Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.245
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Arch Microbiol ; 206(6): 246, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704767

RESUMO

Shake-flask culture, an aerobic submerged culture, has been used in various applications involving cell cultivation. However, it is not designed for forced aeration. Hence, this study aimed to develop a small-scale submerged shaking culture system enabling forced aeration into the medium. A forced aeration control system for multiple vessels allows shaking, suppresses volatilization, and is attachable externally to existing shaking tables. Using a specially developed plug, medium volatilization was reduced to less than 10%, even after 45 h of continuous aeration (~ 60 mL/min of dry air) in a 50 mL working volume. Escherichia coli IFO3301 cultivation with aeration was completed within a shorter period than that without aeration, with a 35% reduction in the time-to-reach maximum bacterial concentration (26.5 g-dry cell/L) and a 1.25-fold increase in maximum concentration. The maximum bacterial concentration achieved with aeration was identical to that obtained using the Erlenmeyer flask, with a 65% reduction in the time required to reach it.


Assuntos
Meios de Cultura , Escherichia coli , Escherichia coli/crescimento & desenvolvimento , Volatilização , Meios de Cultura/química , Reatores Biológicos/microbiologia , Técnicas Bacteriológicas/métodos
2.
Sci Rep ; 14(1): 10508, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714808

RESUMO

In this study, a novel nanobiocomposite consisting of agar (Ag), tragacanth gum (TG), silk fibroin (SF), and MOF-5 was synthesized and extensively investigated by various analytical techniques and basic biological assays for potential biomedical applications. The performed Trypan blue dye exclusion assay indicated that the proliferation percentage of HEK293T cells was 71.19%, while the proliferation of cancer cells (K-562 and MCF-7) was significantly lower, at 10.74% and 3.33%. Furthermore, the Ag-TG hydrogel/SF/MOF-5 nanobiocomposite exhibited significant antimicrobial activity against both E. coli and S. aureus strains, with growth inhibition rates of 76.08% and 69.19% respectively. Additionally, the hemolytic index of fabricated nanobiocomposite was found approximately 19%. These findings suggest that the nanobiocomposite exhibits significant potential for application in cancer therapy and wound healing.


Assuntos
Ágar , Fibroínas , Hidrogéis , Nanocompostos , Tragacanto , Fibroínas/química , Humanos , Hidrogéis/química , Ágar/química , Nanocompostos/química , Tragacanto/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Células HEK293 , Zinco/química , Proliferação de Células/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Testes de Sensibilidade Microbiana , Células MCF-7 , Linhagem Celular Tumoral
3.
Molecules ; 29(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731501

RESUMO

Bacterial infection is a thorny problem, and it is of great significance to developing green and efficient biological antibacterial agents that can replace antibiotics. This study aimed to rapidly prepare a new type of green antibacterial nanoemulsion containing silver nanoparticles in one step by using Blumea balsamifera oil (BBO) as an oil phase and tea saponin (TS) as a natural emulsifier and reducing agent. The optimum preparation conditions of the AgNPs@BBO-TS NE were determined, as well as its physicochemical properties and antibacterial activity in vitro being investigated. The results showed that the average particle size of the AgNPs@BBO-TS NE was 249.47 ± 6.23 nm, the PDI was 0.239 ± 0.003, and the zeta potential was -35.82 ± 4.26 mV. The produced AgNPs@BBO-TS NE showed good stability after centrifugation and 30-day storage. Moreover, the AgNPs@BBO-TS NE had an excellent antimicrobial effect on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. These results demonstrated that the AgNPs@BBO-TS NE produced in this study can be used as an efficient and green antibacterial agent in the biomedical field.


Assuntos
Antibacterianos , Emulsões , Química Verde , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Prata , Antibacterianos/farmacologia , Antibacterianos/química , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Staphylococcus aureus/efeitos dos fármacos , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Saponinas/química , Saponinas/farmacologia
4.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674008

RESUMO

Cysteine and its derivatives, including H2S, can influence bacterial virulence and sensitivity to antibiotics. In minimal sulfate media, H2S is generated under stress to prevent excess cysteine and, together with incorporation into glutathione and export into the medium, is a mechanism of cysteine homeostasis. Here, we studied the features of cysteine homeostasis in LB medium, where the main source of sulfur is cystine, whose import can create excess cysteine inside cells. We used mutants in the mechanisms of cysteine homeostasis and a set of microbiological and biochemical methods, including the real-time monitoring of sulfide and oxygen, the determination of cysteine and glutathione (GSH), and the expression of the Fur, OxyR, and SOS regulons genes. During normal growth, the parental strain generated H2S when switching respiration to another substrate. The mutations affected the onset time, the intensity and duration of H2S production, cysteine and glutathione levels, bacterial growth and respiration rates, and the induction of defense systems. Exposure to chloramphenicol and high doses of ciprofloxacin increased cysteine content and GSH synthesis. A high inverse relationship between log CFU/mL and bacterial growth rate before ciprofloxacin addition was revealed. The study points to the important role of maintaining cysteine homeostasis during normal growth and antibiotic exposure in LB medium.


Assuntos
Antibacterianos , Ciprofloxacina , Cisteína , Escherichia coli , Glutationa , Homeostase , Cisteína/metabolismo , Ciprofloxacina/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Homeostase/efeitos dos fármacos , Glutationa/metabolismo , Antibacterianos/farmacologia , Meios de Cultura/química , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Mutação , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos
5.
Nature ; 622(7984): 826-833, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37853119

RESUMO

CRISPR systems are widespread in the prokaryotic world, providing adaptive immunity against mobile genetic elements1,2. Type III CRISPR systems, with the signature gene cas10, use CRISPR RNA to detect non-self RNA, activating the enzymatic Cas10 subunit to defend the cell against mobile genetic elements either directly, via the integral histidine-aspartate (HD) nuclease domain3-5 or indirectly, via synthesis of cyclic oligoadenylate second messengers to activate diverse ancillary effectors6-9. A subset of type III CRISPR systems encode an uncharacterized CorA-family membrane protein and an associated NrN family phosphodiesterase that are predicted to function in antiviral defence. Here we demonstrate that the CorA-associated type III-B (Cmr) CRISPR system from Bacteroides fragilis provides immunity against mobile genetic elements when expressed in Escherichia coli. However, B. fragilis Cmr does not synthesize cyclic oligoadenylate species on activation, instead generating S-adenosyl methionine (SAM)-AMP (SAM is also known as AdoMet) by conjugating ATP to SAM via a phosphodiester bond. Once synthesized, SAM-AMP binds to the CorA effector, presumably leading to cell dormancy or death by disruption of the membrane integrity. SAM-AMP is degraded by CRISPR-associated phosphodiesterases or a SAM-AMP lyase, potentially providing an 'off switch' analogous to cyclic oligoadenylate-specific ring nucleases10. SAM-AMP thus represents a new class of second messenger for antiviral signalling, which may function in different roles in diverse cellular contexts.


Assuntos
Trifosfato de Adenosina , Bacteroides fragilis , Sistemas CRISPR-Cas , Escherichia coli , S-Adenosilmetionina , Sistemas do Segundo Mensageiro , Trifosfato de Adenosina/metabolismo , Bacteroides fragilis/enzimologia , Bacteroides fragilis/genética , Bacteroides fragilis/imunologia , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , Sistemas CRISPR-Cas/fisiologia , Endonucleases/química , Endonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/imunologia , Escherichia coli/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , RNA/imunologia , RNA/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
6.
Microb Cell Fact ; 21(1): 20, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123481

RESUMO

BACKGROUND: During the recombinant protein expression, most heterologous proteins expressed in E. coli cell factories are generated as insoluble and inactive aggregates, which prohibit E. coli from being employed as an expression host despite its numerous advantages and ease of use. The yeast mitochondrial aconitase protein, which has a tendency to aggregate when expressed in E. coli cells in the absence of heterologous chaperones GroEL/ES was utilised as a model to investigate how the modulation of physiological stimuli in the host cell can increase protein solubility. The presence of folding modulators such as exogenous molecular chaperones or osmolytes, as well as process variables such as incubation temperature, inducer concentrations, growth media are all important for cellular folding and are investigated in this study. This study also investigated how the cell's stress response system activates and protects the proteins from aggregation. RESULTS: The cells exposed to osmolytes plus a pre-induction heat shock showed a substantial increase in recombinant aconitase activity when combined with modulation of process conditions. The concomitant GroEL/ES expression further assists the folding of these soluble aggregates and increases the functional protein molecules in the cytoplasm of the recombinant E. coli cells. CONCLUSIONS: The recombinant E. coli cells enduring physiological stress provide a cytosolic environment for the enhancement in the solubility and activity of the recombinant proteins. GroEL/ES-expressing cells not only aided in the folding of recombinant proteins, but also had an effect on the physiology of the expression host. The improvement in the specific growth rate and aconitase production during chaperone GroEL/ES co-expression is attributed to the reduction in overall cellular stress caused by the expression host's aggregation-prone recombinant protein expression.


Assuntos
Aconitato Hidratase/química , Escherichia coli/metabolismo , Proteínas Reguladoras de Ferro/química , Dobramento de Proteína , Proteínas Recombinantes/química , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Int J Mol Sci ; 23(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35163624

RESUMO

An Escherichia coli (E. coli) production of the receptor-binding domain (RBD) of the SARS-CoV-2 (isolate Wuhan-Hu-1) spike protein would significantly accelerate the search for anti-COVID-19 therapeutics because of its versatility and low cost. However, RBD contains four disulfide bonds and its expression in E. coli is limited by the formation of aberrant disulfide bonds resulting in inclusion bodies. Here, we show that a solubility-enhancing peptide (SEP) tag containing nine arginine residues (RBD-C9R) attached at the C-terminus can overcome this problem. The SEP-tag increased the expression in the soluble fraction and the final yield by five times (2 mg/L). The folding properties of the E. coli expressed RBD-C9R were demonstrated with biophysical characterization using RP-HPLC, circular dichroism, thermal denaturation, fluorescence, and light scattering. A quartz crystal microbalance (QCM) analysis confirmed the binding activity of RBD-C9R with ACE2, the host cell's receptor. In addition, RBD-C9R elicited a Th-2 immune response with a high IgG titer in Jcl: ICR mice. The RBD-C9R antisera interacted with both itself and the mammalian-cell expressed spike protein (S1), as demonstrated by ELISA, indicating that the E. coli expressed RBD-C9R harbors native-like epitopes. Overall, these results emphasize the potential of our SEP-tag for the E. coli production of active multi-disulfide-bonded RBD.


Assuntos
Anticorpos Antivirais/sangue , Escherichia coli/crescimento & desenvolvimento , Peptídeos/administração & dosagem , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Clonagem Molecular , Dissulfetos/metabolismo , Escherichia coli/genética , Feminino , Humanos , Soros Imunes/metabolismo , Imunização , Camundongos , Camundongos Endogâmicos ICR , Peptídeos/genética , Peptídeos/imunologia , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Th2/metabolismo
8.
Can J Vet Res ; 86(1): 59-64, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34975224

RESUMO

Septic arthritis is considered a medical emergency. Disease following bacterial colonization can lead to significant morbidity and mortality and requires costly treatment. Antimicrobial properties of regenerative therapies, including mesenchymal stromal cells and platelet products, have been researched extensively in human medicine. Although fewer studies have been conducted in veterinary species, they have shown promising results. The purpose of this study was to evaluate bacterial suppression by equine platelet lysate (EPL) and adipose-derived mesenchymal stromal cells (ASCs) in vitro. We hypothesized that both products would significantly inhibit the growth of Staphylococcus aureus and Escherichia coli. Pooled blood from 10 horses was used for production of EPL. Mesenchymal stromal cells were isolated from adipose tissue harvested from the gluteal region of 3 horses. The study evaluated 3 treatment groups: 10 × EPL, 1.6 million ASCs, and a control, using an incomplete unbalanced block design with repeated measurements. Optical density readings and colony-forming units/mL were calculated at 0, 3, 6, 9, 12, 18, and 24 hours. Decreased bacterial growth was seen at multiple time points for the S. aureus-ASC and S. aureus-EPL treatments, supporting our hypothesis. Increased bacterial growth was noticed in the E. coli-EPL group, with no difference in the E. coli-ASC treatment, which opposed our hypothesis. A clear conclusion of antimicrobial effects of EPL and ASCs cannot be made from this in vitro study. Although it appears that ASCs have a significant effect on decreasing the growth of S. aureus, further studies are needed to explore these effects, particularly in Gram-positive bacteria.


L'arthrite septique est considérée comme une urgence médicale. La maladie consécutive à une colonisation bactérienne peut entraîner une morbidité et une mortalité importantes et nécessite un traitement coûteux. Les propriétés antimicrobiennes des thérapies régénératives, y compris les cellules stromales mésenchymateuses et les produits plaquettaires, ont fait l'objet de recherches approfondies en médecine humaine. Bien que moins d'études aient été menées chez les espèces animales, elles ont montré des résultats prometteurs. Le but de cette étude était d'évaluer la suppression bactérienne par le lysat plaquettaire équin (EPL) et les cellules stromales mésenchymateuses adipeuses (ASC) i n vitro. Nous avons émis l'hypothèse que les deux produits inhiberaient de manière significative la croissance de Staphylococcus aureus et d'Escherichia coli. Un pool de sang de 10 chevaux a été utilisé pour la production d'EPL. Des cellules stromales mésenchymateuses ont été isolées à partir de tissu adipeux prélevé dans la région fessière de trois chevaux. L'étude a évalué trois groupes de traitement : 10 × EPL, 1,6 million d'ASC et un témoin, en utilisant un design en blocs non équilibrés incomplets avec des mesures répétées. Les lectures de densité optique et les unités formatrices de colonie/mL ont été calculées à 0, 3, 6, 9, 12, 18 et 24 heures. Une diminution de la croissance bactérienne a été observée à plusieurs moments pour les traitements S. aureus-ASC et S. aureus-EPL, soutenant notre hypothèse. Une croissance bactérienne accrue a été remarquée dans le groupe E. coli-EPL, sans différence dans le traitement E. coli-ASC, ce qui s'opposait à notre hypothèse. Une conclusion claire des effets antimicrobiens de l'EPL et des ASC ne peut pas être tirée de cette étude in vitro. Bien qu'il semble que les ASC aient un effet significatif sur la diminution de la croissance de S. aureus, d'autres études sont nécessaires pour explorer ces effets, en particulier chez les bactéries à Gram positif.(Traduit par Docteur Serge Messier).


Assuntos
Plaquetas , Escherichia coli , Células-Tronco Mesenquimais , Staphylococcus aureus , Tecido Adiposo , Animais , Plaquetas/microbiologia , Escherichia coli/crescimento & desenvolvimento , Cavalos , Células-Tronco Mesenquimais/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento
9.
Pharmacol Res ; 175: 105978, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34813930

RESUMO

The widespread dissemination of antibiotic resistance genes (ARGs) is a serious problem and constitutes a threat for public health. Plasmid-mediated conjugative transfer of ARGs is recognized as one of the most important pathways accounting for this global crisis. Inhibiting the conjugative transfer of resistant gene-bearing plasmids provides a feasible strategy to prevent the spread of antibiotic resistance. Here we found that melatonin, a neurohormone secreted from pineal gland, substantially inhibited the horizontal transfer of RP4-7 plasmid in a dose-dependent manner. Furthermore, melatonin could also suppress the conjugal frequency of different types of clinical plasmids that carrying colistin resistance gene mcr-1 rather than blaNDM or tet(X) genes. Next, we investigated the mechanisms underlying the inhibitory effect of melatonin on conjugation. As a result, we showed that the addition of melatonin markedly reduced bacterial membrane permeability and inhibited the oxidative stress. In line with these observations, the conjugative transfer-related genes were regulated accordingly. Most importantly, we uncovered that melatonin disrupted bacterial proton motive force (PMF), which is an essential bacterial energy metabolism substance and is important for conjugative process. Collectively, these results provide implications that some non-antibiotics such as melatonin are effective inhibitors of transmission of ARGs and raise a promising strategy to confront the increasing resistant infections.


Assuntos
Resistência Microbiana a Medicamentos/genética , Melatonina/farmacologia , Força Próton-Motriz/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Ampicilina , Animais , Antibacterianos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Cloranfenicol , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Infecções por Escherichia coli , Proteínas de Escherichia coli/genética , Feminino , Genes Bacterianos , Camundongos Endogâmicos ICR , Plasmídeos , Espécies Reativas de Oxigênio/metabolismo
10.
Pharmacol Res ; 176: 106047, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34968686

RESUMO

G protein-coupled receptors (GPCRs) are key regulatory proteins of immune cell function inducing signaling in response to extracellular (pathogenic) stimuli. Although unrelated, hydroxycarboxylic acid receptor 3 (HCA3) and GPR84 share signaling via Gαi/o proteins and the agonist 3-hydroxydecanoic acid (3HDec). Both receptors are abundantly expressed in monocytes, macrophages and neutrophils but have opposing functions in these innate immune cells. Detailed insights into the molecular mechanisms and signaling components involved in immune cell regulation by GPR84 and HCA3 are still lacking. Here, we report that GPR84-mediated pro-inflammatory signaling depends on coupling to the hematopoietic cell-specific Gα15 protein in human macrophages, while HCA3 exclusively couples to Gαi protein. We show that activated GPR84 induces Gα15-dependent ERK activation, increases intracellular Ca2+ and IP3 levels as well as ROS production. In contrast, HCA3 activation shifts macrophage metabolism to a less glycolytic phenotype, which is associated with anti-inflammatory responses. This is supported by an increased release of anti-inflammatory IL-10 and a decreased secretion of pro-inflammatory IL-1ß. In primary human neutrophils, stimulation with HCA3 agonists counteracts the GPR84-induced neutrophil activation. Our analyses reveal that 3HDec acts solely through GPR84 but not HCA3 activation in macrophages. In summary, this study shows that HCA3 mediates hyporesponsiveness in response to metabolites derived from dietary lactic acid bacteria and uncovers that GPR84, which is already targeted in clinical trials, promotes pro-inflammatory signaling via Gα15 protein in macrophages.


Assuntos
Macrófagos/metabolismo , Neutrófilos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/metabolismo , Células Cultivadas , Citocinas/metabolismo , Escherichia coli/crescimento & desenvolvimento , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Imunidade Inata , Lactobacillales , Fagocitose , Espécies Reativas de Oxigênio/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Nicotínicos/genética
11.
Mol Biotechnol ; 64(1): 42-56, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34528219

RESUMO

GLIS1 has multiple roles in embryonic development and in deriving induced pluripotent stem cells by aiding signaling pathways and chromatin assembly. An inexpensive and simple method to produce human GLIS1 protein from Escherichia coli (E. coli) is demonstrated in this study. Various parameters such as codon usage bias, E. coli strains, media, induction conditions (such as inducer concentration, cell density, time, and temperature), and genetic constructs were investigated to obtain soluble expression of human GLIS1 protein. Using identified expression conditions and an appropriate genetic construct, the human GLIS1 protein was homogeneously purified (purity > 90%) under native conditions. Importantly, the purified protein has upheld a stable secondary structure, as demonstrated by circular dichroism spectroscopy. To the best of our knowledge, this is the first study to report the ideal expression conditions of human GLIS1 protein in E. coli to achieve soluble expression and purification under native conditions, upholding its stable secondary structure post-purification. The biological activity of the purified GLIS1 fusion protein was further assessed in MDA-MB-231 cells. This biologically active human GLIS1 protein potentiates new avenues to understand its molecular mechanisms in different cellular functions in various cancers and in the generation of induced pluripotent stem cells.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Escherichia coli/genética , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Linhagem Celular Tumoral , Movimento Celular , Clonagem Molecular , Códon , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos , Humanos , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
12.
Genes (Basel) ; 12(12)2021 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-34946861

RESUMO

We study the potential for the de novo evolution of genes from random nucleotide sequences using libraries of E. coli expressing random sequence peptides. We assess the effects of such peptides on cell growth by monitoring frequency changes in individual clones in a complex library through four serial passages. Using a new analysis pipeline that allows the tracing of peptides of all lengths, we find that over half of the peptides have consistent effects on cell growth. Across nine different experiments, around 16% of clones increase in frequency and 36% decrease, with some variation between individual experiments. Shorter peptides (8-20 residues), are more likely to increase in frequency, longer ones are more likely to decrease. GC content, amino acid composition, intrinsic disorder, and aggregation propensity show slightly different patterns between peptide groups. Sequences that increase in frequency tend to be more disordered with lower aggregation propensity. This coincides with the observation that young genes with more disordered structures are better tolerated in genomes. Our data indicate that random sequences can be a source of evolutionary innovation, since a large fraction of them are well tolerated by the cells or can provide a growth advantage.


Assuntos
Composição de Bases , Escherichia coli/crescimento & desenvolvimento , Evolução Molecular , Biblioteca de Peptídeos , Peptídeos/metabolismo , Sequência de Aminoácidos , Escherichia coli/genética
13.
Sci Rep ; 11(1): 24362, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934150

RESUMO

[NiFe]-hydrogenases activate dihydrogen. Like all [NiFe]-hydrogenases, hydrogenase 2 of Escherichia coli has a bimetallic NiFe(CN)2CO cofactor in its catalytic subunit. Biosynthesis of the Fe(CN)2CO group of the [NiFe]-cofactor occurs on a distinct scaffold complex comprising the HybG and HypD accessory proteins. HybG is a member of the HypC-family of chaperones that confers specificity towards immature hydrogenase catalytic subunits during transfer of the Fe(CN)2CO group. Using native mass spectrometry of an anaerobically isolated HybG-HypD complex we show that HybG carries the Fe(CN)2CO group. Our results also reveal that only HybG, but not HypD, interacts with the apo-form of the catalytic subunit. Finally, HybG was shown to have two distinct, and apparently CO2-related, covalent modifications that depended on the presence of the N-terminal cysteine residue on the protein, possibly representing intermediates during Fe(CN)2CO group biosynthesis. Together, these findings suggest that the HybG chaperone is involved in both biosynthesis and delivery of the Fe(CN)2CO group to its target protein. HybG is thus suggested to shuttle between the assembly complex and the apo-catalytic subunit. This study provides new insights into our understanding of how organometallic cofactor components are assembled on a scaffold complex and transferred to their client proteins.


Assuntos
Monóxido de Carbono/metabolismo , Cianetos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Compostos Ferrosos/metabolismo , Hidrogenase/metabolismo , Chaperonas Moleculares/metabolismo , Monóxido de Carbono/química , Domínio Catalítico , Cianetos/química , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Compostos Ferrosos/química , Hidrogenase/química , Hidrogenase/genética , Espectrometria de Massas , Chaperonas Moleculares/genética , Proteínas/genética , Proteínas/metabolismo
14.
Molecules ; 26(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34946528

RESUMO

Plants from the Ilex genus are known for properties such as antimicrobial and anti-inflammatory activity, can act as antiobesity agents and thus can be helpful in medicine. Some holly species, such as Ilex paraguariensis (widely known in the form of popular beverage: yerba mate), have been investigated, while others have been partially researched or remain unknown. Therefore, we performed qualitative and quantitative phytochemical analyses and screened antimicrobial properties of lesser-studied species (I. aquifolium L., I. aquifolium 'Argentea Marginata' and I. × meserveae 'Blue Angel'). I. paraguariensis was used as a standard species for comparison purposes. Investigations were performed on water extracts due to their expected activity and composition. Antimicrobial research included evaluating minimal inhibitory, bactericidal (Staphylococcus aureus and Escherichia coli) and fungicidal concentration (Candida albicans, Alternaria alternata, Fusarium oxysporum, and Aspergillus niger) of extracts. The influence of the extracts on the production, eradication, and viability of bacterial biofilms was also analysed. It was established that Ilex paraguariensis possesses the richest profile of hydroxycinnamic acids derivatives in terms of component concentration and diversity. Ilex spp., especially I. × meserveae, contain a slightly higher amount of flavonoids and more different flavonoid derivatives than I. paraguariensis. However, the strongest antibacterial activity was shown by I. aquifolium L. and its cultivar 'Argentea Marginata' in terms of minimal inhibitory, bactericidal and fungicidal concentration, and biofilm assays. Extracts from both species significantly reduced the biofilm viability of S. aureus as well, which may be of use in the production of multicomponent lavaseptics, antiseptics, diuretics (supporting urinary tract infection therapy) and, due to their action on fungi, additives to growth media for specific fungi. The significant content of saponins enables Ilex extracts to be used as natural emulsifiers, for example, in cosmetics. Moreover, relatively high chlorogenic acid and rutin content may suggest use of Ilex spp. to treat obesity, digestive problems, in chemoprevention, and as preservatives in the food industry.


Assuntos
Antibacterianos , Antifúngicos , Ilex paraguariensis/química , Compostos Fitoquímicos , Extratos Vegetais , Folhas de Planta/química , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Escherichia coli/crescimento & desenvolvimento , Fungos/crescimento & desenvolvimento , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Staphylococcus aureus/crescimento & desenvolvimento , Água/química
15.
Dis Markers ; 2021: 1171239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34853619

RESUMO

BACKGROUND: Accurate analysis of intestinal microbiota will facilitate establishment of an evaluating system for assessing colorectal cancer (CRC) risk and prognosis. This study evaluates the potential role of Fusobacterium nucleatum (F. nucleatum) and Escherichia coli with a pks gene (pks+ E. coli) in early CRC diagnosis. METHODS: We recruited 139 patients, including CRC (n = 60), colorectal adenomatous polyposis (CAP) (n = 37), and healthy individuals (n = 42) based on their colonoscopy examinations. We collected stool and serum samples from the participants and measured the relative abundance of F. nucleatum and pks+ E. coli in fecal samples by quantitative PCR. Receiver operating characteristic curve (ROC) analyses were used to analyze the diagnostic value of single or combined biomarkers. RESULTS: Fecal F. nucleatum and pks+ E. coli levels were higher in the CRC group in either the CAP group or healthy controls (P = 0.02; 0.01). There was no statistical difference in the distribution of F. nucleatum and pks+ E. coli in patients with different tumor sites (P > 0.05). The combination of F. nucleatum+pks+ E. coli+CEA+CA19-9+FOBT was chosen as the optimal panel in differentiating both CRC and CAP from the controls. The combination of F. nucleatum, pks+ E. coli, and FOBT improved diagnostic efficiency. However, there was difficulty in differentiating CRC from CAP. CONCLUSION: Our results suggested that combining bacterial markers with conventional tumor markers improves the diagnostic efficiency for noninvasive diagnosis of CRC.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Colorretais/diagnóstico , Detecção Precoce de Câncer/métodos , Escherichia coli/genética , Fezes/microbiologia , Fusobacterium nucleatum/genética , Microbioma Gastrointestinal , Idoso , Estudos de Casos e Controles , China/epidemiologia , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/microbiologia , Escherichia coli/crescimento & desenvolvimento , Feminino , Seguimentos , Fusobacterium nucleatum/crescimento & desenvolvimento , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Reação em Cadeia da Polimerase em Tempo Real
16.
Sci Rep ; 11(1): 22310, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34785646

RESUMO

There is a great demand for novel disinfection technologies to inactivate various pathogenic viruses and bacteria. In this situation, ultraviolet (UVC) disinfection technologies seem to be promising because biocontaminated air and surfaces are the major media for disease transmission. However, UVC is strongly absorbed by human cells and protein components; therefore, there are concerns about damaging plasma components and causing dermatitis and skin cancer. To avoid these concerns, in this study, we demonstrate that the efficient inactivation of bacteria is achieved by visible pulsed light irradiation. The principle of inactivation is based on transient photothermal heating. First, we provide experimental confirmation that extremely high temperatures above 1000 K can be achieved by pulsed laser irradiation. Evidence of this high temperature is directly confirmed by melting gold nanoparticles (GNPs). Inorganic GNPs are used because of their well-established thermophysical properties. Second, we show inactivation behaviour by pulsed laser irradiation. This inactivation behaviour cannot be explained by a simple optical absorption effect. We experimentally and theoretically clarify this inactivation mechanism based on both optical absorption and scattering effects. We find that scattering and absorption play an important role in inactivation because the input irradiation is inherently scattered by the bacteria; therefore, the dose that bacteria feel is reduced. This scattering effect can be clearly shown by a technique that combines stained Escherichia coli and site selective irradiation obtained by a wavelength tunable pulsed laser. By measuring Live/Dead fluorescence microscopy images, we show that the inactivation attained by the transient photothermal heating is possible to instantaneously and selectively kill microorganisms such as Escherichia coli bacteria. Thus, this method is promising for the site selective inactivation of various pathogenic viruses and bacteria in a safe and simple manner.


Assuntos
Desinfecção , Escherichia coli/crescimento & desenvolvimento , Ouro , Temperatura Alta , Lasers , Nanopartículas Metálicas/química , Ouro/química , Ouro/farmacologia , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Raios Ultravioleta
17.
Molecules ; 26(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34641315

RESUMO

Essential oils (EOs) have been used in cosmetics and food due to their antimicrobial and antiviral effects. However, the applications of EOs are compromised because of their poor aqueous solubility and high volatility. Qiai (Artemisia argyi Levl. et Van. var. argyi cv. Qiai) is a traditional Chinese herb and possesses strong antibacterial activity. Herein, we report an innovative formulation of EO as nanohydrogels, which were prepared through co-assembly of Qiai EO (QEO) and Pluronic F108 (PEG-b-PPG-b-PEG, or PF108) in aqueous solution. QEO was efficiently loaded in the PF108 micelles and formed nanohydrogels by heating the QEO/PF108 mixture solution to 37 °C, by the innate thermo-responsive property of PF108. The encapsulation efficiency and loading capacity of QEO reached 80.2% and 6.8%, respectively. QEO nanohydrogels were more stable than the free QEO with respect to volatilization. Sustained QEO release was achieved at body temperature using the QEO nanohydrogels, with the cumulative release rate reaching 95% in 35 h. In vitro antibacterial test indicated that the QEO nanohydrogels showed stronger antimicrobial activity against S. aureus and E. coli than the free QEO due to the enhanced stability and sustained-release characteristics. It has been attested that thermo-responsive QEO nanohydrogels have good potential as antibacterial cosmetics.


Assuntos
Antibacterianos/síntese química , Artemisia/química , Escherichia coli/crescimento & desenvolvimento , Óleos Voláteis/síntese química , Staphylococcus aureus/crescimento & desenvolvimento , Antibacterianos/química , Antibacterianos/farmacologia , Preparações de Ação Retardada , Composição de Medicamentos , Escherichia coli/efeitos dos fármacos , Micelas , Viabilidade Microbiana/efeitos dos fármacos , Nanopartículas/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Tamanho da Partícula , Extratos Vegetais/química , Poloxâmero/química , Staphylococcus aureus/efeitos dos fármacos , Termodinâmica
18.
Molecules ; 26(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34641370

RESUMO

Pyrithione (2-mercaptopyridine-N-oxide) is a metal binding modified pyridine, the antibacterial activity of which was described over 60 years ago. The formulation of zinc-pyrithione is commonly used in the topical treatment of certain dermatological conditions. However, the characterisation of the cellular uptake of pyrithione has not been elucidated, although an unsubstantiated assumption has persisted that pyrithione and/or its metal complexes undergo a passive diffusion through cell membranes. Here, we have profiled specific membrane transporters from an unbiased interrogation of 532 E. coli strains of knockouts of genes encoding membrane proteins from the Keio collection. Two membrane transporters, FepC and MetQ, seemed involved in the uptake of pyrithione and its cognate metal complexes with copper, iron, and zinc. Additionally, the phenotypes displayed by CopA and ZntA knockouts suggested that these two metal effluxers drive the extrusion from the bacterial cell of potentially toxic levels of copper, and perhaps zinc, which hyperaccumulate as a function of pyrithione. The involvement of these distinct membrane transporters contributes to the understanding of the mechanisms of action of pyrithione specifically and highlights, more generally, the important role that membrane transporters play in facilitating the uptake of drugs, including metal-drug compounds.


Assuntos
Antibacterianos/farmacologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Metais/metabolismo , Piridinas/farmacologia , Tionas/farmacologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética
19.
Sci Rep ; 11(1): 21047, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702916

RESUMO

In recent years' synthesis of metal nanoparticle using plants has been extensively studied and recognized as a non-toxic and efficient method applicable in biomedical field. The aim of this study is to investigate the role of different parts of medical plant Carduus crispus on synthesizing silver nanoparticles and characterize the produced nanoparticle. Our study showed that silver nanoparticles (AgNP) synthesized via whole plant extract exhibited a blue shift in absorption spectra with increased optical density, which correlates to a high yield and small size. Also, the results of zeta potential, X-ray diffraction, photon cross-correlation spectroscopy analysis showed the surface charge of - 54.29 ± 4.96 mV (AgNP-S), - 42.64 ± 3.762 mV (AgNP-F), - 46.02 ± 4.17 mV (AgNP-W), the crystallite size of 36 nm (AgNP-S), 13 nm (AgNP-F), 14 nm (AgNP-W) with face-centered cubic structure and average grain sizes of 145.1 nm, 22.5 nm and 99.6 nm. Another important characteristic, such as elemental composition and constituent capping agent has been determined by energy-dispersive X-ray spectroscopy and Fourier transform infrared. The silver nanoparticles were composed of ~ 80% Ag, ~ 15% K, and ~ 7.5% Ca (or ~ 2.8% P) elements. Moreover, the results of the FTIR measurement suggested that the distinct functional groups present in both AgNP-S and AgNP-F were found in AgNP-W. The atomic force microscopy analysis revealed that AgNP-S, AgNP-F and AgNP-W had sizes of 131 nm, 33 nm and 70 nm respectively. In addition, the biosynthesized silver nanoparticles were evaluated for their cytotoxicity and antibacterial activity. At 17 µg/ml concentration, AgNP-S, AgNP-F and AgNP-W showed very low toxicity on HepG2 cell line but also high antibacterial activity. The silver nanoparticles showed antibacterial activity on both gram-negative bacterium Escherichia coli (5.5 ± 0.2 mm to 6.5 ± 0.3 mm) and gram-positive bacterium Micrococcus luteus (7 ± 0.4 mm to 7.7 ± 0.5 mm). Our study is meaningful as a first observation indicating the possibility of using special plant organs to control the characteristics of nanoparticles.


Assuntos
Antibacterianos , Carduus/química , Escherichia coli/crescimento & desenvolvimento , Nanopartículas Metálicas/química , Micrococcus luteus/crescimento & desenvolvimento , Prata/química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Células Hep G2 , Humanos
20.
PLoS One ; 16(10): e0255502, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34714855

RESUMO

We evaluated phytochemical composition, antibacterial, antifungal, anti-oxidant and cytotoxic properties of aqueous (water) and organic extracts (methanol, ethyl acetate and n-hexane) of Chenopodium glaucum. Highest phenolic content 45 mg gallic acid equivalents (GAE)/g d.w was found in aqueous extract followed by ethyl acetate (41mg GAE/g d.w) and methanol extract (34.46 mg GAE/g d.w). Antibacterial potential of aqueous and organic extracts of C. glaucum was examined against Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli and Staphylococcus epidermidis. The aqueous, methanolic, ethyl acetate, and n-hexane extract showed antibacterial activity against A. baumannii, K. pneumoniae, E. coli and S. epidermidis. However, against A. baumannii significantly higher inhibition zone (19 mm and 18.96 mm respectively) was shown by ethyl acetate and methanol extracts. Aqueous extract possessed highest growth inhibition (11 mm) against E. coli. Aqueous, ethyl acetate and methanol extracts showed 9 mm, 10 mm, and 10.33 mm zone of inhibition against the K. pneumoniae. For antifungal activity, the extracts were less effective against Aspergillus niger but showed strong antifungal activity against Aspergillus flavus (A. flavus). The antioxidant activity was measured as DPPH (2, 2-diphenyl-1-picrylhydrazyl), H2O2 and ABTS (2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) scavenging activity of free radicals. All the organic extracts of C. glaucum possessed ABTS, DPPH and H2O2 scavenging properties. The highest cytotoxic activity measured as half maximal inhibitory concentration (IC50) against human lungs carcinoma cells was recorded for methanolic (IC50 = 16 µg/mL) and n-hexane (IC50 = 25 µg/mL) extracts, respectively. The Gas chromatography-mass spectrometry (GC-MS) analysis showed 4 major and 26 minor compounds in n-hexane extract and 4 major and 7 minor compounds in methanol extract of the C. glaucum. It is concluded that aqueous and organic extracts of C. glaucum would be potential therapeutic agents and could be exploited on a pilot scale to treat human pathogenic diseases.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Chenopodium/química , Neoplasias Pulmonares/tratamento farmacológico , Extratos Vegetais/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/crescimento & desenvolvimento , Antioxidantes/farmacologia , Aspergillus/efeitos dos fármacos , Aspergillus/crescimento & desenvolvimento , Linhagem Celular Tumoral , Citotoxinas/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/farmacologia , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA