Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(2): 2179-2188, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33405501

RESUMO

The need to increase agricultural yield has led to an extensive use of antibiotics against plant pathogens, which has resulted in the emergence of resistant strains. Therefore, there is an increasing demand for new methods, preferably with lower chances of developing resistant strains and a lower risk to the environment or public health. Many Gram-negative bacterial pathogens use quorum sensing, a population-density-dependent regulatory mechanism, to monitor the secretion of N-acyl-homoserine lactones (AHLs) and pathogenicity. Therefore, quorum sensing represents an attractive antivirulence target. AHL lactonases hydrolyze AHLs and have potential antibacterial properties; however, their use is limited by thermal instability and durability, or low activity. Here, we demonstrate that an AHL lactonase from the phosphotriesterase-like lactonase family exhibits high activity with the AHL secreted from the plant pathogen Erwinia amylovora and attenuates infection in planta. Using directed enzyme evolution, we were able to increase the enzyme's temperature resistance (T50, the temperature at which 50% of the activity is retained) by 8 °C. Then, by performing enzyme encapsulation in nanospherical capsules composed of tertbutoxycarbonyl-Phe-Phe-OH peptide, the shelf life was extended for more than 5 weeks. Furthermore, the encapsulated and free mutant were able to significantly inhibit up to 70% blossom's infection in the field, achieving the same efficacy as seen with antibiotics commonly used today to treat the plant pathogen. We conclude that specific AHL lactonase can inhibit E. amylovora infection in the field, as it degrades the AHL secreted by this plant pathogen. The combination of directed enzyme evolution and peptide nanostructure encapsulation significantly improved the thermal resistance and shelf life of the enzyme, respectively, increasing its potential in future development as antibacterial treatment.


Assuntos
Hidrolases de Éster Carboxílico/farmacologia , Erwinia amylovora/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Nanosferas/química , Doenças das Plantas/prevenção & controle , Percepção de Quorum/efeitos dos fármacos , Acil-Butirolactonas/metabolismo , Hidrolases de Éster Carboxílico/administração & dosagem , Hidrolases de Éster Carboxílico/genética , Evolução Molecular Direcionada/métodos , Enzimas Imobilizadas/administração & dosagem , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/farmacologia , Erwinia amylovora/fisiologia , Modelos Moleculares , Peptídeos/química , Doenças das Plantas/microbiologia , Pyrus/microbiologia
2.
Planta ; 251(1): 20, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31781986

RESUMO

MAIN CONCLUSION: Certain apple cultivars accumulate to high levels in their nectar and stigma exudate an acidic chitinase III protein that can protect against pathogens including fire blight disease causing Erwinia amylovora. To prevent microbial infections, flower nectars and stigma exudates contain various antimicrobial compounds. Erwinia amylovora, the causing bacterium of the devastating fire blight apple disease, is the model pathogen that multiplies in flower secretions and infects through the nectaries. Although Erwinia-resistant apples are not available, certain cultivars are tolerant. It was reported that in flower infection assay, the 'Freedom' cultivar was Erwinia tolerant, while the 'Jonagold' cultivar was susceptible. We hypothesized that differences in the nectar protein compositions lead to different susceptibility. Indeed, we found that an acidic chitinase III protein (Machi3-1) selectively accumulates to very high levels in the nectar and the stigma exudate of the 'Freedom' cultivar. We show that three different Machi3-1 alleles exist in apple cultivars and that only the 5B-Machi3-1 allele expresses the Machi3-1 protein in the nectar and the stigma exudate. We demonstrate that the 5B-Machi3-1 allele was introgressed from the Malus floribunda 821 clone into different apple cultivars including the 'Freedom'. Our data suggest that MYB-binding site containing repeats of the 5B-Machi3-1 promoter is responsible for the strong nectar- and stigma exudate-specific expression. As we found that in vitro, the Machi3-1 protein impairs growth and biofilm formation of Erwinia at physiological concentration, we propose that the Machi3-1 protein could partially protect 5B-Machi3-1 allele containing cultivars against Erwinia by inhibiting the multiplication and biofilm formation of the pathogen in the stigma exudate and in the nectar.


Assuntos
Quitinases/metabolismo , Erwinia amylovora/fisiologia , Flores/metabolismo , Malus/enzimologia , Malus/microbiologia , Doenças das Plantas/microbiologia , Exsudatos de Plantas/metabolismo , Néctar de Plantas/metabolismo , Alelos , Sequência de Aminoácidos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Quitinases/química , Resistência à Doença , Erwinia amylovora/efeitos dos fármacos , Erwinia amylovora/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Malus/efeitos dos fármacos , Malus/genética , Especificidade de Órgãos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nicotiana/genética
3.
Mol Plant Pathol ; 19(5): 1090-1103, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28756640

RESUMO

Erwinia amylovora is the causal agent of the fire blight disease in some plants of the Rosaceae family. The non-host plant Arabidopsis serves as a powerful system for the dissection of mechanisms of resistance to E. amylovora. Although not yet known to mount gene-for-gene resistance to E. amylovora, we found that Arabidopsis activated strong defence signalling mediated by salicylic acid (SA), with kinetics and amplitude similar to that induced by the recognition of the bacterial effector avrRpm1 by the resistance protein RPM1. Genetic analysis further revealed that SA signalling, but not signalling mediated by ethylene (ET) and jasmonic acid (JA), is required for E. amylovora resistance. Erwinia amylovora induces massive callose deposition on infected leaves, which is independent of SA, ET and JA signalling and is necessary for E. amylovora resistance in Arabidopsis. We also observed tumour-like growths on E. amylovora-infected Arabidopsis leaves, which contain enlarged mesophyll cells with increased DNA content and are probably a result of endoreplication. The formation of such growths is largely independent of SA signalling and some E. amylovora effectors. Together, our data reveal signalling requirements for E. amylovora-induced disease resistance, callose deposition and cell fate change in the non-host plant Arabidopsis. Knowledge from this study could facilitate a better understanding of the mechanisms of host defence against E. amylovora and eventually improve host resistance to the pathogen.


Assuntos
Arabidopsis/citologia , Arabidopsis/microbiologia , Resistência à Doença , Erwinia amylovora/fisiologia , Glucanos/metabolismo , Doenças das Plantas/microbiologia , Transdução de Sinais , Arabidopsis/imunologia , Proliferação de Células , Ciclopentanos/metabolismo , Etilenos/metabolismo , Íons , Mutação/genética , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo
4.
New Phytol ; 197(4): 1262-1275, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23301854

RESUMO

Fire blight is a destructive bacterial disease caused by Erwinia amylovora affecting plants in the family Rosaceae, including apple. Host resistance to fire blight is present mainly in accessions of Malus spp. and is thought to be quantitative in this pathosystem. In this study we analyzed the importance of the E. amylovora effector avrRpt2(EA) , a homolog of Pseudomonas syringae avrRpt2, for resistance of Malus × robusta 5 (Mr5). The deletion mutant E. amylovora Ea1189ΔavrRpt2(EA) was able to overcome the fire blight resistance of Mr5. One single nucleotide polymorphism (SNP), resulting in an exchange of cysteine to serine in the encoded protein, was detected in avrRpt2(EA) of several Erwinia strains differing in virulence to Mr5. E. amylovora strains encoding serine (S-allele) were able to overcome resistance of Mr5, whereas strains encoding cysteine (C-allele) were not. Allele specificity was also observed in a coexpression assay with Arabidopsis thaliana RIN4 in Nicotiana benthamiana. A homolog of RIN4 has been detected and isolated in Mr5. These results suggest a system similar to the interaction of RPS2 from A. thaliana and AvrRpt2 from P. syringae with RIN4 as guard. Our data are suggestive of a gene-for-gene relationship for the host-pathogen system Mr5 and E. amylovora.


Assuntos
Proteínas de Bactérias/fisiologia , Erwinia amylovora/fisiologia , Genes Bacterianos/fisiologia , Genes de Plantas/fisiologia , Interações Hospedeiro-Patógeno/genética , Malus/microbiologia , Proteínas de Plantas/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Resistência à Doença/genética , Peptídeos e Proteínas de Sinalização Intracelular , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Nicotiana/genética
5.
New Phytol ; 190(3): 653-66, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21348873

RESUMO

• Little is known about how effectors from filamentous eukaryotic plant pathogens manipulate host defences. Recently, Phytophthora infestans RXLR effector AVR3a has been shown to target and stabilize host E3 ligase CMPG1, which is required for programmed cell death (PCD) triggered by INF1. We investigated the involvement of CMPG1 in PCD elicited by perception of diverse pathogen proteins, and assessed whether AVR3a could suppress each. • The role of CMPG1 in PCD events was investigated using virus-induced gene silencing, and the ability of AVR3a to suppress each was determined by transient expression of natural forms (AVR3a(KI) and AVR3a(EM)) and a mutated form, AVR3a(KI/Y147del) , which is unable to interact with or stabilize CMPG1. • PCD triggered at the host plasma membrane by Cf-9/Avr9, Cf-4/Avr4, Pto/AvrPto or the oomycete pathogen-associated molecular pattern (PAMP), cellulose-binding elicitor lectin (CBEL), required CMPG1 and was suppressed by AVR3a, but not by the AVR3a(KI/Y147del) mutant. Conversely, PCD triggered by nucleotide-binding site-leucine-rich repeat (NBS-LRR) proteins R3a, R2 and Rx was independent of CMPG1 and unaffected by AVR3a. • CMPG1-dependent PCD follows perception of diverse pathogen elicitors externally or in association with the inner surface of the host plasma membrane. We argue that AVR3a targets CMPG1 to block initial signal transduction/regulatory processes following pathogen perception at the plasma membrane.


Assuntos
Membrana Celular/microbiologia , Interações Hospedeiro-Patógeno , Nicotiana/citologia , Nicotiana/microbiologia , Phytophthora infestans/fisiologia , Proteínas de Plantas/metabolismo , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/metabolismo , Erwinia amylovora/efeitos dos fármacos , Erwinia amylovora/fisiologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Modelos Biológicos , Necrose , Oligopeptídeos/farmacologia , Phytophthora infestans/efeitos dos fármacos , Receptores de Reconhecimento de Padrão/metabolismo , Nicotiana/efeitos dos fármacos
6.
Phytopathology ; 100(6): 539-50, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20465409

RESUMO

The gram-negative bacterium Erwinia amylovora is the causal agent of fire blight, the most destructive bacterial disease of rosaceous plants, including apple and pear. Here, we compared the virulence levels of six E. amylovora strains (Ea273, CFBP1367, Ea581a, E2002a, E4001a, and HKN06P1) on apple trees and seedlings. The strains produced a range of disease severity, with HKN06P1 producing the greatest disease severity in every assay. We then compared virulence characteristic expression among the six strains, including growth rates in immature apple fruit, amylovoran production, levansucrase activity, biofilm formation, carbohydrate utilization, hypersensitive cell death elicitation in tobacco leaves, and protein secretion profiles. Multiple regression analysis indicated that three of the virulence characteristics (amylovoran production, biofilm formation, and growth in immature apple fruit) accounted for >70% of the variation in disease severity on apple seedlings. Furthermore, in greenhouse-grown 'Gala' trees, >75% of the variation in disease severity was accounted for by five of the virulence characteristics: amylovoran production, biofilm formation, growth in immature apple fruit, hypersensitive cell death elicitation, and sorbitol utilization. This study demonstrates that virulence factor expression levels account for differences in disease severity caused by wild isolates of E. amylovora on apple trees.


Assuntos
Erwinia amylovora/patogenicidade , Interações Hospedeiro-Patógeno , Malus/microbiologia , Proteínas de Bactérias/metabolismo , Metabolismo dos Carboidratos , Morte Celular , Erwinia amylovora/fisiologia , Frutas/microbiologia , Hexosiltransferases/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Plasmídeos , Polissacarídeos Bacterianos/metabolismo , Análise de Regressão , Plântula/microbiologia , Nicotiana/microbiologia , Virulência
7.
Res Microbiol ; 161(2): 153-7, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20034562

RESUMO

The PmrAB system is a two-component regulatory system that responds to extracellular iron and acidic pH. The role of the PmrAB system in Erwinia amylovora remains unknown so far. Our results showed that the pmrAB mutants were more resistant to strong acidic conditions than the wild type (WT) strain. The survival rate of the pmrAB mutants was much higher than that of WT when treated with polymyxin B. However, pmrAB mutants were more sensitive to extracellular iron than WT strain. These results demonstrated that the PmrAB system in E. amylovora renders the pathogen more susceptible to polymyxin B and acidic pH, but more resistance to excess iron.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/fisiologia , Erwinia amylovora/efeitos dos fármacos , Erwinia amylovora/fisiologia , Ferro/toxicidade , Polimixina B/farmacologia , Fatores de Transcrição/fisiologia , Proteínas de Bactérias/genética , Erwinia amylovora/genética , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Viabilidade Microbiana , Estresse Fisiológico , Fatores de Transcrição/genética
8.
Mol Plant Microbe Interact ; 22(10): 1282-92, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19737101

RESUMO

DspA/E is a type III secreted effector protein required for pathogenicity in the apple and pear pathogen Erwinia amylovora, and DspB/F is a small chaperone protein involved in DspA/E secretion. While the secretion and translocation signals of many type III secretion effector proteins in human enteric pathogens have been characterized extensively, relatively little is known about the translocation requirements of many effectors in plant pathogens, including large DspE-like proteins. In this study, we report a functional analysis of the N terminus of DspE. The minimal requirements for secretion, translocation, and chaperone binding were characterized. Translocation assays using an adenylate cyclase (CyaA) reporter indicated that the first 51 amino acids of DspE were sufficient for translocation and that 150 amino acids were required for optimal translocation levels. The minimal translocation signal corresponded with the requirements for secretion into culture media. Mutations of conserved regions in amino acids 2 through 10 and 31 through 40 were found to influence translocation levels of an N-terminal DspE-CyaA fusion. Yeast two-hybrid and in-vitro pull-down assays revealed a chaperone-binding site within amino acids 51 through 100 of DspE and binding to DspF in this region was disrupted by specific mutations. However, neither disruption of the chaperone-binding domain nor deletion of the dspF gene had a significant impact on translocation levels of N-terminal DspE-CyaA fusions. Our results indicate that the minimal translocation signal of DspE is not coincident with the signal for DspF binding and that translocation of the N terminus of DspE is not dependent on the N-terminal DspF-binding domain.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Erwinia amylovora/fisiologia , Erwinia amylovora/patogenicidade , Toxina Adenilato Ciclase/genética , Toxina Adenilato Ciclase/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Erwinia amylovora/genética , Deleção de Genes , Genes Bacterianos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Cinética , Chaperonas Moleculares/genética , Chaperonas Moleculares/fisiologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Nicotiana/genética , Nicotiana/microbiologia , Técnicas do Sistema de Duplo-Híbrido
9.
Microb Biotechnol ; 1(5): 416-24, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21261861

RESUMO

Fire blight caused by the Gram-negative bacterium Erwinia amylovora can be controlled by antagonistic microorganisms. We characterized epiphytic bacteria isolated from healthy apple and pear trees in Australia, named Erwinia tasmaniensis, and the epiphytic bacterium Erwinia billingiae from England for physiological properties, interaction with plants and interference with growth of E. amylovora. They reduced symptom formation by the fire blight pathogen on immature pears and the colonization of apple flowers. In contrast to E. billingiae, E. tasmaniensis strains induced a hypersensitive response in tobacco leaves and synthesized levan in the presence of sucrose. With consensus primers deduced from lsc as well as hrpL, hrcC and hrcR of the hrp region of E. amylovora and of related bacteria, these genes were successfully amplified from E. tasmaniensis DNA and alignment of the encoded proteins to other Erwinia species supported a role for environmental fitness of the epiphytic bacterium. Unlike E. tasmaniensis, the epiphytic bacterium E. billingiae produced an acyl-homoserine lactone for bacterial cell-to-cell communication. Their competition with the growth of E. amylovora may be involved in controlling fire blight.


Assuntos
Acil-Butirolactonas/imunologia , Anticorpos , Erwinia/imunologia , Doenças das Plantas/microbiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Sequência de Bases , Erwinia/química , Erwinia/isolamento & purificação , Erwinia/fisiologia , Erwinia amylovora/fisiologia , Regulação Bacteriana da Expressão Gênica , Malus/microbiologia , Dados de Sequência Molecular , Doenças das Plantas/imunologia , Pyrus/microbiologia , Alinhamento de Sequência , Nicotiana/imunologia , Nicotiana/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA