Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Microbiol Spectr ; 12(10): e0096124, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39162490

RESUMO

This study addresses the gap in translatable in vitro models for investigating Enterohemorrhagic E. coli (EHEC) infections, particularly relevant to both canine and human health. EHEC is known to induce acute colitis in dogs, leading to symptoms like hemorrhagic diarrhea and hemolytic uremic syndrome, similar to those observed in humans. However, understanding the pathophysiology and developing treatment strategies have been challenging due to the lack of effective models that replicate the clinical disease caused by EHEC in both species. Our approach involved the development of colonoid-derived monolayers using intestinal tissues from healthy, client-owned dogs. These monolayers were exposed to EHEC, and the impact of EHEC was assessed through several techniques, including trans-epithelial electrical resistance (TEER) measurement, immunofluorescence staining for junction proteins and mucus, and scanning electron microscopy for morphological analysis. Modified culture with saline, which was intended to prevent bacterial overgrowth, maintained barrier integrity and cell differentiation. EHEC infection led to significant decreases in TEER and ZO-1 expression, but not in E-cadherin levels or mucus production. In addition, EHEC elicited a notable increase in tumor necrosis factor-alpha production, highlighting its distinct impact on canine intestinal epithelial cells compared to non-pathogenic E. coli. These findings closely replicate in vivo observations in dogs and humans with EHEC enteropathy, validating the canine colonoid-derived monolayer system as a translational model to study host-pathogen interactions in EHEC and potentially other clinically significant enteric pathogens. IMPORTANCE: This study develops a new model to better understand Enterohemorrhagic E. coli (EHEC) infections, a serious bacterial disease affecting both dogs and humans, characterized by symptoms such as hemorrhagic diarrhea and hemolytic uremic syndrome. Traditional research models have fallen short of mimicking how this disease manifests in patients. Our research used intestinal tissues from healthy dogs to create layers of cells, known as colonoid-derived monolayers, which we then exposed to EHEC. We assessed the damage caused by the bacteria using several techniques, observing significant changes similar to those seen in actual cases of the disease. The model proved effective in replicating the interaction between the host and the pathogen, marking an important step toward understanding EHEC's effects and developing treatments. This canine colonoid-derived monolayer system not only bridges a crucial gap in current research but also offers a promising platform for studying other enteric pathogens affecting both canine and human health.


Assuntos
Escherichia coli Êntero-Hemorrágica , Infecções por Escherichia coli , Mucosa Intestinal , Cães , Animais , Escherichia coli Êntero-Hemorrágica/fisiologia , Escherichia coli Êntero-Hemorrágica/patogenicidade , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Células-Tronco , Doenças do Cão/microbiologia , Intestinos/microbiologia , Intestinos/patologia , Humanos
2.
Cell Rep ; 43(4): 114004, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38522070

RESUMO

During infections, host cells are exposed to pathogen-associated molecular patterns (PAMPs) and virulence factors that stimulate multiple signaling pathways that interact additively, synergistically, or antagonistically. The net effect of such higher-order interactions is a vital determinant of the outcome of host-pathogen interactions. Here, we demonstrate one such complex interplay between bacterial exotoxin- and PAMP-induced innate immune pathways. We show that two caspases activated during enterohemorrhagic Escherichia coli (EHEC) infection by lipopolysaccharide (LPS) and Shiga toxin (Stx) interact in a functionally antagonistic manner; cytosolic LPS-activated caspase-11 cleaves full-length gasdermin D (GSDMD), generating an active pore-forming N-terminal fragment (NT-GSDMD); subsequently, caspase-3 activated by EHEC Stx cleaves the caspase-11-generated NT-GSDMD to render it nonfunctional, thereby inhibiting pyroptosis and interleukin-1ß maturation. Bacteria typically subvert inflammasomes by targeting upstream components such as NLR sensors or full-length GSDMD but not active NT-GSDMD. Thus, our findings uncover a distinct immune evasion strategy where a bacterial toxin disables active NT-GSDMD by co-opting caspase-3.


Assuntos
Caspase 3 , Gasderminas , Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos , Proteínas de Ligação a Fosfato , Piroptose , Piroptose/efeitos dos fármacos , Proteínas de Ligação a Fosfato/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Caspase 3/metabolismo , Humanos , Animais , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Toxinas Bacterianas/metabolismo , Caspases/metabolismo , Lipopolissacarídeos/farmacologia , Escherichia coli Êntero-Hemorrágica/metabolismo , Escherichia coli Êntero-Hemorrágica/patogenicidade , Caspases Iniciadoras/metabolismo , Inflamassomos/metabolismo , Camundongos Endogâmicos C57BL , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/imunologia , Interleucina-1beta/metabolismo
3.
Ren Fail ; 43(1): 382-387, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33641616

RESUMO

BACKGROUND: Insulin-like growth factor-binding protein (IGFBP) 2 plays an important role in the regulation of cell adhesion, migration, growth, and apoptosis. This study aimed to investigate the clinical significance of serum IGFBP2 as a biomarker for disease activity and severity in hemolytic uremic syndrome (HUS) induced by enterohemorrhagic Escherichia coli (EHEC). METHODS: IGFBP2 production by human renal glomerular endothelial cells (RGECs) after exposure to Shiga toxin 2 (Stx-2) was investigated in vitro. Serum IGFBP2 levels in blood samples obtained from 22 patients with HUS and 10 healthy controls (HCs) were quantified using an enzyme-linked immunosorbent assay. The results were compared to the clinical features of HUS and serum tau and cytokine levels. RESULTS: Stx-2 induced the production of IGFBP2 in RGECs in a dose-dependent manner. Serum IGFBP2 levels were significantly higher in patients with HUS than in HCs and correlated with disease severity. Additionally, serum IGFBP2 levels were significantly higher in patients with encephalopathy than in those without encephalopathy. A serum IGFBP2 level above 3585 pg/mL was associated with a high risk of encephalopathy. Furthermore, serum IGFBP2 levels significantly correlated with serum levels of tau and inflammatory cytokines associated with the development of HUS. CONCLUSIONS: Correlation of serum IGFBP2 level with disease activity in patients with HUS suggests that IGFBP2 may be considered as a possible indicator for disease activity and severity in HUS. Larger studies and additional experiments using various cells in central nervous system should elucidate the true value of IGFBP2 as a clinical diagnostic marker. ABBREVIATIONS: IGFBP: insulin-like growth factor-binding protein; HUS: hemolytic uremic syndrome; EHEC: enterohemorrhagic Escherichia coli; RGECs: renal glomerular endothelial cells; STx-2: Shiga toxin 2; HCs: healthy controls; LPS: lipopolysaccharide; ROC: receiver operating characteristic; sTNFR: soluble tumor necrosis factor receptor.


Assuntos
Escherichia coli Êntero-Hemorrágica/patogenicidade , Infecções por Escherichia coli/microbiologia , Síndrome Hemolítico-Urêmica/sangue , Síndrome Hemolítico-Urêmica/microbiologia , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Adolescente , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Criança , Pré-Escolar , Infecções por Escherichia coli/complicações , Feminino , Síndrome Hemolítico-Urêmica/patologia , Humanos , Lactente , Masculino , Curva ROC , Índice de Gravidade de Doença , Adulto Jovem
4.
Sci Rep ; 10(1): 15173, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968151

RESUMO

The Tol-Pal system is a protein complex that is highly conserved in many gram-negative bacteria. We show here that the Tol-Pal system is associated with the enteric pathogenesis of enterohemorrhagic E. coli (EHEC). Deletion of tolB, which is required for the Tol-Pal system decreased motility, secretion of the Type III secretion system proteins EspA/B, and the ability of bacteria to adhere to and to form attaching and effacing (A/E) lesions in host cells, but the expression level of LEE genes, including espA/B that encode Type III secretion system proteins were not affected. The Citrobacter rodentium, tolB mutant, that is traditionally used to estimate Type III secretion system associated virulence in mice did not cause lethality in mice while it induced anti-bacterial immunity. We also found that the pal mutant, which lacks activity of the Tol-Pal system, exhibited lower motility and EspA/B secretion than the wild-type parent. These combined results indicate that the Tol-Pal system contributes to the virulence of EHEC associated with the Type III secretion system and flagellar activity for infection at enteric sites. This finding provides evidence that the Tol-Pal system may be an effective target for the treatment of infectious diseases caused by pathogenic E. coli.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli Êntero-Hemorrágica/patogenicidade , Proteínas de Escherichia coli/genética , Lipoproteínas/genética , Peptidoglicano/genética , Proteínas Periplásmicas/genética , Sistemas de Secreção Tipo III/metabolismo , Animais , Aderência Bacteriana/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Citrobacter rodentium/genética , Citrobacter rodentium/patogenicidade , Infecções por Enterobacteriaceae/microbiologia , Escherichia coli Êntero-Hemorrágica/genética , Células Epiteliais/microbiologia , Proteínas de Escherichia coli/metabolismo , Feminino , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica , Células HeLa , Humanos , Lipoproteínas/metabolismo , Camundongos Endogâmicos C3H , Mutação , Peptidoglicano/metabolismo , Proteínas Periplásmicas/metabolismo , Toxina Shiga/genética , Toxina Shiga/metabolismo , Escherichia coli Shiga Toxigênica/patogenicidade , Sistemas de Secreção Tipo III/genética , Virulência
5.
Sci Rep ; 9(1): 14362, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591425

RESUMO

Shiga toxin (Stx) is the main virulence factor of enterohemorrhagic Escherichia coli (EHEC), that cause gastrointestinal infection leading to hemolytic uremic syndrome. The aim of this study was to investigate if Stx signals via ATP and if blockade of purinergic receptors could be protective. Stx induced ATP release from HeLa cells and in a mouse model. Toxin induced rapid calcium influx into HeLa cells, as well as platelets, and a P2X1 receptor antagonist, NF449, abolished this effect. Likewise, the P2X antagonist suramin blocked calcium influx in Hela cells. NF449 did not affect toxin intracellular retrograde transport, however, cells pre-treated with NF449 exhibited significantly higher viability after exposure to Stx for 24 hours, compared to untreated cells. NF449 protected HeLa cells from protein synthesis inhibition and from Stx-induced apoptosis, assayed by caspase 3/7 activity. The latter effect was confirmed by P2X1 receptor silencing. Stx induced the release of toxin-positive HeLa cell- and platelet-derived microvesicles, detected by flow cytometry, an effect significantly reduced by NF449 or suramin. Suramin decreased microvesicle levels in mice injected with Stx or inoculated with Stx-producing EHEC. Taken together, we describe a novel mechanism of Stx-mediated cellular injury associated with ATP signaling and inhibited by P2X receptor blockade.


Assuntos
Infecções por Escherichia coli/tratamento farmacológico , Síndrome Hemolítico-Urêmica/tratamento farmacológico , Receptores Purinérgicos P2X1/genética , Toxina Shiga/genética , Trifosfato de Adenosina/metabolismo , Animais , Benzenossulfonatos/farmacologia , Plaquetas/microbiologia , Escherichia coli Êntero-Hemorrágica/efeitos dos fármacos , Escherichia coli Êntero-Hemorrágica/patogenicidade , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Células HeLa , Síndrome Hemolítico-Urêmica/genética , Síndrome Hemolítico-Urêmica/microbiologia , Síndrome Hemolítico-Urêmica/patologia , Humanos , Camundongos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Toxina Shiga/antagonistas & inibidores
6.
Emerg Microbes Infect ; 8(1): 734-748, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130074

RESUMO

Many pathogens infect hosts through various immune evasion strategies. However, the molecular mechanisms by which pathogen proteins modulate and evade the host immune response remain unclear. Enterohemorrhagic Escherichia coli (EHEC) is a pathological strain that can induce mitogen-activated protein (MAP) kinase (Erk, Jnk and p38 MAPK) and NF-κB pathway activation and proinflammatory cytokine production, which then causes diarrheal diseases such as hemorrhagic colitis and hemolytic uremic syndrome. Transforming growth factor ß-activated kinase-1 (TAK1) is a key regulator involved in distinct innate immune signalling pathways. Here we report that EHEC translocated intimin receptor (Tir) protein inhibits the expression of EHEC-induced proinflammatory cytokines by interacting with the host tyrosine phosphatase SHP-1, which is dependent on the phosphorylation of immunoreceptor tyrosine-based inhibition motifs (ITIMs). Mechanistically, the association of EHEC Tir with SHP-1 facilitated the recruitment of SHP-1 to TAK1 and inhibited TAK1 phosphorylation, which then negatively regulated K63-linked polyubiquitination of TAK1 and downstream signal transduction. Taken together, these results suggest that EHEC Tir negatively regulates proinflammatory responses by inhibiting the activation of TAK1, which is essential for immune evasion and could be a potential target for the treatment of bacterial infection.


Assuntos
Escherichia coli Êntero-Hemorrágica/patogenicidade , Infecções por Escherichia coli/fisiopatologia , Proteínas de Escherichia coli/metabolismo , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , MAP Quinase Quinase Quinases/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , Fatores de Virulência/metabolismo , Animais , Infecções por Escherichia coli/microbiologia , Células HEK293 , Humanos , Macrófagos Peritoneais , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Células RAW 264.7
7.
Emerg Microbes Infect ; 7(1): 203, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30514915

RESUMO

A large German outbreak in 2011 was caused by a locus of enterocyte effacement (LEE)-negative enterohemorrhagic E. coli (EHEC) strain of the serotype O104:H4. This strain harbors markers that are characteristic of both EHEC and enteroaggregative E. coli (EAEC), including aggregative adhesion fimbriae (AAF) genes. Such rare EHEC/EAEC hybrids are highly pathogenic due to their possession of a combination of genes promoting severe toxicity and aggregative adhesion. We previously identified novel EHEC/EAEC hybrids and observed that one strain exhibited aggregative adherence but had no AAF genes. In this study, a genome sequence analysis showed that this strain belongs to the genoserotype O23:H8, MLST ST26, and harbors a 5.2 Mb chromosome and three plasmids. One plasmid carries some EAEC marker genes, such as aatA and genes with limited protein homology (11-61%) to those encoding the bundle-forming pilus (BFP) of enteropathogenic E. coli. Due to significant protein homology distance to known pili, we designated these as aggregate-forming pili (AFP)-encoding genes and the respective plasmid as pAFP. The afp operon was arranged similarly to the operon of BFP genes but contained an additional gene, afpA2, which is homologous to afpA. The deletion of the afp operon, afpA, or a nearby gene (afpR) encoding an AraC-like regulator, but not afpA2, led to a loss of pilin production, piliation, bacterial autoaggregation, and importantly, a >80% reduction in adhesion and cytotoxicity toward epithelial cells. Gene sets similar to the afp operon were identified in a variety of aatA-positive but AAF-negative intestinal pathogenic E. coli. In summary, we characterized widely distributed and novel fimbriae that are essential for aggregative adherence and cytotoxicity in a LEE-negative Shiga-toxigenic hybrid.


Assuntos
Aderência Bacteriana , Escherichia coli Êntero-Hemorrágica/patogenicidade , Proteínas de Escherichia coli/genética , Fímbrias Bacterianas/genética , Toxina Shiga/genética , Técnicas de Tipagem Bacteriana , Escherichia coli Êntero-Hemorrágica/metabolismo , Células Epiteliais/microbiologia , Infecções por Escherichia coli/microbiologia , Fímbrias Bacterianas/metabolismo , Genoma Bacteriano , Humanos , Tipagem de Sequências Multilocus , Análise de Sequência de DNA , Sorogrupo , Virulência
8.
mBio ; 9(3)2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921669

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) has two critical virulence factors-a type III secretion system (T3SS) and Shiga toxins (Stxs)-that are required for the pathogen to colonize the intestine and cause diarrheal disease. Here, we carried out a genome-wide CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats with Cas9) loss-of-function screen to identify host loci that facilitate EHEC infection of intestinal epithelial cells. Many of the guide RNAs identified targeted loci known to be associated with sphingolipid biosynthesis, particularly for production of globotriaosylceramide (Gb3), the Stx receptor. Two loci (TM9SF2 and LAPTM4A) with largely unknown functions were also targeted. Mutations in these loci not only rescued cells from Stx-mediated cell death, but also prevented cytotoxicity associated with the EHEC T3SS. These mutations interfered with early events associated with T3SS and Stx pathogenicity, markedly reducing entry of T3SS effectors into host cells and binding of Stx. The convergence of Stx and T3SS onto overlapping host targets provides guidance for design of new host-directed therapeutic agents to counter EHEC infection.IMPORTANCE Enterohemorrhagic Escherichia coli (EHEC) has two critical virulence factors-a type III secretion system (T3SS) and Shiga toxins (Stxs)-that are required for colonizing the intestine and causing diarrheal disease. We screened a genome-wide collection of CRISPR mutants derived from intestinal epithelial cells and identified mutants with enhanced survival following EHEC infection. Many had mutations that disrupted synthesis of a subset of lipids (sphingolipids) that includes the Stx receptor globotriaosylceramide (Gb3) and hence protect against Stx intoxication. Unexpectedly, we found that sphingolipids also mediate early events associated with T3SS pathogenicity. Since antibiotics are contraindicated for the treatment of EHEC, therapeutics targeting sphingolipid biosynthesis are a promising alternative, as they could provide protection against both of the pathogen's key virulence factors.


Assuntos
Escherichia coli Êntero-Hemorrágica/fisiologia , Infecções por Escherichia coli/metabolismo , Toxina Shiga/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência/metabolismo , Vias Biossintéticas/genética , Linhagem Celular , Sobrevivência Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/metabolismo , Escherichia coli Êntero-Hemorrágica/patogenicidade , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Marcação de Genes , Loci Gênicos , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno , Humanos , Mutação , Toxina Shiga/genética , Esfingolipídeos/biossíntese , Triexosilceramidas/biossíntese , Sistemas de Secreção Tipo III/genética , Fatores de Virulência/genética
9.
Biotechnol J ; 12(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28869356

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) are commonly present in the gastrointestinal tract of cattle and cause serious infectious disease in humans. Immunizing cattle against EHEC is a promising strategy to decrease the risk of food contamination; however, veterinary vaccines against EHEC such as Econiche have not been widely adopted by the agricultural industry, and have been discontinued, prompting the need for more cost-effective EHEC vaccines. The objective of this project is to develop a platform to produce plant-made antigens for oral vaccination of ruminants against EHEC. Five recombinant proteins were designed as vaccine candidates and expressed transiently in Nicotiana benthamiana and transplastomically in Nicotiana tabacum. Three of these EHEC proteins, NleA, Stx2b, and a fusion of EspA accumulated when transiently expressed. Transient protein accumulation was the highest when EHEC proteins were fused to an elastin-like polypeptide (ELP) tag. In the transplastomic lines, EspA accumulated up to 479 mg kg-1 in lyophilized leaf material. Sheep that were administered leaf tissue containing recombinant EspA shed less E. coli O157:H7 when challenged, as compared to control animals. These results suggest that plant-made, transgenic EspA has the potential to reduce EHEC shedding in ruminants.


Assuntos
Escherichia coli Êntero-Hemorrágica/genética , Proteínas de Escherichia coli/genética , Vacinas contra Escherichia coli/biossíntese , Nicotiana/genética , Plantas Geneticamente Modificadas/genética , Ruminantes/microbiologia , Vacinas de Subunidades Antigênicas/biossíntese , Administração Oral , Animais , Modelos Animais de Doenças , Escherichia coli Êntero-Hemorrágica/efeitos dos fármacos , Escherichia coli Êntero-Hemorrágica/patogenicidade , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Escherichia coli O157/imunologia , Vacinas contra Escherichia coli/administração & dosagem , Vacinas contra Escherichia coli/genética , Vacinas contra Escherichia coli/imunologia , Fezes/microbiologia , Regulação da Expressão Gênica de Plantas , Imunização , Masculino , Folhas de Planta/química , Plantas Geneticamente Modificadas/metabolismo , RNA Mensageiro/biossíntese , Proteínas Recombinantes , Ovinos , Toxina Shiga II/genética , Nicotiana/química , Vacinação , Fatores de Virulência/genética
10.
FEMS Microbiol Lett ; 364(13)2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28651361

RESUMO

Epigallocatechin gallate (EGCG), a major polyphenol in green tea, inhibits the type III secretion system (T3SS) of enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively), Salmonella enterica serovar Typhimurium, and Yersinia pseudotuberculosis. The inhibitory effect causes the inhibition of hemolysis, cell invasion, cell adhesion and apoptosis, which are functions of the type III secretion device. In the case of EPEC, EspB accumulates in the cells. RT-PCR showed that the translation of EspB was not blocked. The transcription of escN, which supplies energy for the injection of the effector factor into the host cells, was also not inhibited. EGCG does not suppress the transcription and translation of T3SS constitutive protein in bacterial cells, but it seems to suppress the normal construction or secretion of T3SS. When Luria-Bertani (LB) medium was used to visualize the EGCG-induced inhibition of T3SS, the inhibitory effect disappeared. The inhibition of T3SS was partially canceled when the T3SS inhibitory potency of EGCG was examined by adding yeast extract, which is a component of LB medium, to DMEM. These results suggest that EGCG probably inhibits secretion by suppressing some metabolic mechanisms of T3SS.


Assuntos
Catequina/análogos & derivados , Escherichia coli Êntero-Hemorrágica/efeitos dos fármacos , Escherichia coli Êntero-Hemorrágica/patogenicidade , Escherichia coli Enteropatogênica/efeitos dos fármacos , Salmonella typhi/efeitos dos fármacos , Sistemas de Secreção Tipo III/efeitos dos fármacos , Yersinia pseudotuberculosis/efeitos dos fármacos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Catequina/farmacologia , Linhagem Celular , Meios de Cultura/farmacologia , Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Microbiologia de Alimentos , Humanos , Salmonella typhi/patogenicidade , Fatores de Virulência/metabolismo , Yersinia pseudotuberculosis/patogenicidade
11.
J Biol Chem ; 292(27): 11423-11430, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28522607

RESUMO

Many Gram-negative bacterial pathogens use a syringe-like apparatus called a type III secretion system to inject virulence factors into host cells. Some of these effectors are enzymes that modify host proteins to subvert their normal functions. NleB is a glycosyltransferase that modifies host proteins with N-acetyl-d-glucosamine to inhibit antibacterial and inflammatory host responses. NleB is conserved among the attaching/effacing pathogens enterohemorrhagic Escherichia coli (EHEC), enteropathogenic E. coli (EPEC), and Citrobacter rodentium Moreover, Salmonella enterica strains encode up to three NleB orthologs named SseK1, SseK2, and SseK3. However, there are conflicting reports regarding the activities and host protein targets among the NleB/SseK orthologs. Therefore, here we performed in vitro glycosylation assays and cell culture experiments to compare the activities and substrate specificities of these effectors. SseK1, SseK3, EHEC NleB1, EPEC NleB1, and Crodentium NleB blocked TNF-mediated NF-κB pathway activation, whereas SseK2 and NleB2 did not. C. rodentium NleB, EHEC NleB1, and SseK1 glycosylated host GAPDH. C. rodentium NleB, EHEC NleB1, EPEC NleB1, and SseK2 glycosylated the FADD (Fas-associated death domain protein). SseK3 and NleB2 were not active against either substrate. We also found that EHEC NleB1 glycosylated two GAPDH arginine residues, Arg197 and Arg200, and that these two residues were essential for GAPDH-mediated activation of TNF receptor-associated factor 2 ubiquitination. These results provide evidence that members of this highly conserved family of bacterial virulence effectors target different host protein substrates and exhibit distinct cellular modes of action to suppress host responses.


Assuntos
Proteínas de Bactérias/metabolismo , Citrobacter rodentium/enzimologia , Escherichia coli Êntero-Hemorrágica/enzimologia , Escherichia coli Enteropatogênica/enzimologia , Proteínas de Escherichia coli/metabolismo , Salmonella enterica/enzimologia , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Citrobacter rodentium/genética , Citrobacter rodentium/patogenicidade , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/patogenicidade , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/genética , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Glicosilação , Camundongos , Células RAW 264.7 , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Salmonella enterica/genética , Salmonella enterica/patogenicidade , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Ubiquitinação , Fatores de Virulência/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-28469995

RESUMO

Serotype O157:H7, an enterohemorrhagic Escherichia coli (EHEC), is known to cause gastrointestinal and systemic illnesses ranging from diarrhea and hemorrhagic colitis to potentially fatal hemolytic uremic syndrome. Specific genetic factors like ompA, nsrR, and LEE genes are known to play roles in EHEC pathogenesis. However, these factors are not specific to EHEC and their presence in several non-pathogenic strains indicates that additional factors are involved in pathogenicity. We propose a comprehensive effort to screen for such potential genetic elements, through investigation of biomolecular interactions between E. coli and their host. In this work, an in silico investigation of the protein-protein interactions (PPIs) between human cells and four EHEC strains (viz., EDL933, Sakai, EC4115, and TW14359) was performed in order to understand the virulence and host-colonization strategies of these strains. Potential host-pathogen interactions (HPIs) between human cells and the "non-pathogenic" E. coli strain MG1655 were also probed to evaluate whether and how the variations in the genomes could translate into altered virulence and host-colonization capabilities of the studied bacterial strains. Results indicate that a small subset of HPIs are unique to the studied pathogens and can be implicated in virulence. This subset of interactions involved E. coli proteins like YhdW, ChuT, EivG, and HlyA. These proteins have previously been reported to be involved in bacterial virulence. In addition, clear differences in lineage and clade-specific HPI profiles could be identified. Furthermore, available gene expression profiles of the HPI-proteins were utilized to estimate the proportion of proteins which may be involved in interactions. We hypothesized that a cumulative score of the ratios of bound:unbound proteins (involved in HPIs) would indicate the extent of colonization. Thus, we designed the Host Colonization Index (HCI) measure to determine the host colonization potential of the E. coli strains. Pathogenic strains of E. coli were observed to have higher HCIs as compared to a non-pathogenic laboratory strain. However, no significant differences among the HCIs of the two pathogenic groups were observed. Overall, our findings are expected to provide additional insights into EHEC pathogenesis and are likely to aid in designing alternate preventive and therapeutic strategies.


Assuntos
Simulação por Computador , Escherichia coli Êntero-Hemorrágica/metabolismo , Infecções por Escherichia coli/microbiologia , Interações Hospedeiro-Patógeno , Mapas de Interação de Proteínas/fisiologia , Animais , Bovinos , Escherichia coli Êntero-Hemorrágica/classificação , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/patogenicidade , Células Epiteliais , Escherichia coli/genética , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Humanos , Virulência/genética
13.
Artigo em Inglês | MEDLINE | ID: mdl-28484684

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 are human pathogens responsible for bloody diarrhea and renal failures. EHEC employ a type 3 secretion system to attach directly to the human colonic epithelium. This structure is encoded by the locus of enterocyte effacement (LEE) whose expression is regulated in response to specific nutrients. In this study, we show that the mucin-derived sugars N-acetylglucosamine (NAG) and N-acetylneuraminic acid (NANA) inhibit EHEC adhesion to epithelial cells through down-regulation of LEE expression. The effect of NAG and NANA is dependent on NagC, a transcriptional repressor of the NAG catabolism in E. coli. We show that NagC is an activator of the LEE1 operon and a critical regulator for the colonization of mice intestine by EHEC. Finally, we demonstrate that NAG and NANA as well as the metabolic activity of Bacteroides thetaiotaomicron affect the in vivo fitness of EHEC in a NagC-dependent manner. This study highlights the role of NagC in coordinating metabolism and LEE expression in EHEC and in promoting EHEC colonization in vivo.


Assuntos
Acetilglucosamina/antagonistas & inibidores , Aderência Bacteriana/efeitos dos fármacos , Escherichia coli Êntero-Hemorrágica/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Fosfoproteínas/genética , Proteínas Repressoras/genética , Animais , Bacteroides thetaiotaomicron/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Escherichia coli Êntero-Hemorrágica/metabolismo , Escherichia coli Êntero-Hemorrágica/patogenicidade , Células Epiteliais/microbiologia , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Células HCT116 , Células HeLa , Humanos , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Ácido N-Acetilneuramínico/antagonistas & inibidores , Óperon , Fosfoproteínas/metabolismo , Proteínas Repressoras/fisiologia
14.
Sci Rep ; 7: 44655, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28317910

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) are major food-borne pathogens whose survival and virulence in the human digestive tract remain unclear owing to paucity of relevant models. EHEC interact with the follicle-associated epithelium of Peyer's patches of the distal ileum and translocate across the intestinal epithelium via M-cells, but the underlying molecular mechanisms are still unknown. Here, we investigated the involvement of Long polar fimbriae (Lpf) in EHEC pathogenesis. Of the 236 strains tested, a significant association was observed between the presence of lpf operons and pathogenicity. In sophisticated in vitro models of the human gastro-intestinal tract, lpf expression was induced during transit through the simulated stomach and small intestine, but not in the colonic compartment. To investigate the involvement of Lpf in EHEC pathogenesis, lpf isogenic mutants and their relative trans-complemented strains were generated. Translocation across M-cells, interactions with murine ileal biopsies containing Peyer's patches and the number of hemorrhagic lesions were significantly reduced with the lpf mutants compared to the wild-type strain. Complementation of lpf mutants fully restored the wild-type phenotypes. Our results indicate that (i) EHEC might colonize the terminal ileum at the early stages of infection, (ii) Lpf are an important player in the interactions with Peyer's patches and M-cells, and could contribute to intestinal colonization.


Assuntos
Escherichia coli Êntero-Hemorrágica/patogenicidade , Infecções por Escherichia coli/microbiologia , Fímbrias Bacterianas/metabolismo , Nódulos Linfáticos Agregados/microbiologia , Nódulos Linfáticos Agregados/patologia , Animais , Aderência Bacteriana/genética , Translocação Bacteriana , Células CACO-2 , Escherichia coli Êntero-Hemorrágica/classificação , Escherichia coli Êntero-Hemorrágica/genética , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Escherichia coli O157 , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Humanos , Intestino Delgado/microbiologia , Intestino Delgado/patologia , Masculino , Camundongos , Modelos Biológicos , Óperon/genética , Sorotipagem , Estômago/microbiologia , Estômago/patologia , Virulência
15.
Artigo em Inglês | MEDLINE | ID: mdl-27446815

RESUMO

Enterohemorrhagic E.coli (EHEC) is an important foodborne pathogen in the developed world and can cause life-threatening disease particularly in children. EHEC persists in the human gut by adhering intimately to colonic epithelium and forming characteristic attaching/effacing lesions. In this study, we investigated the innate immune response to EHEC infection with particular focus on antimicrobial peptide and protein expression by colonic epithelium. Using a novel human colonic biopsy model and polarized T84 colon carcinoma cells, we found that EHEC infection induced expression of human ß-defensin 2 (hBD2), whereas hBD1, hBD3, LL-37, and lysozyme remained unchanged. Infection with specific EHEC deletion mutants demonstrated that this was dependent on flagellin, and apical exposure to purified flagellin was sufficient to stimulate hBD2 and also interleukin (IL)-8 expression ex vivo and in vitro. Flagellin-mediated hBD2 induction was significantly reduced by inhibitors of NF-κB, MAP kinase p38 and JNK but not ERK1/2. Interestingly, IL-8 secretion by polarized T84 cells was vectorial depending on the side of stimulation, and apical exposure to EHEC or flagellin resulted in apical IL-8 release. Our results demonstrate that EHEC only induces a modest immune response in human colonic epithelium characterized by flagellin-dependent induction of hBD2 and low levels of IL-8.


Assuntos
Colo/metabolismo , Escherichia coli Êntero-Hemorrágica/patogenicidade , Infecções por Escherichia coli/imunologia , Proteínas de Escherichia coli/metabolismo , Flagelina/farmacologia , beta-Defensinas/efeitos dos fármacos , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Anti-Infecciosos/farmacologia , Aderência Bacteriana , Biópsia , Linhagem Celular Tumoral , Colo/microbiologia , Neoplasias do Colo , Proteínas de Escherichia coli/genética , Flagelina/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Imunidade Inata , Interleucina-8/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , NF-kappa B/metabolismo , Deleção de Sequência
16.
Gene ; 588(2): 115-23, 2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27173635

RESUMO

As a global transcriptional regulator, H-NS, the histone-like nucleoid-associated DNA-binding and bridging protein, plays a wide range of biological roles in bacteria. In order to determine the role of H-NS in regulating gene transcription and further find out the biological significance of this protein in Enterohemorrhagic Escherichia coli (EHEC), we conducted transcriptome analysis of hns mutant by RNA sequencing. A total of 983 genes were identified to be regulated by H-NS in EHEC. 213 and 770 genes were down-regulated and up-regulated in the deletion mutant of hns, respectively. Interestingly, 34 of 97 genes on virulence plasmid pO157 were down-regulated by H-NS. Although the deletion mutant of hns showed a decreased survival rate in macrophage compared with the wild type strain, it exhibited the higher ability to colonize mice gut and became more virulent to BALB/c mice. The BALB/c mice infected with the deletion mutant of hns showed a lower survival rate, and a higher bacterial burden in the gut, compared with those infected with wild type strain, especially when the gut microbiota was not disturbed by antibiotic administration. These findings suggest that H-NS plays an important role in virulence of EHEC by interacting with host gut microbiota.


Assuntos
Antibiose , Escherichia coli Êntero-Hemorrágica/patogenicidade , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Fímbrias/genética , Regulação Bacteriana da Expressão Gênica , Transcriptoma , Animais , Carga Bacteriana , Sequência de Bases , Modelos Animais de Doenças , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/crescimento & desenvolvimento , Infecções por Escherichia coli/mortalidade , Infecções por Escherichia coli/patologia , Feminino , Proteínas de Fímbrias/deficiência , Microbioma Gastrointestinal/fisiologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos/química , Plasmídeos/metabolismo , Deleção de Sequência , Análise de Sobrevida , Virulência
17.
Sci Rep ; 6: 21837, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26903273

RESUMO

Shiga toxin 2 (Stx2) is a major virulence factor in infections with Stx-producing Escherichia coli (STEC), which can cause serious clinical complications in humans, such as hemolytic uremic syndrome (HUS). Recently, we screened and identified two peptide-based Stx2 neutralizers, TF-1 and WA-8, which specifically and directly bind to Stx2. Computer simulations suggested that the majority of TF-1 or WA-8 binds tightly at the receptor-binding site 3 of Stx2. The two peptides also effectively inhibited the cytotoxic activity of Stx2 by blocking the binding of Stx2 to target cells. TF-1 exhibits remarkable therapeutic potency in both mice and rat toxicity models. In mice toxicity models, TF-1 provided full protection when mice were injected with 5 LD50 of Stx2. In rat toxicity models, TF-1 reduced fatal tissue damage and completely protected rats from the lethal challenges of Stx2. In these rats, TF-1 significantly decreased the concentration of Stx2 in blood and diminished tissue distribution levels of Stx2. Furthermore, TF-1 effectively protected rats from the pathological effects caused by Stx2, especially in the kidney, thymus, adrenal gland, and lung. Taken together, these results indicate that TF-1 is a promising therapeutic agent against the pathogenicity of Stx2.


Assuntos
Antídotos/farmacologia , Escherichia coli Êntero-Hemorrágica/química , Peptídeos/farmacologia , Toxina Shiga II/antagonistas & inibidores , Fatores de Virulência/antagonistas & inibidores , Administração Intravenosa , Sequência de Aminoácidos , Animais , Antídotos/síntese química , Antídotos/química , Escherichia coli Êntero-Hemorrágica/metabolismo , Escherichia coli Êntero-Hemorrágica/patogenicidade , Feminino , Células HeLa , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Biblioteca de Peptídeos , Peptídeos/síntese química , Peptídeos/química , Estrutura Secundária de Proteína , Ratos , Ratos Wistar , Proteínas Recombinantes/síntese química , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Toxina Shiga II/biossíntese , Toxina Shiga II/química , Toxina Shiga II/toxicidade , Análise de Sobrevida , Fatores de Virulência/biossíntese , Fatores de Virulência/química , Fatores de Virulência/toxicidade
18.
Infect Immun ; 84(1): 138-48, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26483408

RESUMO

Infection with enterohemorrhagic Escherichia coli (EHEC) can result in severe disease, including hemorrhagic colitis and the hemolytic uremic syndrome. Shiga toxins (Stx) are the key EHEC virulence determinant contributing to severe disease. Despite inhibiting protein synthesis, Shiga toxins paradoxically induce the expression of proinflammatory cytokines from various cell types in vitro, including intestinal epithelial cells (IECs). This effect is mediated in large part by the ribotoxic stress response (RSR). The Shiga toxin-induced RSR is known to involve the activation of the stress-activated protein kinases (SAPKs) p38 and JNK. In some cell types, Stx also can induce the classical mitogen-activated protein kinases (MAPKs) or ERK1/2, but the mechanism(s) by which this activation occurs is unknown. In this study, we investigated the mechanism by which Stx activates ERK1/2s in IECs and the contribution of ERK1/2 activation to interleukin-8 (IL-8) expression. We demonstrate that Stx1 activates ERK1/2 in a biphasic manner: the first phase occurs in response to StxB1 subunit, while the second phase requires StxA1 subunit activity. We show that the A subunit-dependent ERK1/2 activation is mediated through ZAK-dependent signaling, and inhibition of ERK1/2 activation via the MEK1/2 inhibitors U0126 and PD98059 results in decreased Stx1-mediated IL-8 mRNA. Finally, we demonstrate that ERK1/2 are activated in vivo in the colon of Stx2-intoxicated infant rabbits, a model in which Stx2 induces a primarily neutrophilic inflammatory response. Together, our data support a role for ERK1/2 activation in the development of Stx-mediated intestinal inflammation.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Toxina Shiga I/metabolismo , Toxina Shiga II/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Butadienos/farmacologia , Linhagem Celular , Escherichia coli Êntero-Hemorrágica/patogenicidade , Ativação Enzimática , Células Epiteliais/imunologia , Infecções por Escherichia coli/microbiologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Flavonoides/farmacologia , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Células HEK293 , Síndrome Hemolítico-Urêmica/microbiologia , Humanos , Inflamação/imunologia , Interleucina-8/biossíntese , Interleucina-8/genética , Mucosa Intestinal/imunologia , MAP Quinase Quinase Quinases , Nitrilas/farmacologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Coelhos
19.
Shock ; 43(5): 483-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25608140

RESUMO

Intestinal epithelia regulate barrier integrity when challenged by inflammation, oxidative stress, and microbes. Transforming growth factor-ß1 (TGF-ß1) is a cytokine with known beneficial effects on intestinal epithelia, including barrier enhancement, after exposure to proinflammatory cytokines and infectious agents. The aim of this study was to determine whether TGF-ß1 directly protects intestinal epithelia during hypoxia-reoxygenation (HR). Intestinal epithelial monolayers (T84, Caco-2) were exposed to either hypoxia (1% O2, 1 h) or oxidative stress (hydrogen peroxide, 1 mM), followed by normoxic atmosphere for different time points in the absence and presence of varying concentrations of TGF-ß1. Transepithelial electrical resistance (TER) assessed barrier function, with RNA extracted for reverse transcription polymerase chain reaction analysis of GPx-1, HIF-1, heme-oxygenase-1 (HO-1), and NOX-1. In some experiments, intestinal epithelia were exposed to enterohemorrhagic Escherichia coli (EHEC) O157:H7 during the reoxygenation period and TER recorded 7 h after the infectious challenge. Hypoxia-reoxygenation significantly decreased TER in intestinal epithelia compared with normoxic controls. Transforming growth factor-ß1 pretreatment ameliorated HR-induced epithelial barrier dysfunction in T84 (at 1 - 3 h) and Caco-2 (1 h) monolayers. Transforming growth factor-ß1 preserved barrier integrity for up to 16 h after challenge with hydrogen peroxide. In TGF-ß1-treated epithelial monolayers, only HO-1 mRNA significantly increased after HR (P < 0.05 vs. normoxic controls). The EHEC-induced epithelial barrier dysfunction was significantly worsened by intestinal HR (P < 0.05 vs. normoxia-EHEC-infected cells), but this was not protected by TGF-ß1 pretreatment. Transforming growth factor-ß1 preserves loss of epithelial barrier integrity caused by the stress of HR via a mechanism that may involve the upregulation of HO-1 transcription. Targeted treatment with TGF-ß could lead to novel therapies in enteric diseases characterized by HR injury.


Assuntos
Mucosa Intestinal/efeitos dos fármacos , Estresse Oxidativo , Fator de Crescimento Transformador beta1/farmacologia , Células CACO-2 , Hipóxia Celular , Citocinas/metabolismo , Impedância Elétrica , Escherichia coli Êntero-Hemorrágica/patogenicidade , Células Epiteliais/efeitos dos fármacos , Epitélio/metabolismo , Expressão Gênica , Heme Oxigenase-1/metabolismo , Humanos , Peróxido de Hidrogênio/química , Enteropatias/metabolismo , Mucosa Intestinal/patologia , Oxigênio/química , RNA Mensageiro/metabolismo , Proteínas Recombinantes/farmacologia , Fatores de Tempo
20.
Infect Immun ; 82(11): 4631-42, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25156739

RESUMO

Enterohemorrhagic Escherichia coli (EHEC), a subgroup of Shiga toxin (Stx)-producing E. coli (STEC), is a leading cause of diarrhea and hemolytic-uremic syndrome (HUS) in humans. However, urinary tract infections (UTIs) caused by this microorganism but not associated with diarrhea have occasionally been reported. We geno- and phenotypically characterized three EHEC isolates obtained from the urine of hospitalized patients suffering from UTIs. These isolates carried typical EHEC virulence markers and belonged to HUS-associated E. coli (HUSEC) clones, but they lacked virulence markers typical of uropathogenic E. coli. One isolate exhibited a localized adherence (LA)-like pattern on T24 urinary bladder epithelial cells. Since the glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) are well-known receptors for Stx but also for P fimbriae, a major virulence factor of extraintestinal pathogenic E. coli (ExPEC), the expression of Gb3Cer and Gb4Cer by T24 cells and in murine urinary bladder tissue was examined by thin-layer chromatography and mass spectrometry. We provide data indicating that Stxs released by the EHEC isolates bind to Gb3Cer and Gb4Cer isolated from T24 cells, which were susceptible to Stx. All three EHEC isolates expressed stx genes upon growth in urine. Two strains were able to cause UTI in a murine infection model and could not be outcompeted in urine in vitro by typical uropathogenic E. coli isolates. Our results indicate that despite the lack of ExPEC virulence markers, EHEC variants may exhibit in certain suitable hosts, e.g., in hospital patients, a uropathogenic potential. The contribution of EHEC virulence factors to uropathogenesis remains to be further investigated.


Assuntos
Cistite/microbiologia , Escherichia coli Êntero-Hemorrágica/isolamento & purificação , Escherichia coli Êntero-Hemorrágica/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções Urinárias/microbiologia , Adulto , Idoso , Animais , Linhagem Celular , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/patogenicidade , Feminino , Humanos , Camundongos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA