Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 11(506)2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434754

RESUMO

Niemann-Pick disease type A (NPD-A) is a lysosomal storage disorder characterized by neurodegeneration and early death. It is caused by loss-of-function mutations in the gene encoding for acid sphingomyelinase (ASM), which hydrolyzes sphingomyelin into ceramide. Here, we evaluated the safety of cerebellomedullary (CM) cistern injection of adeno-associated viral vector serotype 9 encoding human ASM (AAV9-hASM) in nonhuman primates (NHP). We also evaluated its therapeutic benefit in a mouse model of the disease (ASM-KO mice). We found that CM injection in NHP resulted in widespread transgene expression within brain and spinal cord cells without signs of toxicity. CM injection in the ASM-KO mouse model resulted in hASM expression in cerebrospinal fluid and in different brain areas without triggering an inflammatory response. In contrast, direct cerebellar injection of AAV9-hASM triggered immune response. We also identified a minimally effective therapeutic dose for CM injection of AAV9-hASM in mice. Two months after administration, the treatment prevented motor and memory impairment, sphingomyelin (SM) accumulation, lysosomal enlargement, and neuronal death in ASM-KO mice. ASM activity was also detected in plasma from AAV9-hASM CM-injected ASM-KO mice, along with reduced SM amount and decreased inflammation in the liver. Our results support CM injection for future AAV9-based clinical trials in NPD-A as well as other lysosomal storage brain disorders.


Assuntos
Dependovirus/metabolismo , Terapia Genética , Doença de Niemann-Pick Tipo A/genética , Doença de Niemann-Pick Tipo A/terapia , Sorogrupo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Inflamação/patologia , Injeções , Fígado/patologia , Camundongos Knockout , Atividade Motora , Primatas , Esfingomielina Fosfodiesterase/administração & dosagem , Esfingomielina Fosfodiesterase/sangue , Esfingomielina Fosfodiesterase/genética , Transgenes
2.
Eur J Pharm Biopharm ; 137: 185-195, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30818011

RESUMO

Niemann-Pick disease type B is a hereditary rare condition caused by deficiency of the acid sphingomyelinase (ASM) that is needed for lysosomal hydrolysis of sphingomyelin to ceramide and phosphocholine. This deficiency leads to a massive accumulation of sphingomyelin in cells throughout the body, predominantly in the liver, spleen and lungs. Currently, there is no effective treatment available. Olipudase alfa (recombinant human acid sphingomyelinase; rhASM) is an investigational drug that has shown promising results. However, dose-dependent toxicity was observed in mice upon the intravenous administration of rhASM, potentially due to the systemic release of ceramide upon the extracellular degradation of sphingomyelin by rhASM. Using a nanocarrier to deliver the rhASM to cells could improve the therapeutic window by shielding the rhASM to prevent the off-target degradation of sphingomyelin. For this aim, we recombinantly expressed hASM in human cells and loaded it into different liposomal formulations at a drug-to-lipid ratio of 4% (w/w). Among four formulations, the liposomal rhASM formulation with the composition DPPC:DOPS:BMP:CHOL:DiD (59:20:10:10:1 mol%) was selected because of its superiority concerning the encapsulation efficiency of rhASM (21%) and cellular uptake by fibroblasts and macrophages. The selected liposomal rhASM formulation significantly reduced the accumulated lyso-sphingomyelin in NPD-B fibroblasts by 71%, part of this effect was stimulated by the used lipids, compared to 55% when using the free rhASM enzyme. More importantly, the undesired extracellular degradation of sphingomyelin was reduced when using the selected liposomal rhASM by 61% relative to the free rhASM. The presented in vitro data indicate that the liposomal rhASM is effective and may provide a safer intervention than free rhASM.


Assuntos
Fibroblastos/metabolismo , Macrófagos/metabolismo , Proteínas Recombinantes/administração & dosagem , Esfingomielina Fosfodiesterase/administração & dosagem , Esfingomielinas/metabolismo , Animais , Ceramidas/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Lipídeos/química , Lipossomos , Lisossomos/metabolismo , Camundongos , Células RAW 264.7 , Proteínas Recombinantes/metabolismo , Esfingomielina Fosfodiesterase/metabolismo
3.
J Gene Med ; 13(6): 324-32, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21674735

RESUMO

BACKGROUND: The secretory form of acid sphingomyelinase (ASM) is postulated to play a key role in the retention and aggregation of lipoproteins in the subendothelial space of the arterial wall by converting sphingomyelin in lipoproteins into ceramide. The present study aimed to determine whether the level of circulating ASM activity affects lesion development in mouse model of atherosclerosis. METHODS: Apolipoprotein E deficient (ApoE(-/-) ) mice were injected intravenously with a recombinant adeno-associated virus (AAV8-ASM) that constitutively expressed high levels of human ASM in liver and plasma. RESULTS: Plasma sphingomyelin levels were reduced at early but not later time points after the administration of AAV8-ASM despite persistently elevated circulating ASM. No change in serum lipoprotein levels was observed. Thirteen or 17 weeks after the administration of AAV8-ASM, the amount of plaque formation in the aortic sinus was comparable to that of mice treated with a control AAV. CONCLUSIONS: Unexpectedly, the lesion area of the entire aorta was reduced significantly in the AAV8-ASM virus-treated group. Hepatic expression and secretion of ASM into the circulation did not accelerate or exacerbate, but rather decreased, lesion formation in ApoE(-/-) mice. Thus, plasma ASM activity does not appear to be rate limiting for plaque formation during atherogenesis.


Assuntos
Aorta/patologia , Apolipoproteínas E/genética , Dependovirus/metabolismo , Placa Aterosclerótica/enzimologia , Esfingomielina Fosfodiesterase/metabolismo , Análise de Variância , Animais , Técnicas Histológicas , Humanos , Lipoproteínas/sangue , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/patologia , Esfingomielina Fosfodiesterase/administração & dosagem , Esfingomielina Fosfodiesterase/sangue
4.
Dig Dis Sci ; 54(7): 1440-8, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18989780

RESUMO

Alkaline sphingomyelinase (Alk-SMase) is a key enzyme in the intestinal tract for digestion of dietary sphingomyelin (SM), which generates lipid messengers with cell-cycle regulating effects. The enzyme is significantly decreased in ulcerative colitis and colon cancer. Based on this information, we wanted to investigate whether the enzyme had preventive effects against murine colitis. We report herein a method to express a biologically active Alk-SMase from Pichia pastoris yeast cells. By using the expressed enzyme to treat a rat colitis model induced by dextran sulfate sodium, we found that intrarectal instillation of Alk-SMase once daily for 1 week significantly reduced the inflammation score and protected the colonic epithelium from inflammatory destruction. We found a tendency for decreased tumor necrosis factor (TNF)-alpha expression in the Alk-SMase-treated group. This study, for the first time, provides a method to produce the enzyme and shows the potential applicability of the enzyme in the treatment of inflammatory bowel diseases.


Assuntos
Colite/enzimologia , Esfingomielina Fosfodiesterase/metabolismo , Administração Retal , Animais , Colite/patologia , Colo/patologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Feminino , Inflamação/prevenção & controle , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Pichia/citologia , Projetos Piloto , Reação em Cadeia da Polimerase , Ratos , Ratos Sprague-Dawley , Esfingomielina Fosfodiesterase/administração & dosagem , Esfingomielina Fosfodiesterase/isolamento & purificação , Esfingomielina Fosfodiesterase/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
5.
J Cancer Res Clin Oncol ; 129(10): 577-82, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12920578

RESUMO

PURPOSE: Sphingomyelin (SM) hydrolysis by sphingomyelinase (SMase) has become an important signalling pathway, with the product ceramide implicated in regulation of cell growth, differentiation and apoptosis. Alkaline SMase is specifically located in the intestinal tract. Marked reductions of the enzyme activity have been found in sporadic colorectal carcinomas and in both adenomas and flat mucosa of patients with familial adenomatous polyposis, indicating an anti-proliferative role in colonic cell growth. METHODS: We examined the effects of a purified alkaline SMase from rat intestine and a bacterial neutral SMase on cell growth parameters in HT-29 colonic carcinoma cells. RESULTS: Alkaline SMase was found to inhibit proliferation of HT-29 cells in both dose-dependent and time-dependent manners. The threshold concentration of the enzyme was approximately 2.5 microU/ml, and the maximum effect was obtained at approximately 20 microU/ml, which inhibited the cell growth by 50%. The inhibition occurred rapidly, and maximum effect was reached after 12 h of incubation. Dose-dependent inhibition of DNA synthesis was also demonstrated. The effect of alkaline SMase was preceded and accompanied by increased hydrolysis of SM and production of ceramide. Neutral SMase with equivalent hydrolytic capacity did not inhibit cell growth. Alkaline SMase did not induce apoptosis in HT-29 cells. Alkaline SMase did not inhibit growth of IEC-6 cells. CONCLUSION: Alkaline SMase, at doses that induce SM hydrolysis, inhibits growth of colon cancer cells. The inhibition is attributed to an anti-proliferative effect rather than an apoptotic effect.


Assuntos
Divisão Celular/efeitos dos fármacos , Intestinos/enzimologia , Esfingomielina Fosfodiesterase/farmacologia , Animais , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HT29/efeitos dos fármacos , Humanos , Ratos , Esfingomielina Fosfodiesterase/administração & dosagem , Esfingomielina Fosfodiesterase/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA