Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Nat Prod ; 83(12): 3614-3622, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33270444

RESUMO

Lythrum salicaria herb (LSH) was applied in diarrhea therapy since ancient times. Despite empirically referenced therapeutic effects, the bioactivity mechanisms and chemical constituents responsible for pharmacological activity remain not fully resolved. Taking into consideration the historical use of LSH in treatment of diarrhea in humans and farm animals, the aim of the study was to examine in vitro the influence of LSH and its C-glycosylic ellagitannins on processes associated with maintaining intestinal epithelium integrity and enteropathogenic Escherichia coli (EPEC) growth and adhesion. LSH was not only inhibiting EPEC growth in a concentration dependent manner but also its adhesion to IPEC-J2 intestinal epithelial cell monolayers. Inhibitory activity toward EPEC growth was additionally confirmed ex vivo in distal colon samples of postweaning piglets. LSH and its dominating C-glycosylic ellagitannins, castalagin (1), vescalagin (2), and salicarinins A (3) and B (4) were stimulating IPEC-J2 monolayer formation by enhancing claudin 4 production. Parallelly tested gut microbiota metabolites of LSH ellagitannins, urolithin C (5), urolithin A (6), and its glucuronides (7) were inactive. The activities of LSH and the isolated ellagitannins support its purported antidiarrheal properties and indicate potential mechanisms responsible for its beneficial influence on the intestinal epithelium.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Escherichia coli Enteropatogênica/efeitos dos fármacos , Taninos Hidrolisáveis/farmacologia , Lythrum/química , Linhagem Celular , Escherichia coli Enteropatogênica/crescimento & desenvolvimento , Escherichia coli Enteropatogênica/fisiologia , Células Epiteliais/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos
2.
mBio ; 11(6)2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144373

RESUMO

Enteropathogenic Escherichia coli (EPEC) is an extracellular pathogen that tightly adheres to host cells by forming "actin pedestals" beneath the bacteria, a critical step in pathogenesis. EPEC injects effector proteins that manipulate host cell signaling cascades to trigger pedestal assembly. We have recently shown that one such effector, EspG, hijacks p21-activated kinase (PAK) and sustains its activated state to drive the cytoskeletal changes necessary for attachment of the pathogen to target cells. This EspG subversion of PAK required active Rho family small GTPases in the host cell. Here we show that EPEC itself promotes the activation of Rho GTPases by recruiting Frabin, a host guanine nucleotide exchange factor (GEF) for the Rho GTPase Cdc42. Cells devoid of Frabin showed significantly lower EPEC-induced PAK activation, pedestal formation, and bacterial attachment. Frabin recruitment to sites of EPEC attachment was driven by EspG and required localized enrichment of phosphatidylinositol 4,5-bisphosphate (PIP2) and host Arf6. Our findings identify Frabin as a key target for EPEC to ensure the activation status of cellular GTPases required for actin pedestal formation.IMPORTANCE Enteropathogenic Escherichia coli (EPEC) is a leading cause of diarrhea in children, especially in the developing world. EPEC initiates infection by attaching to cells in the host intestine, triggering the formation of actin-rich "pedestal" structures directly beneath the adherent pathogen. These bacteria inject their own receptor into host cells, which upon binding to a protein on the pathogen surface triggers pedestal formation. Multiple other proteins are also delivered into the cells of the host intestine, which work together to hijack host signaling pathways to drive pedestal production. Here we show how EPEC hijacks a host protein, Frabin, which creates the conditions in the cell necessary for the pathogen to manipulate a specific pathway that promotes pedestal formation. This provides new insights into this essential early stage in disease caused by EPEC.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Escherichia coli Enteropatogênica/fisiologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Interações Hospedeiro-Patógeno , Proteínas dos Microfilamentos/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Modelos Biológicos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico
3.
Artigo em Inglês | MEDLINE | ID: mdl-31681620

RESUMO

Pet and EspC are toxins secreted by enteroaggregative (EAEC) and enteropathogenic (EPEC) diarrheagenic Escherichia coli pathotypes, respectively. Both toxins are members of the Serine Protease Autotransporters of Enterobacteriaceae (SPATEs) family. Pet and EspC are important virulence factors that produce cytotoxic and enterotoxic effects on enterocytes. Here, we evaluated the effect of curcumin, a polyphenolic compound obtained from the rhizomes of Curcuma longa L. (Zingiberaceae) on the secretion and cytotoxic effects of Pet and EspC proteins. We found that curcumin prevents Pet and EspC secretion without affecting bacterial growth or the expression of pet and espC. Our results show that curcumin affects the release of these SPATEs from the translocation domain, thereby affecting the pathogenesis of EAEC and EPEC. Curcumin-treated EAEC and EPEC did not induce significant cell damage like the ability to disrupt the actin cytoskeleton, without affecting their characteristic adherence patterns on epithelial cells. A molecular model of docking predicted that curcumin interacts with the determinant residues Asp1018-Asp1019 and Asp1029-Asp1030 of the translocation domain required for the release of Pet and EspC, respectively. Consequently, curcumin blocks Pet and EspC cytotoxicity on epithelial cells by preventing their release from the outer membrane.


Assuntos
Membrana Externa Bacteriana/metabolismo , Toxinas Bacterianas/metabolismo , Curcumina/farmacologia , Escherichia coli Enteropatogênica/efeitos dos fármacos , Escherichia coli Enteropatogênica/fisiologia , Enterotoxinas/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Serina Endopeptidases/metabolismo , Toxinas Bacterianas/química , Sítios de Ligação , Curcumina/química , Citoesqueleto/metabolismo , Enterotoxinas/química , Proteínas de Escherichia coli/química , Interações Hospedeiro-Patógeno , Humanos , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Proteólise , Serina Endopeptidases/química , Relação Estrutura-Atividade
4.
Microbiologyopen ; 8(12): e931, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31568664

RESUMO

Enteropathogenic Escherichia coli (EPEC) infection causes a histopathological lesion including recruitment of F-actin beneath the attached bacteria and formation of actin-rich pedestal-like structures. Another important target of EPEC is the tight junction (TJ), and EspF induces displacement of TJ proteins and increased intestinal permeability. Previously, we determined that an EPEC strain lacking EspF did not cause TJ disruption; meanwhile, pedestals were located on the TJ and smaller than those induced by the wild-type strain. Therefore, EspF could be playing an important role in both phenotypes. Here, using different cell models, we found that EspF was essential for pedestal maturation through ZO-1 disassembly from TJ, leading to (a) ZO-1 recruitment to the pedestal structure; no other main TJ proteins were required. Recruited ZO-1 allowed the afadin recruitment. (b) Afadin recruitment caused an afadin-ZO-1 transient interaction, like during TJ formation. (c) Afadin and ZO-1 were segregated to the tip and the stem of pedestal, respectively, causing pedestal maturation. Initiation of these three discrete phases for pedestal maturation functionally and physically required EspF expression. Pedestal maturation process could help coordinate the epithelial actomyosin function by maintaining the actin-rich column composing the pedestal structure and could be important in the dynamics of the pedestal movement on epithelial cells.


Assuntos
Escherichia coli Enteropatogênica/fisiologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas/genética , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Actinas/metabolismo , Células Epiteliais/metabolismo , Infecções por Escherichia coli/patologia , Proteínas de Escherichia coli/metabolismo , Imunofluorescência , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Permeabilidade , Fosfoproteínas/metabolismo , Ligação Proteica
5.
Infect Immun ; 87(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31527129

RESUMO

Epidemiological studies suggest frequent association of enteropathogenic bacteria with Entamoeba histolytica during symptomatic infection. In this study, we sought to determine if the interaction with enteropathogenic (EPEC) or nonpathogenic Escherichia coli (strain DH5α) could modify the virulence of E. histolytica to cause disease in animal models of amebiasis. In vitro studies showed a 2-fold increase in CaCo2 monolayer destruction when E. histolytica interacted with EPEC but not with E. coli DH5α for 2.5 h. This was associated with increased E. histolytica proteolytic activity as revealed by zymogram analysis and degradation of the E. histolytica CP-A1/5 (EhCP-A1/5) peptide substrate Z-Arg-Arg-pNC and EhCP4 substrate Z-Val-Val-Arg-AMC. Additionally, E. histolytica-EPEC interaction increased EhCP-A1, -A2, -A4, and -A5, Hgl, Apa, and Cox-1 mRNA expression. Despite the marked upregulation of E. histolytica virulence factors, nonsignificant macroscopic differences in amebic liver abscess development were observed at early stages in hamsters inoculated with either E. histolytica-EPEC or E. histolytica-E. coli DH5α. Histopathology of livers of E. histolytica-EPEC-inoculated animals revealed foci of acute inflammation 3 h postinoculation that progressively increased, producing large inflammatory reactions, ischemia, and necrosis with high expression of il-1ß, ifn-γ, and tnf-α proinflammatory cytokine genes compared with that in livers of E. histolytica-E. coli DH5α-inoculated animals. In closed colonic loops from mice, intense inflammation was observed with E. histolytica-EPEC manifested by downregulation of Math1 mRNA with a corresponding increase in the expression of Muc2 mucin and proinflammatory cytokine genes il-6, il-12, and mcp-1 These results demonstrate that E. histolytica/EPEC interaction enhanced the expression and production of key molecules associated with E. histolytica virulence, critical in pathogenesis and progression of disease.


Assuntos
Entamoeba histolytica/patogenicidade , Entamebíase/patologia , Escherichia coli Enteropatogênica/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Animais , Células CACO-2 , Linhagem Celular , Cricetinae , Cisteína Proteases/metabolismo , Citocinas/metabolismo , Entamoeba histolytica/microbiologia , Células HT29 , Humanos , Inflamação , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Mucina-2/metabolismo , Fatores de Virulência/biossíntese
6.
Rev. argent. microbiol ; 51(3): 208-213, set. 2019. ilus, tab
Artigo em Espanhol | LILACS | ID: biblio-1041826

RESUMO

La capacidad de formar biopelículas de los microorganismos patógenos en gran variedad de ambientes, superficies y condiciones trae consigo un importante riesgo, tanto para la industria alimentaria como para la salud pública. Este trabajo tuvo como objetivo evaluar y comparar los efectos de la metodología empleada y de los medios de cultivo utilizados, sobre la capacidad de una cepa de Escherichia coli verotoxigénica no O157 y una enteropatogénica de formar biopelículas sobre una superficie de poliestireno. Se ensayaron 2 variantes metodológicas en cultivo estático y se utilizaron medios de cultivo con diferente composición. Los resultados mostraron que ambas cepas formaron una mayor cantidad de biopelícula en cultivo en LB suplementado con glucosa, con recambio del medio a las 24 h y la cuantificación de la biopelícula realizada a las 48 h de incubación. Dichas condiciones podrían ser utilizadas en futuros estudios sobre formación de biopelícula.


The ability to form biofilms of pathogenic microorganisms in a wide variety of environments, surfaces and conditions constitute an important risk, both for the food industry and for public health. The aim of this work was to evaluate and to compare the effects of the methodology applied and the culture medium used on the ability of a non-O157 verotoxigenic Escherichia coli strain and an enteropathogenic strain to form biofilm on polystyrene surface. Two methodological variants were tested in static culture and culture mediums with different composition were used. The results showed that both strains were able to form a greater biofilm under culture in LB supplemented with glucose, with medium replacement at 24 h and the quantification of the biofilm carried out at 48 h of incubation. These conditions could be used in future studies on biofilm formation.


Assuntos
Biofilmes/efeitos dos fármacos , Meios de Cultura/farmacologia , Escherichia coli Enteropatogênica/efeitos dos fármacos , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Poliestirenos , Especificidade da Espécie , Técnicas Bacteriológicas , Biofilmes/crescimento & desenvolvimento , Escherichia coli Enteropatogênica/fisiologia , Escherichia coli Enteropatogênica/patogenicidade , Escherichia coli Shiga Toxigênica/fisiologia , Escherichia coli Shiga Toxigênica/patogenicidade , Glucose/farmacologia
7.
J Med Microbiol ; 68(6): 940-951, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31107199

RESUMO

PURPOSE: This study aimed to characterize 82 atypical enteropathogenic Escherichia coli (aEPEC) isolates, obtained from patients with diarrhea in Brazil, regarding their adherence patterns on HeLa cells and attaching and effacing (AE) lesion pathways. METHODOLOGY: The adherence and fluorescence-actin staining (FAS) assays were performed using HeLa cells. AE lesion pathways were determined through the detection of tyrosine residue 474 (Y474) phosphorylation in the Tir protein, after its translocation to host cells, and by PCR assays for tir genotyping and detection of Tir-cytoskeleton coupling protein (tccP) genes. RESULTS: Regarding the adherence pattern, determined in the presence of d-mannose, 12 isolates (14.6 %) showed the localized adherence (LA)-like pattern, 3 (3.7  %) the aggregative adherence pattern and 4 (4.9  %) a hybrid LA/diffuse adherence pattern. In addition, 36 (43.9  %) isolates displayed an undefined adherence, and 26 (31.7  %) were non-adherent (NA), while one (1.2 %) caused cell detachment. Among the 26 NA aEPEC isolates, 11 showed a type 1 pilus-dependent adherence in assays performed without d-mannose, while 15 remained NA. Forty-eight (58.5 %) aEPEC were able to trigger F-actin accumulation underneath adherent bacteria (FAS-positive), which is an important feature of AE lesions. The majority (58.3 %) of these used the Tir-Nck pathway, while 39.6  % may use both Tir-Nck and Tir-TccP pathways to induce AE lesions. CONCLUSION: Our results reveal the diversity of strategies used by aEPEC isolates to interact with and damage epithelial host cells, thereby causing diarrheal diseases.


Assuntos
Aderência Bacteriana , Escherichia coli Enteropatogênica/fisiologia , Infecções por Escherichia coli/microbiologia , Interações Hospedeiro-Patógeno , Actinas/metabolismo , Diarreia/microbiologia , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/isolamento & purificação , Células Epiteliais/microbiologia , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/metabolismo , Genótipo , Células HeLa , Humanos , Fenótipo , Fosforilação , Receptores de Superfície Celular/metabolismo
8.
EBioMedicine ; 43: 325-332, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31036531

RESUMO

BACKGROUND: The predominance of specific bacteria such as adherent-invasive Escherichia coli (AIEC) within the Crohn's disease (CD) intestine remains poorly understood with little evidence uncovered to support a selective pressure underlying their presence. Intestinal ethanolamine is however readily accessible during periods of intestinal inflammation, and enables pathogens to outcompete the host microbiota under such circumstances. METHODS: Quantitative RT-PCR (qRT-PCR) to determine expression of genes central to ethanolamine metabolism; transmission electron microscopy to detect presence of bacterial microcompartments (MCPs); in vitro infections of both murine and human macrophage cell lines examining intracellular replication of the AIEC-type strain LF82 and clinical E. coli isolates in the presence of ethanolamine; determination of E. coli ethanolamine utilization (eut) operon transcription in faecal samples from healthy patients, patients with active CD and the same patients in remission following treatment. RESULTS: Growth on the intestinal short chain fatty acid propionic acid (PA) stimulates significantly increased transcription of the eut operon (fold change relative to glucose: >16.9; p-value <.01). Additionally ethanolamine was accessible to intra-macrophage AIEC and stimulated significant increases in growth intracellularly when it was added extracellularly at concentrations comparable to those in the human intestine. Finally, qRT-PCR indicated that expression of the E. coli eut operon was increased in children with active CD compared to healthy controls (fold change increase: >4.72; P < .02). After clinical remission post-exclusive enteral nutrition treatment, the same CD patients exhibited significantly reduced eut expression (Pre vs Post fold change decrease: >15.64; P < .01). INTERPRETATION: Our data indicates a role for ethanolamine metabolism in selecting for AIEC that are consistently overrepresented in the CD intestine. The increased E. coli metabolism of ethanolamine seen in the intestine during active CD, and its decrease during remission, indicates ethanolamine use may be a key factor in shaping the intestinal microbiome in CD patients, particularly during times of inflammation. FUND: This work was funded by Biotechnology and Biological Sciences Research Council (BBSRC) grants BB/K008005/1 & BB/P003281/1 to DMW; by a Tenovus Scotland grant to MJO; by Glasgow Children's Hospital Charity, Nestle Health Sciences, Engineering and Physical Sciences Research Council (EPSRC) and Catherine McEwan Foundation grants awarded to KG; and by a Natural Environment Research Council (NERC) fellowship (NE/L011956/1) to UZI. The IBD team at the Royal Hospital for Children, Glasgow are supported by the Catherine McEwan Foundation and Yorkhill IBD fund. RKR and RH are supported by NHS Research Scotland Senior fellowship awards.


Assuntos
Doença de Crohn/complicações , Doença de Crohn/metabolismo , Escherichia coli Enteropatogênica , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/microbiologia , Etanolamina/metabolismo , Animais , Linhagem Celular , Doença de Crohn/genética , Doença de Crohn/patologia , Escherichia coli Enteropatogênica/fisiologia , Escherichia coli Enteropatogênica/ultraestrutura , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/patologia , Ácidos Graxos/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Óperon
9.
Microb Pathog ; 128: 396-404, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30660737

RESUMO

BACKGROUND: Gastric fluid pH serves an important function as an ecological filter to kill unwanted microbial taxa that would otherwise colonise the intestines, thereby shaping the diversity and composition of microbial communities found in the gut. The typical American-based diet causes the gastric pH to increase to pH 4 to 5, and it takes ∼2 h to return to pH 1.5 (normal). This window of increased gastric pH may allow potential pathogens to negotiate the hostile environment of the stomach. Another factor to consider is that in developing countries many people experience hypochlorhydria related to malnutrition and various gastric diseases. Enteropathogenic E. coli (EPEC) is a leading cause of infantile diarrhoea and has a high incidence in the developing world. The aim of this study was to assess the survival and recovery of non-acid adapted EPEC exposed to simulated gastric fluid (SGF) over a period of 180 min. RESULTS: EPEC were grown in nutrient-rich medium and acid challenged in SGF at pH 1.5, 2.5, 3.5 and 4.5. Culturability was evaluated using a standard plate count method, and metabolic viability was assessed via cellular energy (adenosine triphosphate [ATP] assay) and respiratory activity (3-bis(2-methyloxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide [XTT] assay), and recovery and proliferation by means of optical density in liquid cultures. Sampling was performed at 0, 30, 60, 120, and 180 min post-SGF exposure. The results of this study showed that EPEC is remarkably acid resistant and was able to survive a simulated gastric environment for up to 3 h (180 min) at various pH (1.5, 2.5, 3.5, and 4.5). EPEC was culturable at all pH (1.5, 2.5, 3.5 and 4.5) at the higher inoculum size of 5.4-7.1 × 106 CFU/ml, and at all pH except pH 1.5 at the lower inoculums of 5.4-7.1 × 103 CFU/ml or 5.4-7.1 × 101 CFU/ml. The organism remained metabolically viable at pH 1.5, 2.5, 3.5, and 4.5 and was able to recover and proliferate once placed in a neutral, nutrient-rich environment. CONCLUSION: In this study, EPEC demonstrated remarkable acid resistance and recovery at low pH without prior acid adaptation, which could prove to be problematic even in healthy people. In individuals with decreased gastric acidity, there is a higher probability of pathogen colonization and a resulting change in the gut microbiome. The results highlight the potential increase of food- and waterborne diseases in persons with compromised gastric function, or who are malnourished or immunocompromised. The data herein may possibly help in calculating more precisely the risk associated with consuming bacterial contaminated food and water in these individuals.


Assuntos
Adaptação Fisiológica/fisiologia , Farmacorresistência Bacteriana/fisiologia , Escherichia coli Enteropatogênica/efeitos dos fármacos , Escherichia coli Enteropatogênica/crescimento & desenvolvimento , Escherichia coli Enteropatogênica/fisiologia , Ácido Gástrico , Viabilidade Microbiana/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Proliferação de Células/efeitos dos fármacos , Contagem de Colônia Microbiana , Infecções por Escherichia coli/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Estômago/microbiologia , Estresse Fisiológico , Fatores de Tempo
10.
Gut Microbes ; 10(2): 241-245, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30183504

RESUMO

Desmosomes are junctional protein complexes that confer strong adhesive capacity to adjacent host cells. In a recent study, we showed that enteropathogenic Escherichia coli (EPEC) disrupts desmosomes, weakens cell-cell adhesion and perturbs barrier function of intestinal epithelial (C2BBe) cells. Desmosomal damage was dependent on the EPEC effector protein EspH and its inhibitory effect on Rho GTPases. EspH-mediated Rho inactivation resulted in retraction of keratin intermediate filaments and degradation of desmosomal cadherins. Immunofluorescence studies of EPEC-infected C2BBe cells revealed keratin retraction towards the nucleus coincident with significant cytoplasmic redistribution of the desmosomal cadherin desmoglein-2 (DSG2). In this addendum, we expand on how EPEC-induced keratin retraction leads to loss of DSG2 anchoring at the junctions, and show that maturity of the epithelial cell monolayer impacts the fate of desmosomes during infection.


Assuntos
Desmossomos/microbiologia , Escherichia coli Enteropatogênica/fisiologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/fisiologia , Adesão Celular , Linhagem Celular Tumoral , Desmogleína 2/metabolismo , Desmossomos/metabolismo , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Interações Hospedeiro-Patógeno , Humanos , Mucosa Intestinal/metabolismo , Queratinas/metabolismo
11.
Microbiology (Reading) ; 163(10): 1515-1524, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28895515

RESUMO

The Escherichia coli type III secretion system 2 (ETT2) is found in most E. coli strains, including pathogenic and commensal strains. Although many ETT2 gene clusters carry multiple genetic mutations or deletions, ETT2 is known to be involved in bacterial virulence. In enterohaemorrhagic E. coli (EHEC), ETT2 affects adhesion through the regulator EtrA, which regulates transcription and secretion of the type III secretion system (T3SS) encoded by the locus of enterocyte effacement (LEE). To date, no studies have been conducted on the role of EtrA in the virulence of avian pathogenic E. coli (APEC), which harbours only ETT2. Thus, we constructed etrA mutant and complemented strains of APEC and evaluated their phenotypes and pathogenicities. We found that the etrA gene deletion significantly reduced bacterial survival in macrophages, and proliferation and virulence in ducks. In addition, the etrA gene deletion reduced expression of the APEC fimbriae genes. Upregulation of genes encoding the pro-inflammatory cytokines interleukin (IL)-1ß and IL-8 was also observed in HD-11 macrophages infected with the etrA gene mutant strain compared to the wild-type strain. Furthermore, the altered capacities of the mutant strain were restored by genetic complementation. Our observations demonstrate that the ETT2 regulator EtrA contributes to the virulence of APEC.


Assuntos
Escherichia coli Enteropatogênica/fisiologia , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Doenças das Aves Domésticas/microbiologia , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Animais , Aderência Bacteriana , Citocinas/genética , Citocinas/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Viabilidade Microbiana/imunologia , Mutação , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
12.
Microbiology (Reading) ; 163(9): 1263-1272, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28771130

RESUMO

The aim of the study was to investigate the neutralizing effect of lactobacilli isolated from indigenous food and human sources on enteropathogenic Escherichia coli (EPEC) O26 : H11-induced epithelial barrier dysfunction in vitro. This was assessed by transepithelial electrical resistance (TEER) and permeability assays using intestinal cell lines, HT-29 and Caco-2. Furthermore, the expression and distribution of tight junction (TJ) proteins were analysed by qRT-PCR and immunofluorescence assay, respectively. The nine strains used in the study were from different species viz. Lactobacillus fermentum, Lactobacillushelveticus, Lactobacillus salivarius and Lactobacillus plantarum. All strains were able to reverse the decrease in TEER and corresponding increase in permeability across E. coli-infected monolayers. Maximum reversal was observed after 18 h [up to 93.8±2.0 % by L. rhamnosus GG followed by L. fermentum IIs11.2 (92.6±2.2 %) and L. plantarum GRI-2 (91.9±0.9 %)] of lactobacilli exposure following EPEC O26 : H11 infection. All strains were able to redistribute the TJ proteins to the cell periphery either partially or completely. Moreover, L. helveticus FA-7 was also able to significantly increase the mRNA expression of ZO-1 and claudin-1 (2.5-fold and 3.0-fold, respectively; P<0.05). The rapid reversal observed by these strains could be mostly because of the redistribution rather than increased mRNA expression of TJ proteins. In conclusion, L. helveticus FA-7, L. fermentum FA-1 and L. plantarum GRI-2 were good in all the aspects studied, and the other strains were good in some aspects. L. helveticus FA-7, L. fermentum FA-1 and L. plantarum GRI-2 can therefore be used for potential therapeutic purpose against intestinal epithelial dysfunction.


Assuntos
Antibiose , Escherichia coli Enteropatogênica/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Lactobacillus/fisiologia , Probióticos , Células CACO-2 , Linhagem Celular , Células Cultivadas , Impedância Elétrica , Células Epiteliais/patologia , Expressão Gênica , Células HT29 , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Inulina/metabolismo , Permeabilidade , RNA Mensageiro/genética , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas
13.
Infect Immun ; 85(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28138023

RESUMO

During infection, enteropathogenic Escherichia coli (EPEC) translocates effector proteins directly into the cytosol of infected enterocytes using a type III secretion system (T3SS). Once inside the host cell, these effector proteins subvert various immune signaling pathways, including death receptor-induced apoptosis. One such effector protein is the non-locus of enterocyte effacement (LEE)-encoded effector NleB1, which inhibits extrinsic apoptotic signaling via the FAS death receptor. NleB1 transfers a single N-acetylglucosamine (GlcNAc) residue to Arg117 in the death domain of Fas-associated protein with death domain (FADD) and inhibits FAS ligand (FasL)-stimulated caspase-8 cleavage. Another effector secreted by the T3SS is NleF. Previous studies have shown that NleF binds to and inhibits the activity of caspase-4, -8, and -9 in vitro Here, we investigated a role for NleF in the inhibition of FAS signaling and apoptosis during EPEC infection. We show that NleF prevents the cleavage of caspase-8, caspase-3, and receptor-interacting serine/threonine protein kinase 1 (RIPK1) in response to FasL stimulation. When translocated into host cells by the T3SS or expressed ectopically, NleF also blocked FasL-induced cell death. Using the EPEC-like mouse pathogen Citrobacter rodentium, we found that NleB but not NleF contributed to colonization of mice in the intestine. Hence, despite their shared ability to block FasL/FAS signaling, NleB and NleF have distinct roles during infection.


Assuntos
Apoptose , Escherichia coli Enteropatogênica/fisiologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Fatores de Virulência/metabolismo , Caspases/metabolismo , Linhagem Celular , Expressão Ectópica do Gene , Proteínas de Escherichia coli/genética , Proteína Ligante Fas/metabolismo , Teste de Complementação Genética , Células HEK293 , Células HeLa , Humanos , Mutação , Transdução de Sinais , Fatores de Virulência/genética , Receptor fas/metabolismo
14.
Curr Microbiol ; 73(3): 361-365, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27246497

RESUMO

Enteropathogenic Escherichia coli (EPEC) is a major cause of infantile diarrhea in developing countries. The translocator EspB is a key virulence factor in the process of the attaching and effacing effect of EPEC and plays a critical role in the pathogenesis of the bacteria. In this study, we aimed to select the peptides binding to EspB protein by phage display library and further investigate whether these peptides can decrease the extent of invasion and virulence of EPEC on host cells by targeting to EspB protein. The expression and purification of EspB protein from E. coli was demonstrated by Western blotting. The Ph.D. 12-mer peptide phage display library was used to screen the candidate peptides binding specifically to EspB protein. Furthermore, the affinity of these candidate peptides bound to EspB was identified by enzyme-linked immunosorbent assay (ELISA). Moreover, we investigated whether these screened peptides could decrease the adherence ratio of EPEC to HEp-2 cells with increasing concentration. Successful purification of EspB protein from pET21b-EspB-transformed E. coli was identified by Western blotting. Then, the candidate peptides including phages 6, 7, 8, and 12 were screened by the Ph.D. 12-mer peptide phage display library and ELISA test demonstrated that their affinity binding to EspB protein was high compared with the control. Functional analysis indicated that synthetic peptide-6 (YFPYSHTSPRQP) significantly decreased the adherence ratio of EPEC to HEp-2 cells with increasing concentration (P < 0.01). Peptide-6 (100 µg/mL) could lead to a 40 % decrease in the adherence ratio of EPEC to HEp-2 cells compared with control (P < 0.01). However, the other three peptides at different concentrations showed only a slight ability to block the adherence of EPEC to host cells. Our data provided a potential strategy to inhibit the adhesion of EPEC to epithelial cells by a candidate peptide targeted toward EspB protein.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Escherichia coli Enteropatogênica/fisiologia , Células Epiteliais/microbiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/antagonistas & inibidores , Peptídeos/farmacologia , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli Enteropatogênica/efeitos dos fármacos , Escherichia coli Enteropatogênica/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Células Hep G2 , Humanos , Dados de Sequência Molecular , Peptídeos/química
15.
PLoS One ; 10(11): e0143977, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26618479

RESUMO

Cytolethal distending toxins (CDTs) are heterotrimeric protein exotoxins produced by a diverse array of Gram-negative pathogens. The enzymatic subunit, CdtB, possesses DNase and phosphatidylinositol 3-4-5 trisphosphate phosphatase activities that induce host cell cycle arrest, cellular distension and apoptosis. To exert cyclomodulatory and cytotoxic effects CDTs must be taken up from the host cell surface and transported intracellularly in a manner that ultimately results in localization of CdtB to the nucleus. However, the molecular details and mechanism by which CDTs bind to host cells and exploit existing uptake and transport pathways to gain access to the nucleus are poorly understood. Here, we report that CdtA and CdtC subunits of CDTs derived from Haemophilus ducreyi (Hd-CDT) and enteropathogenic E. coli (Ec-CDT) are independently sufficient to support intoxication by their respective CdtB subunits. CdtA supported CdtB-mediated killing of T-cells and epithelial cells that was nearly as efficient as that observed with holotoxin. In contrast, the efficiency by which CdtC supported intoxication was dependent on the source of the toxin as well as the target cell type. Further, CdtC was found to alter the subcellular trafficking of Ec-CDT as determined by sensitivity to EGA, an inhibitor of endosomal trafficking, colocalization with markers of early and late endosomes, and the kinetics of DNA damage response. Finally, host cellular cholesterol was found to influence sensitivity to intoxication mediated by Ec-CdtA, revealing a role for cholesterol or cholesterol-rich membrane domains in intoxication mediated by this subunit. In summary, data presented here support a model in which CdtA and CdtC each bind distinct receptors on host cell surfaces that direct alternate intracellular uptake and/or trafficking pathways.


Assuntos
Toxinas Bacterianas/metabolismo , Escherichia coli Enteropatogênica/fisiologia , Células Epiteliais/citologia , Haemophilus ducreyi/fisiologia , Linfócitos T/citologia , Animais , Células CHO , Ciclo Celular , Sobrevivência Celular , Cricetulus , Escherichia coli Enteropatogênica/metabolismo , Haemophilus ducreyi/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Células Jurkat , Transporte Proteico
16.
PLoS Pathog ; 11(9): e1005121, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26332984

RESUMO

Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) are related strains capable of inducing severe gastrointestinal disease. For optimal infection, these pathogens actively modulate cellular functions through the deployment of effector proteins in a type three secretion system (T3SS)-dependent manner. In response to enteric pathogen invasion, the Nod-like receptor pyrin domain containing (NLRP) inflammasome has been increasingly recognized as an important cytoplasmic sensor against microbial infection by activating caspase-1 and releasing IL-1ß. EPEC and EHEC are known to elicit inflammasome activation in macrophages and epithelial cells; however, whether the pathogens actively counteract such innate immune responses is unknown. Using a series of compound effector-gene deletion strains of EPEC, we screened and identified NleA, which could subdue host IL-1ß secretion. It was found that the reduction is not because of blocked NF-κB activity; instead, the reduction results from inhibited caspase-1 activation by NleA. Immunostaining of human macrophage-like cells following infection revealed limited formation of inflammasome foci with constituents of total caspase-1, ASC and NLRP3 in the presence of NleA. Pulldown of PMA-induced differentiated THP-1 lysate with purified MBP-NleA reveals that NLRP3 is a target of NleA. The interaction was verified by an immunoprecipitation assay and direct interaction assay in which purified MBP-NleA and GST-NLRP3 were used. We further showed that the effector interacts with regions of NLRP3 containing the PYD and LRR domains. Additionally, NleA was found to associate with non-ubiquitinated and ubiquitinated NLRP3 and to interrupt de-ubiquitination of NLRP3, which is a required process for inflammasome activation. Cumulatively, our findings provide the first example of EPEC-mediated suppression of inflammasome activity in which NieA plays a novel role in controlling the host immune response through targeting of NLRP3.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Escherichia coli Enteropatogênica/fisiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Interações Hospedeiro-Patógeno , Inflamassomos/metabolismo , Macrófagos/microbiologia , Fatores de Virulência/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caspase 1/química , Caspase 1/metabolismo , Linhagem Celular , Escherichia coli Enteropatogênica/imunologia , Ativação Enzimática , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/patologia , Proteínas de Escherichia coli/genética , Deleção de Genes , Células HeLa , Humanos , Imunidade Inata , Inflamassomos/imunologia , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/metabolismo , Cinética , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ubiquitinação , Fatores de Virulência/genética
17.
Braz J Microbiol ; 46(1): 131-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26221098

RESUMO

The bacterial pathogen most commonly associated with endemic forms of childhood diarrhoea is Escherichia coli . Studies of epidemiological characteristics of HEp-2 cell-adherent E. coli in diarrhoeal disease are required, particularly in developing countries. The aim of this study was evaluate the presence and significance of adherent Escherichia coli from diarrhoeal disease in children. The prevalence of LA, AA, and DA adherence patterns were determined in HEp-2 cells, the presence of virulence genes and the presence of the O serogroups in samples obtained from 470 children with acute diarrhoea and 407 controls in Porto Velho, Rondônia, Brazil. E. coli isolates were identified by PCR specific for groups of adherent E. coli . Out of 1,156 isolates obtained, 128 (11.0%) were positive for eae genes corresponding to EPEC, however only 38 (29.6%) of these amplified bfpA gene . EAEC were isolated from 164 (14.1%) samples; of those 41(25%), 32 (19%) and 16 (9.7%) amplified eagg , aggA or aafA genes, respectively and aggA was significantly associated with diarrhoea ( P = 0.00006). DAEC identified by their adhesion pattern and there were few isolates. In conclusion, EAEC was the main cause of diarrhoea in children, especially when the aggA gene was present, followed by EPEC and with a negligible presence of DAEC.


Assuntos
Diarreia/microbiologia , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Fatores de Virulência/genética , Aderência Bacteriana , Brasil , Criança , Pré-Escolar , Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/isolamento & purificação , Escherichia coli Enteropatogênica/fisiologia , Células Epiteliais/microbiologia , Escherichia coli/classificação , Escherichia coli/isolamento & purificação , Escherichia coli/fisiologia , Humanos , Lactente , Recém-Nascido , Antígenos O/análise , Sorogrupo
18.
Braz. j. microbiol ; 46(1): 131-137, 05/2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-748251

RESUMO

The bacterial pathogen most commonly associated with endemic forms of childhood diarrhoea is Escherichia coli. Studies of epidemiological characteristics of HEp-2 cell-adherent E. coli in diarrhoeal disease are required, particularly in developing countries. The aim of this study was evaluate the presence and significance of adherent Escherichia coli from diarrhoeal disease in children. The prevalence of LA, AA, and DA adherence patterns were determined in HEp-2 cells, the presence of virulence genes and the presence of the O serogroups in samples obtained from 470 children with acute diarrhoea and 407 controls in Porto Velho, Rondônia, Brazil. E. coli isolates were identified by PCR specific for groups of adherent E. coli. Out of 1,156 isolates obtained, 128 (11.0%) were positive for eae genes corresponding to EPEC, however only 38 (29.6%) of these amplified bfpA gene. EAEC were isolated from 164 (14.1%) samples; of those 41(25%), 32 (19%) and 16 (9.7%) amplified eagg, aggA or aafA genes, respectively and aggA was significantly associated with diarrhoea (P = 0.00006). DAEC identified by their adhesion pattern and there were few isolates. In conclusion, EAEC was the main cause of diarrhoea in children, especially when the aggA gene was present, followed by EPEC and with a negligible presence of DAEC.


Assuntos
Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Diarreia/microbiologia , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Fatores de Virulência/genética , Aderência Bacteriana , Brasil , Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/isolamento & purificação , Escherichia coli Enteropatogênica/fisiologia , Células Epiteliais/microbiologia , Escherichia coli/classificação , Escherichia coli/isolamento & purificação , Escherichia coli/fisiologia , Antígenos O/análise , Sorogrupo
19.
BMC Microbiol ; 14: 299, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25527183

RESUMO

BACKGROUND: Attachment is essential to maintain bacteria at their preferential intestinal colonization sites. There is little information on the influence of different environmental conditions in the interaction of atypical enteropathogenic Escherichia coli (aEPEC) strains with epithelial cells. In this study, we evaluated the effect of different glucose (5 and 25 mM) and CO2 (0.03 and 5%) concentrations and presence of bile salts on the adhesiveness of the aEPEC strain 1551-2. RESULTS: We found that a CO2-enriched atmosphere enhanced the adhesiveness of the aEPEC 1551-2 strain independently of glucose concentrations or presence of bile salts. Conversely, the presence of high glucose concentration altered the original localized adherence (LA) pattern observed at 5 mM glucose, which is characterized by the formation of compact bacterial clusters, to a hybrid adherence pattern (LA and an aggregative adherence-like pattern). In addition, at high glucose concentration, there was increased expression of the fimA gene, which encodes the major subunit of type 1 pilus (T1P), and an isogenic fimA mutant displayed only LA. The presence of bile salts did not interfere with the adhesion properties of the 1551-2 strain to HeLa cells. CONCLUSIONS: Our data suggest that a CO2-enriched atmosphere could favor aEPEC adhesion to the host cells, whereas enhanced T1P production under high glucose concentration could allow bacteria to access more extensive intestinal colonization sites in the host at the beginning of the infectious process.


Assuntos
Aderência Bacteriana , Escherichia coli Enteropatogênica/fisiologia , Exposição Ambiental , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Ácidos e Sais Biliares/metabolismo , Dióxido de Carbono/metabolismo , Glucose/metabolismo , Células HeLa , Humanos
20.
Am J Physiol Cell Physiol ; 307(2): C180-9, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24848114

RESUMO

Enteropathogenic Escherichia coli (EPEC) and Citrobacter rodentium are attaching-and-effacing (A/E) pathogens that cause intestinal inflammation and diarrhea. The bacteria adhere to the intestinal epithelium, destroy microvilli, and induce actin-filled membranous pedestals but do not invade the mucosa. Adherence leads to activation of several host cell kinases, including FYN, n-SRC, YES, ABL, and ARG, phosphorylation of the bacterial translocated intimin receptor, and actin polymerization and pedestal formation in cultured cells. However, marked functional redundancy appears to exist between kinases, and their physiological importance in A/E pathogen infections has remained unclear. To address this question, we employed a novel dynamic in vitro infection model that mimics transient and short-term interactions in the intestinal tract. Screening of a kinase inhibitor library and RNA interference experiments in vitro revealed that ABL and platelet-derived growth factor (PDGF) receptor (PDGFR) kinases, as well as p38 MAP kinase, have unique, indispensable roles in early attachment of EPEC to epithelial cells under dynamic infection conditions. Studies with mutant EPEC showed that the attachment functions of ABL and PDGFR were independent of the intimin receptor but required bacterial bundle-forming pili. Furthermore, inhibition of ABL and PDGFR with imatinib protected against infection of mice with modest loads of C. rodentium, whereas the kinases were dispensable for high inocula or late after infection. These results indicate that ABL and PDGFR have indispensable roles in early A/E pathogen attachment to intestinal epithelial cells and for in vivo infection with limiting inocula but are not required for late intimate bacterial attachment or high inoculum infections.


Assuntos
Aderência Bacteriana/fisiologia , Escherichia coli Enteropatogênica/metabolismo , Células Epiteliais/fisiologia , Proteínas Oncogênicas v-abl/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Linhagem Celular , Escherichia coli Enteropatogênica/citologia , Escherichia coli Enteropatogênica/fisiologia , Infecções por Escherichia coli/microbiologia , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Oncogênicas v-abl/genética , Inibidores de Proteínas Quinases/farmacologia , Receptores do Fator de Crescimento Derivado de Plaquetas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA