Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 433(21): 167188, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34454944

RESUMO

Type III protein secretion is widespread in Gram-negative pathogens. It comprises the injectisome with a surface-exposed needle and an inner membrane translocase. The translocase contains the SctRSTU export channel enveloped by the export gate subunit SctV that binds chaperone/exported clients and forms a putative ante-chamber. We probed the assembly, function, structure and dynamics of SctV from enteropathogenic E. coli (EPEC). In both EPEC and E. coli lab strains, SctV forms peripheral oligomeric clusters that are detergent-extracted as homo-nonamers. Membrane-embedded SctV9 is necessary and sufficient to act as a receptor for different chaperone/exported protein pairs with distinct C-domain binding sites that are essential for secretion. Negative staining electron microscopy revealed that peptidisc-reconstituted His-SctV9 forms a tripartite particle of ∼22 nm with a N-terminal domain connected by a short linker to a C-domain ring structure with a ∼5 nm-wide inner opening. The isolated C-domain ring was resolved with cryo-EM at 3.1 Å and structurally compared to other SctV homologues. Its four sub-domains undergo a three-stage "pinching" motion. Hydrogen-deuterium exchange mass spectrometry revealed this to involve dynamic and rigid hinges and a hyper-flexible sub-domain that flips out of the ring periphery and binds chaperones on and between adjacent protomers. These motions are coincident with local conformational changes at the pore surface and ring entry mouth that may also be modulated by the ATPase inner stalk. We propose that the intrinsic dynamics of the SctV protomer are modulated by chaperones and the ATPase and could affect allosterically the other subunits of the nonameric ring during secretion.


Assuntos
Adenosina Trifosfatases/química , Escherichia coli Enteropatogênica/ultraestrutura , Proteínas de Escherichia coli/química , Flagelos/ultraestrutura , Canais de Translocação SEC/química , Sistemas de Secreção Tipo III/ultraestrutura , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Regulação Alostérica , Sítios de Ligação , Clonagem Molecular , Microscopia Crioeletrônica , Medição da Troca de Deutério , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Flagelos/genética , Flagelos/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Espectrometria de Massas , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo , Especificidade por Substrato , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
2.
EBioMedicine ; 43: 325-332, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31036531

RESUMO

BACKGROUND: The predominance of specific bacteria such as adherent-invasive Escherichia coli (AIEC) within the Crohn's disease (CD) intestine remains poorly understood with little evidence uncovered to support a selective pressure underlying their presence. Intestinal ethanolamine is however readily accessible during periods of intestinal inflammation, and enables pathogens to outcompete the host microbiota under such circumstances. METHODS: Quantitative RT-PCR (qRT-PCR) to determine expression of genes central to ethanolamine metabolism; transmission electron microscopy to detect presence of bacterial microcompartments (MCPs); in vitro infections of both murine and human macrophage cell lines examining intracellular replication of the AIEC-type strain LF82 and clinical E. coli isolates in the presence of ethanolamine; determination of E. coli ethanolamine utilization (eut) operon transcription in faecal samples from healthy patients, patients with active CD and the same patients in remission following treatment. RESULTS: Growth on the intestinal short chain fatty acid propionic acid (PA) stimulates significantly increased transcription of the eut operon (fold change relative to glucose: >16.9; p-value <.01). Additionally ethanolamine was accessible to intra-macrophage AIEC and stimulated significant increases in growth intracellularly when it was added extracellularly at concentrations comparable to those in the human intestine. Finally, qRT-PCR indicated that expression of the E. coli eut operon was increased in children with active CD compared to healthy controls (fold change increase: >4.72; P < .02). After clinical remission post-exclusive enteral nutrition treatment, the same CD patients exhibited significantly reduced eut expression (Pre vs Post fold change decrease: >15.64; P < .01). INTERPRETATION: Our data indicates a role for ethanolamine metabolism in selecting for AIEC that are consistently overrepresented in the CD intestine. The increased E. coli metabolism of ethanolamine seen in the intestine during active CD, and its decrease during remission, indicates ethanolamine use may be a key factor in shaping the intestinal microbiome in CD patients, particularly during times of inflammation. FUND: This work was funded by Biotechnology and Biological Sciences Research Council (BBSRC) grants BB/K008005/1 & BB/P003281/1 to DMW; by a Tenovus Scotland grant to MJO; by Glasgow Children's Hospital Charity, Nestle Health Sciences, Engineering and Physical Sciences Research Council (EPSRC) and Catherine McEwan Foundation grants awarded to KG; and by a Natural Environment Research Council (NERC) fellowship (NE/L011956/1) to UZI. The IBD team at the Royal Hospital for Children, Glasgow are supported by the Catherine McEwan Foundation and Yorkhill IBD fund. RKR and RH are supported by NHS Research Scotland Senior fellowship awards.


Assuntos
Doença de Crohn/complicações , Doença de Crohn/metabolismo , Escherichia coli Enteropatogênica , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/microbiologia , Etanolamina/metabolismo , Animais , Linhagem Celular , Doença de Crohn/genética , Doença de Crohn/patologia , Escherichia coli Enteropatogênica/fisiologia , Escherichia coli Enteropatogênica/ultraestrutura , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/patologia , Ácidos Graxos/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Óperon
3.
J Microbiol ; 54(11): 745-752, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27796929

RESUMO

Using clonal phylogenetic methods, it has been demonstrated that O111:H25 atypical enteropathogenic E. coli (aEPEC) strains belong to distinct clones, suggesting the possibility that their ability to interact with different hosts and abiotic surfaces can vary from one clone to another. Accordingly, the ability of O111:H25 aEPEC strains derived from human, cat and dogs to adhere to epithelial cells has been investigated, along with their ability to interact with macrophages and to form biofilms on polystyrene, a polymer used to make biomedical devices. The results demonstrated that all the strains analyzed were able to adhere to, and to form pedestals on, epithelial cells, mechanisms used by E. coli to become strongly attached to the host. The strains also show a Localized-Adherence-Like (LAL) pattern of adhesion on HEp-2 cells, a behavior associated with acute infantile diarrhea. In addition, the O111:H25 aEPEC strains derived either from human or domestic animals were able to form long filaments, a phenomenon used by some bacteria to avoid phagocytosis. O111:H25 aEPEC strains were also encountered inside vacuoles, a characteristic described for several bacterial strains as a way of protecting themselves against the environment. They were also able to induce TNF-α release via two routes, one dependent on TLR-4 and the other dependent on binding of Type I fimbriae. These O111:H25 strains were also able to form biofilms on polystyrene. In summary the results suggest that, regardless of their source (i.e. linked to human origin or otherwise), O111:H25 aEPEC strains carry the potential to cause human disease.


Assuntos
Aderência Bacteriana , Escherichia coli Enteropatogênica/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/microbiologia , Animais , Biofilmes/crescimento & desenvolvimento , Gatos , Cães , Escherichia coli Enteropatogênica/isolamento & purificação , Escherichia coli Enteropatogênica/ultraestrutura , Células Epiteliais/microbiologia , Proteínas de Escherichia coli , Fímbrias Bacterianas/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Filogenia , Poliestirenos , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/metabolismo , Fatores de Virulência
4.
Infect Immun ; 82(5): 1801-12, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24549324

RESUMO

Enteropathogenic Escherichia coli (EPEC) is recognized as an important intestinal pathogen that frequently causes acute and persistent diarrhea in humans and animals. The use of probiotic bacteria to prevent diarrhea is gaining increasing interest. The probiotic E. coli strain Nissle 1917 (EcN) is known to be effective in the treatment of several gastrointestinal disorders. While both in vitro and in vivo studies have described strong inhibitory effects of EcN on enteropathogenic bacteria, including pathogenic E. coli, the underlying molecular mechanisms remain largely unknown. In this study, we examined the inhibitory effect of EcN on infections of porcine intestinal epithelial cells with atypical enteropathogenic E. coli (aEPEC) with respect to single infection steps, including adhesion, microcolony formation, and the attaching and effacing phenotype. We show that EcN drastically reduced the infection efficiencies of aEPEC by inhibiting bacterial adhesion and growth of microcolonies, but not the attaching and effacing of adherent bacteria. The inhibitory effect correlated with EcN adhesion capacities and was predominantly mediated by F1C fimbriae, but also by H1 flagella, which served as bridges between EcN cells. Furthermore, EcN seemed to interfere with the initial adhesion of aEPEC to host cells by secretion of inhibitory components. These components do not appear to be specific to EcN, but we propose that the strong adhesion capacities enable EcN to secrete sufficient local concentrations of the inhibitory factors. The results of this study are consistent with a mode of action whereby EcN inhibits secretion of virulence-associated proteins of EPEC, but not their expression.


Assuntos
Escherichia coli Enteropatogênica/fisiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli/classificação , Proteínas de Fímbrias/metabolismo , Flagelos/fisiologia , Probióticos/farmacologia , Animais , Aderência Bacteriana , Linhagem Celular , Escherichia coli Enteropatogênica/patogenicidade , Escherichia coli Enteropatogênica/ultraestrutura , Células Epiteliais/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Mucosa Intestinal/citologia , Suínos , Virulência
5.
Phytother Res ; 23(9): 1229-36, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19441013

RESUMO

Bacterial adhesion is the first step in the sequence of events leading to infection. Previous data are available on the effect of Holarrhena antidysenterica on antidiarrhoeal and antibacterial action, but there is little information on the mechanism of action of the various aspects of EPEC-induced diarrhoea, namely adherence and translocation of the effector molecule to intestinal epithelial cells. The aim of the present study was to investigate the effects of alkaloids of Holarrhena antidysenterica (AHA) on interference in the mechanism of enteropathogenic Escherichia coli (EPEC) adhesion on host epithelial cells (INT 407 and HEp2). To determine the impact of AHA on epithelial cells, cytotoxicity (LDH), adherence, apoptotic and ultrastructural studies were performed. To analyse the effect of AHA on EPEC secreted proteins, especially EspD, INT 407 monolayers were infected with EPEC and AHA-treated EPEC, followed by immunoblotting, probed with anti EspD antisera. The maximum percentage of LDH leakage was reduced in AHA-treated EPEC (400 microg/mL) in both cell lines. Reduced bacterial adherence was observed under light microscopy and altered apoptotic changes were visualized using propidium iodide staining in conjunction with fluorescence microscopy, in both cell lines infected with AHA-treated EPEC and these results were confirmed with transmission electron microscope images. The suppression of type III secretory proteins (TTSPs), EspD ( approximately 40 kDa), was detected in INT 407 cells infected with AHA-treated EPEC. In conclusion, AHA reduces initial bacterial adhesion to intact epithelial cells and it may exert an antiadherence effect against the pathogenesis of EPEC in host epithelial cells. Thus, the investigations provide a rational basis for the treatment of EPEC-mediated diarrhoea with AHA.


Assuntos
Alcaloides/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Escherichia coli Enteropatogênica/efeitos dos fármacos , Células Epiteliais/microbiologia , Holarrhena/química , Alcaloides/isolamento & purificação , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Linhagem Celular , Escherichia coli Enteropatogênica/metabolismo , Escherichia coli Enteropatogênica/ultraestrutura , Células Epiteliais/ultraestrutura , Humanos , Lactato Desidrogenases/metabolismo , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Extratos Vegetais/farmacologia
6.
J Bacteriol ; 191(11): 3451-61, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19218393

RESUMO

Although the bundle-forming pilus (BFP) of enteropathogenic Escherichia coli (EPEC) mediates microcolony formation on epithelial cells, the adherence of BFP-deficient mutants is significantly abrogated, but the mutants are still adherent due to the presence of intimin and possibly other adhesins. In this study we investigated the contribution of the recently described E. coli common pilus (ECP) to the overall adherence properties of EPEC. We found that ECP and BFP structures can be simultaneously observed in the course (between zero time and 7 h during infection) of formation of localized adherence on cultured epithelial cells. These two pilus types colocalized at different levels of the microcolony topology, tethering the adhering bacteria. No evidence of BFP disappearance was found after prolonged infection. When expressed from a plasmid present in nonadherent E. coli HB101, ECP rendered this organism highly adherent at levels comparable to those of HB101 expressing the BFP. Purified ECP bound in a dose-dependent manner to epithelial cells, and the binding was blocked with anti-ECP antibodies, confirming that the pili possess adhesin properties. An ECP mutant showed only a modest reduction in adherence to cultured cells due to background expression levels of BFP and intimin. However, isogenic mutants not expressing EspA or BFP were significantly less adherent when the ecpA gene was also deleted. Furthermore, a DeltaespA DeltaecpA double mutant (unable to translocate Tir and to establish intimate adhesion) was at least 10-fold less adherent than the DeltaespA and DeltaecpA single mutants, even in the presence of BFP. A Delta bfp DeltaespA DeltaecpA triple mutant showed the least adherence compared to the wild type and all the isogenic mutant strains tested, suggesting that ECP plays a synergistic role in adherence. Our data indicate that ECP is an accessory factor that, in association with BFP and other adhesins, contributes to the multifactorial complex interaction of EPEC with host epithelial cells.


Assuntos
Aderência Bacteriana/fisiologia , Escherichia coli Enteropatogênica/metabolismo , Proteínas de Escherichia coli/fisiologia , Proteínas de Fímbrias/fisiologia , Fímbrias Bacterianas/metabolismo , Aderência Bacteriana/genética , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/ultraestrutura , Células Epiteliais/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Citometria de Fluxo , Células HT29 , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão
7.
J Bacteriol ; 190(14): 5063-74, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18502854

RESUMO

Enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC, respectively) strains represent a major global health problem. Their virulence is mediated by the concerted activity of an array of virulence factors including toxins, a type III protein secretion system (TTSS), pili, and others. We previously showed that EPEC O127 forms a group 4 capsule (G4C), and in this report we show that EHEC O157 also produces a G4C, whose assembly is dependent on the etp, etk, and wzy genes. We further show that at early time points postinfection, these G4Cs appear to mask surface structures including intimin and the TTSS. This masking inhibited the attachment of EPEC and EHEC to tissue-cultured epithelial cells, diminished their capacity to induce the formation of actin pedestals, and attenuated TTSS-mediated protein translocation into host cells. Importantly, we found that Ler, a positive regulator of intimin and TTSS genes, represses the expression of the capsule-related genes, including etp and etk. Thus, the expression of TTSS and G4C is conversely regulated and capsule production is diminished upon TTSS expression. Indeed, at later time points postinfection, the diminishing capsule no longer interferes with the activities of intimin and the TTSS. Notably, by using the rabbit infant model, we found that the EHEC G4C is required for efficient colonization of the rabbit large intestine. Taken together, our results suggest that temporal expression of the capsule, which is coordinated with that of the TTSS, is required for optimal EHEC colonization of the host intestine.


Assuntos
Adesinas Bacterianas/metabolismo , Cápsulas Bacterianas/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Escherichia coli O157/patogenicidade , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fatores de Virulência/metabolismo , Animais , Aderência Bacteriana , Cápsulas Bacterianas/ultraestrutura , Linhagem Celular , Escherichia coli Enteropatogênica/metabolismo , Escherichia coli Enteropatogênica/ultraestrutura , Células Epiteliais/microbiologia , Eritrócitos/microbiologia , Infecções por Escherichia coli , Escherichia coli O157/metabolismo , Escherichia coli O157/ultraestrutura , Proteínas de Escherichia coli/genética , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Humanos , Intestino Grosso/microbiologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Mutagênese Insercional , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Coelhos , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA