Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Eur J Med Chem ; 224: 113701, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34315044

RESUMO

In this study, eleven new 3- and 7-positions modified scopoletin derivatives (18a-k) were designed, synthesized, and biologically evaluated against human breast cancer cell lines. Most compounds showed improved antiproliferative activity against MCF-7 and MDA-MB-231 cells and weaker cytotoxicity on human breast epithelial cell line MCF-10A than lead compound 5. Among them, compound 18e exhibited the most potent antiproliferative activity against MCF-7 cells (IC50 = 0.37 ± 0.05 µM). Particularly, 18e produced the highest levels of nitric oxide (NO) intracellularly, and its antiproliferation effect was attenuated by hemoglobin (an NO scavenger). Further pharmacological research showed that 18e blocked the cell cycle at the G2/M phase, downregulated the phosphorylation of PI3K and Akt in MCF-7 cells and regulated the expressions of the apoptosis proteins to induce apoptosis. Moreover, 18e inhibited the growth of MCF-7 in vivo. Overall, 18e is a novel anticancer agent with the abilities of high concentration of NO releasing and the inhibition of PI3K/Akt signaling pathway, and may be a promising agent against MCF-7 human breast cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Desenho de Fármacos , Doadores de Óxido Nítrico/farmacologia , Escopoletina/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Doadores de Óxido Nítrico/química , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Escopoletina/síntese química , Escopoletina/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
2.
Anticancer Agents Med Chem ; 21(14): 1774-1782, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33292145

RESUMO

BACKGROUND: Natural products and their molecular frameworks have been explored as invaluable sources of inspiration for drug design by means of structural modification, computer-aided drug design, and so on. Scopoletin extracting from multiple herbs exhibits potential anti-cancer activity in vitro and in vivo without toxicity towards normal cells. OBJECTIVE: The study aims to obtain new scopoletin derivatives with enhanced anti-cancer activity. We performed chemical structure modification and researched the mechanism of anti-tumor activity. METHODS: In this study, we considered scopoletin as a lead compound, designed and synthesized a series of scopoletin derivatives via introducing different heterocyclic fragments, and their chemical structures were characterized by NMR spectra (1H NMR and 13C NMR) and HRMS(ESI). The antiproliferative activity of target compounds in four cancer cell lines (MDA-MB-231, MCF-7, HepG2, and A549) was determined by the MTT assay. Compound 11b was treated with Ac-cys under different reaction conditions to explore the thiol addition activity of it. The Annexin V/PI and JC-1 staining assay were performed to investigate the anti-tumor mechanism of 11b. RESULTS: Novel compounds 8a-h and 11a-h derivatives of scopoletin were synthesized. Most of the target compounds exhibited enhanced antiproliferative activity against different cancer cells and reduced toxicity towards normal cells. In particular, 11b displayed the optimal antitumor ability against breast cancer MDA-MB- 231 cells with an IC50 value of 4.46 µM. Compound 11b also cannot react with Ac-cys under the experimental condition. When treated with 11b for 24 h, the total apoptotic cells increased from 10.8% to 79.3%. Besides, 11b induced the depolarization of mitochondrial membrane potential. CONCLUSION: Compound 11b was more active than other derivatives, indicating that the introduction of thiophene fragment was beneficial for the enhancement of antitumor effect, and it was also not an irreversible inhibitor based on the result that the α, ß-unsaturated ketones of 11b cannot undergo Michael addition reactions with Accys. Furthermore, studies on the pharmacological mechanism showed that 11b induced mitochondrial depolarization and apoptosis, which indicated that 11b killed cancer cells via a mitochondrial apoptotic pathway. Therefore, in-depth research and structure optimization of this compound is warranted.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Escopoletina/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Escopoletina/síntese química , Escopoletina/química , Células Tumorais Cultivadas
3.
Chin J Nat Med ; 16(10): 766-773, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30322610

RESUMO

Several chemical compounds can restore pigmentation in vitiligo through mechanisms that vary according to disease etiology. In the present study, we investigated the melanogenic activity of six structurally distinct compounds, namely, scopoletin, kaempferol, chrysin, vitamin D3, piperine, and 6-benzylaminopurine. We determined their effectiveness, toxicity, and mechanism of action for stimulating pigmentation in B16F10 melanoma cells and in a zebrafish model. The melanogenic activity of 6-benzylaminopurine, the compound identified as the most potent, was further verified by measuring green fluorescent protein concentration in tyrp1 a: eGFP (tyrosinase-related protein 1) zebrafish and mitfa: eGFP (microphthalmia associated transcription factor) zebrafish and antioxidative activity. All the tested compounds were found to enhance melanogenesis responses both in vivo and in vitro at their respective optimal concentration by increasing melanin content and expression of TYR and MITF. 6-Benzyamino-purine showed the strongest re-pigmentation action at a concentration of 20 µmol·L-1in vivo and 100 µmol·L-1in vitro, and up-regulated the strong fluorescence expression of green fluorescent protein in tyrp1a: eGFP and mitfa: eGFP zebrafish in vitro. However, its relative anti-oxidative activity was found to be very low. Overall, our results indicated that 6-benzylaminopurine stimulated pigmentation through a direct mechanism, by increasing melanin content via positive regulation of tyrosinase activity in vitro, as well as up-regulating the expression of the green fluorescent protein in transgenic zebrafish in vivo.


Assuntos
Alcaloides/farmacologia , Benzodioxóis/farmacologia , Compostos de Benzil/farmacologia , Colecalciferol/farmacologia , Flavonoides/farmacologia , Quempferóis/farmacologia , Melaninas/metabolismo , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Purinas/farmacologia , Escopoletina/farmacologia , Vitiligo/metabolismo , Alcaloides/química , Animais , Benzodioxóis/química , Compostos de Benzil/química , Colecalciferol/química , Flavonoides/química , Humanos , Quempferóis/química , Melaninas/genética , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Pigmentação/efeitos dos fármacos , Piperidinas/química , Alcamidas Poli-Insaturadas/química , Purinas/química , Escopoletina/química , Vitiligo/tratamento farmacológico , Vitiligo/enzimologia , Peixe-Zebra
4.
Molecules ; 23(5)2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29695088

RESUMO

Thirty phenolic ether derivatives of scopoletin modified at the 7-hydroxy position were synthesized, and their structures were confirmed by IR, ¹H-NMR, 13C-NMR, MS and elemental analysis. Preliminary acaricidal activities of these compounds against female adults of Tetranychus cinnabarinus (Boisduval) were evaluated using the slide-dip method. The results indicated that some of these compounds exhibit more pronounced acaricidal activity than scopoletin, especially compounds 32, 20, 28, 27 and 8 which exhibited about 8.41-, 7.32-, 7.23-, 6.76-, and 6.65-fold higher acaricidal potency. Compound 32 possessed the the most promising acaricidal activity and exhibited about 1.45-fold higher acaricidal potency against T. cinnabarinus than propargite. Statistically significant 2D-QSAR model supports the observed acaricidal activities and reveals that polarizability (HATS5p) was the most important parameter controlling bioactivity. 3D-QSAR (CoMFA: q² = 0.802, r² = 0.993; CoMSIA: q² = 0.735, r² = 0.965) results show that bulky substituents at R4, R1, R2 and R5 (C6, C3, C4, and C7) positions, electron positive groups at R5 (C7) position, hydrophobic groups at R1 (C3) and R2 (C4), H-bond donors groups at R1 (C3) and R4 (C6) will increase their acaricidal activity, which provide a good insight into the molecular features relevant to the acaricidal activity for further designing novel acaricidal agents. Molecular docking demonstrates that these selected derivatives display different bide modes with TcPMCA1 from lead compound and they interact with more key amino acid residues than scopoletin. In silico ADME properties of scopoletin and its phenolic ether derivatives were also analyzed and showed potential to develop as good acaricidal candidates.


Assuntos
Acaricidas/química , Acaricidas/farmacologia , Éteres , Fenóis , Escopoletina/química , Escopoletina/farmacologia , Acaricidas/síntese química , Animais , Técnicas de Química Sintética , Éteres/química , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fenóis/química , Relação Quantitativa Estrutura-Atividade , Escopoletina/análogos & derivados , Escopoletina/síntese química , Tetranychidae/efeitos dos fármacos
5.
Planta Med ; 84(5): 320-328, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28950382

RESUMO

Scoparone is a natural bioactive compound in Chinese herbal medicines. It has numerous pharmacological actions, including liver protective, hypolipidemic, antitumor, and anti-inflammatory effects. The primary metabolism route of scoparone is O-demethylation to scopoletin or isoscopoletin catalyzed by CYP enzymes. The aims of our study were to identify the human CYP enzymes catalyzing scoparone 7-O-demethylation to scopoletin and to compare this oxidation reaction in liver microsomes among different species. A high throughput fluorescent-based assay method was developed to determine the scoparone 7-O-demethylation to scopoletin rate. The rate was 100 - 400 nmol/(min×g protein) in mouse and rabbit liver microsomes, 10 - 20 nmol/(min×g protein) in pig microsomes, 1 - 3 nmol/(min×g protein) in human and less than 1 nmol/(min×g protein) in rat liver microsomes. Human CYP1A1 (Km 13 µM and Vmax 0.8 min-1), CYP1A2 (Km 48 µM and Vmax 0.3 min-1), and CYP2A13 (Km 10 µM and Vmax 22 min-1) were the most efficient catalysts of the reaction. The CYP2A6 selective inhibitor pilocarpine and an antibody against mouse CYP2A5 inhibited scoparone 7-O-demethylation to scopoletin in rabbit, mouse, and pig liver microsomes, indicating involvement of CYP2A enzymes in the reaction. Hepatic scoparone 7-O-demethylation to scopoletin differed between species both with respect to the rate of reaction and catalyzing enzymes. These species differences need to be taken into account when testing scoparone pharmacokinetics in animals and humans.


Assuntos
Cumarínicos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Escopoletina/análogos & derivados , Escopoletina/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Cumarínicos/química , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Desmetilação , Feminino , Humanos , Masculino , Camundongos , Microssomos Hepáticos/enzimologia , Estrutura Molecular , Oxirredução , Coelhos , Ratos , Escopoletina/química , Suínos
6.
Int J Mol Sci ; 18(7)2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28653986

RESUMO

The carmine spider mite, Tetranychus cinnabarinus (Boisduval), is an economically important agricultural pest that is difficult to prevent and control. Scopoletin is a botanical coumarin derivative that targets Ca2+-ATPase to exert a strong acaricidal effect on carmine spider mites. In this study, the full-length cDNA sequence of a plasma membrane Ca2+-ATPase 1 gene (TcPMCA1) was cloned. The sequence contains an open reading frame of 3750 bp and encodes a putative protein of 1249 amino acids. The effects of scopoletin on TcPMCA1 expression were investigated. TcPMCA1 was significantly upregulated after it was exposed to 10%, 30%, and 50% of the lethal concentration of scopoletin. Homology modeling, molecular docking, and three-dimensional quantitative structure-activity relationships were then studied to explore the relationship between scopoletin structure and TcPMCA1-inhibiting activity of scopoletin and other 30 coumarin derivatives. Results showed that scopoletin inserts into the binding cavity and interacts with amino acid residues at the binding site of the TcPMCA1 protein through the driving forces of hydrogen bonds. Furthermore, CoMFA (comparative molecular field analysis)- and CoMSIA (comparative molecular similarity index analysis)-derived models showed that the steric and H-bond fields of these compounds exert important influences on the activities of the coumarin compounds.Notably, the C3, C6, and C7 positions in the skeletal structure of the coumarins are the most suitable active sites. This work provides insights into the mechanism underlying the interaction of scopoletin with TcPMCA1. The present results can improve the understanding on plasma membrane Ca2+-ATPase-mediated (PMCA-mediated) detoxification of scopoletin and coumarin derivatives in T. cinnabarinus, as well as provide valuable information for the design of novel PMCA-inhibiting acaricides.


Assuntos
Acaricidas/toxicidade , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Escopoletina/toxicidade , Tetranychidae/enzimologia , Regulação para Cima/efeitos dos fármacos , Acaricidas/química , Animais , Clonagem Molecular , Regulação da Expressão Gênica/efeitos dos fármacos , Simulação de Acoplamento Molecular , Filogenia , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Relação Quantitativa Estrutura-Atividade , Escopoletina/química , Tetranychidae/efeitos dos fármacos , Tetranychidae/genética
7.
Phytochemistry ; 138: 170-177, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28284566

RESUMO

Two pairs of rare benzofuran glucoside epimers, indicuses A and B and indicuses C and D, three biogenetically related compounds indicuses E-G, and one coumarin indicus H, as well as 11 known compounds, were isolated from the bark of Streblus indicus (Bur.) Corner. The structures of indicuses A-H were elucidated by NMR and MS data, as well as by CD. (S)-Marmesinin exhibited moderate antimicrobial activity in vitro against Bacillus subtilis and Saccharomyces cerevisiae. 7,8-Dihydroxy-3-(3-methyl-2-butenyl) coumarin, umbelliferone, and scopoletin displayed strong cytotoxic activity in vitro against human bladder carcinoma cell line EJ. The structure-activity relationships indicate that hydroxylation at C-7 in the cytotoxic compounds is crucial to their activities.


Assuntos
Benzofuranos/química , Cumarínicos/química , Glicosídeos/química , Moraceae/química , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Bacillus subtilis/efeitos dos fármacos , Benzofuranos/isolamento & purificação , Linhagem Celular Tumoral , Cumarínicos/isolamento & purificação , Furanos/química , Furanos/isolamento & purificação , Glicosídeos/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Casca de Planta/química , Extratos Vegetais/química , Saccharomyces cerevisiae/efeitos dos fármacos , Escopoletina/química , Escopoletina/isolamento & purificação , Relação Estrutura-Atividade , Umbeliferonas/química , Umbeliferonas/isolamento & purificação
8.
Plant Physiol Biochem ; 106: 269-77, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27213954

RESUMO

Coumarins (1,2-benzopyrones), which originate via the phenylpropanoid pathway, are found ubiquitously in plants and make an essential contribution to the health of the plant. Some natural coumarins have been used as human therapeutics. However, the details of their biosynthesis are still largely unknown. Scopoletin is derived from either esculetin or feruloyl CoA according to the plant species involved. Here, a gene encoding a O-methyltransferase (PaOMT2) was isolated from the liverwort species Plagiochasma appendiculatum (Aytoniaceae) through transcriptome sequencing. The purified recombinant enzyme catalyzed the methylation of esculetin, generating scopoletin and isoscopoletin. Kinetic analysis shows that the construct from the second Met in PaOMT2 had a catalytic efficiency for esculetin (Kcat/Km) of about half that of the full length PaOMT2, while the Kms of two enzymes were similar. The catalytic capacities of the studied protein suggest that two routes to scopoletin might co-exist in liverworts in that the enzyme involved in the methylation process participates in both paths, but especially the route from esculetin. The transient expression of a PaOMT2-GFP fusion in tobacco demonstrated that PaOMT2 is directed to the cytoplasm.


Assuntos
Cumarínicos/metabolismo , Hepatófitas/enzimologia , Magnésio/farmacologia , Metiltransferases/metabolismo , Sequência de Aminoácidos , Vias Biossintéticas/efeitos dos fármacos , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Hepatófitas/efeitos dos fármacos , Cinética , Metiltransferases/química , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Escopoletina/química , Escopoletina/metabolismo , Alinhamento de Sequência , Frações Subcelulares/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Umbeliferonas/metabolismo
9.
Molecules ; 21(4): 496, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27092478

RESUMO

Drug resistance and the severe side effects of chemotherapy necessitate the development of novel anticancer drugs. Natural products are a valuable source for drug development. Scopoletin is a coumarin compound, which can be found in several Artemisia species and other plant genera. Microarray-based RNA expression profiling of the NCI cell line panel showed that cellular response of scopoletin did not correlate to the expression of ATP-binding cassette (ABC) transporters as classical drug resistance mechanisms (ABCB1, ABCB5, ABCC1, ABCG2). This was also true for the expression of the oncogene EGFR and the mutational status of the tumor suppressor gene, TP53. However, mutations in the RAS oncogenes and the slow proliferative activity in terms of cell doubling times significantly correlated with scopoletin resistance. COMPARE and hierarchical cluster analyses of transcriptome-wide mRNA expression resulted in a set of 40 genes, which all harbored binding motifs in their promoter sequences for the transcription factor, NF-κB, which is known to be associated with drug resistance. RAS mutations, slow proliferative activity, and NF-κB may hamper its effectiveness. By in silico molecular docking studies, we found that scopoletin bound to NF-κB and its regulator IκB. Scopoletin activated NF-κB in a SEAP-driven NF-κB reporter cell line, indicating that NF-κB might be a resistance factor for scopoletin. In conclusion, scopoletin might serve as lead compound for drug development because of its favorable activity against tumor cells with ABC-transporter expression, although NF-κB activation may be considered as resistance factor for this compound. Further investigations are warranted to explore the full therapeutic potential of this natural product.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , NF-kappa B/biossíntese , Neoplasias/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Escopoletina/administração & dosagem , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Artemisia/química , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , NF-kappa B/genética , Neoplasias/genética , Farmacogenética , Extratos Vegetais/química , Análise Serial de Proteínas , Escopoletina/química , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/biossíntese
10.
Fitoterapia ; 104: 31-40, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25964188

RESUMO

(E)-3-(4-chlorophenyl)-N-(7-hydroxy-6-methoxy-2-oxo-2H-chromen-3-yl) acrylamide (SC-III3), a newly synthesized derivative of scopoletin, was previously shown to reduce the viability of HepG2 cells and tumor growth of HepG2 xenograft mouse model. It induces the death of HepG2 cells by a way irrelevant to apoptosis and necrosis. To shed light on the cytotoxic mechanisms of SC-III3, the present study addresses whether and how it can induce autophagic cell death. When HepG2 cells were incubated with various concentrations of SC-III3, autophagic vacuoles could be observed by transmission electron microscopy and monodansylcadaverine staining. Increased expressions of LC3-II to LC3-I and Beclin-1, required for autophagosome formation, were accompanied. These characteristics integrally indicated that SC-III3 could initiate autophagy in HepG2 cells. N-acetyl-l-cysteine (NAC), a ROS scavenger, could reverse SC-III3-caused ROS accumulation, but it did not affect SC-III3-induced autophagy, suggesting that ROS was not involved in SC-III3-mediated autophagy in HepG2 cells. SC-III3 significantly depressed mitochondrial function, as evidenced by disruption of mitochondrial transmembrane potential and loss of the mitochondrial cristae structure, as well as decrease of Cox-I, Cox-III, Cox-IV, and ATP levels. The autophagy and activation of AMPK-TSC2-mTOR-p70s6k pathways induced by SC-III3 in HepG2 cells could be efficiently blocked by pre-treatments of compound C (an inhibitor of AMPK). Moreover, addition of extracellular ATP to the cell culture media could reverse SC-III3-caused activation of AMPK-TSC2-mTOR-p70s6k pathway, autophagy and cell viability decrease in HepG2 cells. Collectively, SC-III3 leads to autophagy through inducing mitochondrial dysfunction, depleting ATP, and activating AMPK-mTOR pathway, which thus reflects the cytotoxic effect of SC-III3 in HepG2 cells.


Assuntos
Autofagia/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Escopoletina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Cinamatos/síntese química , Cinamatos/química , Cinamatos/farmacologia , Células Hep G2 , Humanos , Camundongos , Estrutura Molecular , Escopoletina/análogos & derivados , Escopoletina/síntese química , Escopoletina/química , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Eur J Med Chem ; 93: 300-7, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25703298

RESUMO

A series of hybrids of scopoletin and substituted cinnamic acid were designed, synthesized and evaluated in vitro and in vivo against five human tumor cell lines [MCF-7, MDA-MB-231, A549, HCT-116, and HeLa] with doxorubicin as the positive control. Compounds 17a, 17b, 17c and 17g exhibited potent cytotoxic activity. Especially, compound 17b displayed broad spectrum activity with IC50 values ranging from 0.249 µM to 0.684 µM. Moreover, in a preliminary pharmacological study, 17b not only remarkably induced cellular apoptosis, but also clearly induced A549 cells cycle arrest at S phase. In vivo study showed that 17b significantly suppressed tumor growth in a dose-dependent manner without causing the loss of the mean body weight of mice, which was superior to doxorubicin. These preliminary results indicate that 17b is an optimal anti-cancer leading compound and merit further structural modification.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cinamatos/química , Escopoletina/química , Escopoletina/farmacologia , Animais , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Feminino , Humanos , Camundongos , Escopoletina/síntese química , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Artigo em Inglês | MEDLINE | ID: mdl-24704484

RESUMO

Polyphenols in plant samples have been extensively studied because phenolic compounds are ubiquitous in plants and can be used as antioxidants in promoting human health. A method for rapid determination of three phenolic compounds (chlorogenic acid, scopoletin and rutin) in plant samples using near-infrared diffuse reflectance spectroscopy (NIRDRS) is studied in this work. Partial least squares (PLS) regression was used for building the calibration models, and the effects of spectral preprocessing and variable selection on the models are investigated for optimization of the models. The results show that individual spectral preprocessing and variable selection has no or slight influence on the models, but the combination of the techniques can significantly improve the models. The combination of continuous wavelet transform (CWT) for removing the variant background, multiplicative scatter correction (MSC) for correcting the scattering effect and randomization test (RT) for selecting the informative variables was found to be the best way for building the optimal models. For validation of the models, the polyphenol contents in an independent sample set were predicted. The correlation coefficients between the predicted values and the contents determined by high performance liquid chromatography (HPLC) analysis are as high as 0.964, 0.948 and 0.934 for chlorogenic acid, scopoletin and rutin, respectively.


Assuntos
Ácido Clorogênico/análise , Modelos Químicos , Nicotiana/química , Rutina/análise , Escopoletina/análise , Ácido Clorogênico/química , Ácido Clorogênico/isolamento & purificação , Humanos , Rutina/química , Rutina/isolamento & purificação , Escopoletina/química , Escopoletina/isolamento & purificação , Espectrofotometria Infravermelho/métodos
13.
J Nat Prod ; 76(4): 615-20, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23510022

RESUMO

Artemisia iwayomogi has been used as a folk medicine for treating various diseases including inflammatory and immune-related diseases. Scopoletin (1) and scopolin (2) were isolated from this species. Scopoletin (1) showed more potent peroxyl radical-scavenging capacity, reducing capacity, and cellular antioxidant capacity compared to scopolin (2). The inhibitory effect of 1 on the receptor activator of nuclear factor κB ligand-induced osteoclastic differentiation of RAW 264.7 macrophage cells was also more potent than that of 2. The production of general reactive oxygen species (ROS) and superoxide anions during differentiation of preosteoclastic RAW 264.7 cells into osteoclasts was attenuated by compounds 1 and 2. These findings indicate that the suppressive effects of 1 and 2 on the differentiation of preosteoclastic RAW 264.7 cells is partially due to their intracellular antioxidant capacity, as they can scavenge ROS and play an important signaling role in the differentiation process.


Assuntos
Artemisia/química , Cumarínicos/farmacologia , Glucosídeos/farmacologia , Macrófagos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Espécies Reativas de Oxigênio/farmacologia , Escopoletina/farmacologia , Animais , Antioxidantes/farmacologia , Diferenciação Celular , Cumarínicos/química , Glucosídeos/química , Peróxido de Hidrogênio/análise , Coreia (Geográfico) , Camundongos , Estrutura Molecular , Espécies Reativas de Oxigênio/análise , Escopoletina/química
14.
Bioorg Med Chem ; 21(1): 84-92, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23218780

RESUMO

A series of new scopoletin derivatives were designed and synthesized. Their anti-proliferative effect was initially evaluated against various human cancer cell lines. Among the tested compounds, A1, A2, and D6 showed significant anti-proliferative activities. Angiogenesis was detected by endothelial cell migration assay and tube formation study. The results showed that A1, A2, and D6 inhibited the vascular endothelial growth factor (VEGF)-stimulated proliferation, migration, and tube formation of human umbilical vein endothelial cells in vitro. Moreover, they inhibited the vessel growth in the chorioallantoic membrane in vivo. This inhibition was correlated with a significant decrease in the VEGF-triggered phosphorylated forms of ERK1/2 and Akt. In summary, these findings strongly suggested that these scopoletin derivatives might be structurally novel angiogenesis inhibitors.


Assuntos
Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Escopoletina/química , Escopoletina/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Electrophoresis ; 33(15): 2433-40, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22887165

RESUMO

A rapid, sensitive, and practical CE with C(4) D detection was developed for the analysis of three polyphenols (rutin, scopoletin, and chlorogenic acid) in tobacco samples. The constructed mini detection cell (12 mm × 10 mm × 10 mm) of C(4) D featured with small inner cell volume (∼2 nL), smaller noise (<0.9 mV), repeatability, high strength and durableness. Three polyphenols were ultrasonically extracted with methanol-water (70:30, v/v) solution following SPE cleanup. The CE method was optimized with the running buffer of 150 mmol L(-1) 2-amino-2-methyl-1-propanol (pH 11.2), and the applied separation voltage of +20 kV over a capillary of 50 µm id × 375 µm od × 50 cm (38 cm to the C(4) D window, 41.5 cm to the UV detector window), which gave a baseline separation of three polyphenols within ca. 6 min. The method provided the limits of quantification (S/N = 10) at about 0.08-0.15 µg g(-1) for three polyphenols, whereas the overall recoveries ranged from 82% to 88%. The proposed method has been successfully applied to measure three polyphenols in the actual tobacco samples, and their contents were calculated and evaluated.


Assuntos
Ácido Clorogênico/análise , Eletroforese Capilar/métodos , Nicotiana/química , Rutina/análise , Escopoletina/análise , Ácido Clorogênico/química , Eletroforese Capilar/instrumentação , Modelos Lineares , Extratos Vegetais/química , Folhas de Planta/química , Rutina/química , Escopoletina/química , Sensibilidade e Especificidade , Extração em Fase Sólida
16.
Int Immunopharmacol ; 14(4): 454-62, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22914669

RESUMO

The present study determined the anti-inflammatory activity of scopoletin in gout air pouch model and revealed the underlying mechanisms by in vitro assays. Monosodium urate (MSU) crystal-induced inflammation in mouse air pouch model, an experimental model for acute gout, was used to assess the efficacy of scopoletin. The neutrophil and mononuclear phagocyte numbers and MPO levels were increased significantly six hours after MSU crystal injection into the air pouch, whereas these changes were inhibited substantially upon scopoletin (100 and 200mg/kg, i.p.) treatment. To get insight into the underlying mechanisms, the in vitro studies were performed to investigate the effects of scopoletin on activation of macrophages and resultant production of inflammatory mediators. The secretions of interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), prostaglandin E(2) (PGE(2)) and nitric oxide (NO) were elevated in MSU crystal-stimulated RAW 264.7 cells, and scopoletin (30-300 µM) suppressed the production of all mediators. Moreover, RT-PCR assay and western blot analysis indicated that scopoletin regulated the transcriptional level of these mediators via suppression of NF-κB activation and blockade of MAPK signal pathway. Thus, the results clearly indicated that scopoletin inhibited the monosodium urate crystal-induced inflammation both in vivo and in vitro. In combination with our previous findings that scopoletin shows hypouricemic, anti-angiogenesis and pro-apoptotic activities, this compound may be a potential agent for gout therapy and could serve as a structural base for developing new drugs.


Assuntos
Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Escopoletina/farmacologia , Ácido Úrico/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Umidade , Leucócitos , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Estrutura Molecular , Óxido Nítrico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Escopoletina/química , Temperatura
17.
Food Chem Toxicol ; 50(10): 3505-13, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22824087

RESUMO

Cholestatic liver fibrosis, characterized by excessive accumulation of extracellular matrix (ECM) proteins, is associated with bile acid-induced oxidative stress and lipid peroxidation. We evaluated the therapeutic or protective effect of an aqueous extract of Artemisia iwayomogi Kitamura (WAI) in a rat bile duct ligation (BDL)-induced hepatic fibrogenesis model. After BDL, rats were treated once daily with 25 or 50 mg/kg of WAI for 2weeks. The serum bilirubin, aspartate transaminase, alanine transaminase, malondialdehyde, and liver hydroxyproline levels were drastically increased in the BDL group. WAI administration significantly reduced these markers and restored BDL-induced depletion of glutathione content and glutathione peroxidase activity. Cholestatic liver injury and collagen deposition were markedly attenuated by WAI treatment, and these changes were paralleled by significantly suppressed gene and protein expression of fibrogenic factors, including hepatic alphasmooth muscle actin, platelet-derived growth factor, and transforming growth factor ß. Our data suggest that WAI may have antifibrotic properties via both improvement of antioxidant activities and inhibition of ECM protein production in the rat model of BDL.


Assuntos
Artemisia/química , Ductos Biliares/patologia , Colestase/complicações , Cirrose Hepática/tratamento farmacológico , Extratos Vegetais/farmacologia , Actinas/genética , Actinas/metabolismo , Animais , Antioxidantes , Ductos Biliares/cirurgia , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Hidroxiprolina/química , Hidroxiprolina/metabolismo , Ligadura , Cirrose Hepática/etiologia , Masculino , Malondialdeído , Estrutura Molecular , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 1 , Extratos Vegetais/química , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Ratos , Ratos Sprague-Dawley , Escopoletina/química , Organismos Livres de Patógenos Específicos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
18.
Nat Prod Res ; 26(16): 1483-91, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22008023

RESUMO

Artemisia sacrorum Ledeb. was extracted by 95% ethanol and water, respectively. By partitioning the 95% ethanol extract successively with different solvents and separating the water extract by macroporous resin, nine separate parts were obtained. According to the results of in vitro experiments, the CH2Cl2 (dichloromethane) fraction showed the most pronounced cytotoxic activity against HepG2, HT-29 and MCF-7 cells, with EC50 values 122.35, 49.76 and 28.51 µg mL⁻¹, respectively, at 48 h. Following this, the compounds of the CH2Cl2 fraction were separated and identified. Ten compounds were isolated from A. sacrorum Ledeb. and identified by spectral analysis. Four compounds, including acacetin, were isolated for the first time from A. sacrorum Ledeb.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Artemisia/química , Flavonas/química , Flavonas/farmacologia , Antineoplásicos/isolamento & purificação , Flavonas/isolamento & purificação , Células HT29 , Células Hep G2 , Humanos , Células MCF-7 , Escopoletina/análogos & derivados , Escopoletina/química , Escopoletina/isolamento & purificação , Escopoletina/farmacologia
19.
Horm Metab Res ; 42(13): 930-5, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20886413

RESUMO

Insulin resistance plays an important role in the development of type 2 diabetes mellitus. Scopoletin, a phenolic coumarin, is reported to regulate hyperglycemia and diabetes. To examine its effect on insulin resistance, we treated high-glucose-induced, insulin-resistant HepG2 cells with scopoletin and measured phosphatidylinositol 3-kinase (PI3 K)-linked protein kinase B (Akt/PKB) phosphorylation. Scopoletin significantly stimulated the reactivation of insulin-mediated Akt/PKB phosphorylation. This effect was blocked by LY294002, a specific PI3 K inhibitor. The ability of scopoletin to activate insulin-mediated Akt/PKB was greater than that of rosiglitazone, a thiazolidinedione, and scopoletin was less adipogenic than rosiglitazone, as shown by the extent of lipid accumulation in differentiated adipocytes. Scopoletin increased the gene expression of both peroxisome proliferator-activated receptor γ2 (PPARγ2), a target receptor for rosiglitazone, and adipocyte-specific fatty acid binding protein, but not to the level induced by rosiglitazone. However, the PPARγ2 protein level was increased equally by rosiglitazone and scopoletin in differentiated adipocytes. Our results suggest that scopoletin can ameliorate insulin resistance in part by upregulating PPARγ2 expression. With its lower adipogenic property, scopoletin may be a useful candidate for managing metabolic disorders, including type 2 diabetes mellitus.


Assuntos
Glucose/farmacologia , Resistência à Insulina/fisiologia , Insulina/farmacologia , Escopoletina/farmacologia , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Escopoletina/química
20.
Chem Biol Interact ; 186(2): 211-8, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20380826

RESUMO

Coumarins comprise a broad class of phenolic compounds that influences the formation and scavenging of reactive oxygen species and the processes involving free radical-mediated injury. In light of the antioxidant and anti-inflammatory properties of esculetin and 4-methylesculetin, the aim of this study was to investigate the effects of these compounds in an experimental model of rat colitis induced by trinitrobenzenesulphonic acid (TNBS). For this purpose, macroscopic (diarrhoea, extension of lesion, colonic weight/length ratio and damage score) and biochemical parameters (myeloperoxidase, alkaline phosphatase and glutathione) were evaluated. Our results reveal that these compounds, particularly 4-methylesculetin, may be effective for the treatment of intestinal inflammatory bowel disease. In the acute colitis model, esculetin promoted a reduction in the extension of the lesion accompanied by a reduction in the incidence of diarrhoea and restoration of the glutathione content. Similar effects were produced by the administration of 4-methylesculetin, which also inhibited the myeloperoxidase and alkaline phosphatase activities in the acute intestinal inflammatory process and in the model of colitis relapse. The effect of the esculetin and 4-methylesculetin on the inflammatory process may be related to their antioxidant and anti-inflammatory properties, as observed in this study. The evidence for better effects of 4-methylesculetin in comparison to those demonstrated by esculetin in both experimental settings could be attributed to the presence of the methyl group at C-4 of 4-methylesculetin.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Colite/tratamento farmacológico , Escopoletina/farmacologia , Umbeliferonas/farmacologia , Fosfatase Alcalina/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/química , Antioxidantes/química , Antioxidantes/farmacologia , Colite/induzido quimicamente , Colite/metabolismo , Modelos Animais de Doenças , Glutationa/metabolismo , Masculino , Peroxidase/antagonistas & inibidores , Ratos , Ratos Wistar , Escopoletina/química , Relação Estrutura-Atividade , Sulfassalazina/farmacologia , Ácido Trinitrobenzenossulfônico/toxicidade , Umbeliferonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA