Inibidores do Crescimento/antagonistas & inibidores , Células HEK293 , Humanos , Hipercalciúria/induzido quimicamente , Hipercalciúria/genética , Hipercalciúria/prevenção & controle , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Bucais/complicações , Neoplasias Bucais/genética , Nefrocalcinose/induzido quimicamente , Nefrocalcinose/genética , Nefrocalcinose/prevenção & controle , Erros Inatos do Transporte Tubular Renal/induzido quimicamente , Erros Inatos do Transporte Tubular Renal/genética , Erros Inatos do Transporte Tubular Renal/prevenção & controle , Transcriptoma , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA