Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.562
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Elife ; 122024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106189

RESUMO

Numerous lipids are heterogeneously distributed among organelles. Most lipid trafficking between organelles is achieved by a group of lipid transfer proteins (LTPs) that carry lipids using their hydrophobic cavities. The human genome encodes many intracellular LTPs responsible for lipid trafficking and the function of many LTPs in defining cellular lipid levels and distributions is unclear. Here, we created a gene knockout library targeting 90 intracellular LTPs and performed whole-cell lipidomics analysis. This analysis confirmed known lipid disturbances and identified new ones caused by the loss of LTPs. Among these, we found major sphingolipid imbalances in ORP9 and ORP11 knockout cells, two proteins of previously unknown function in sphingolipid metabolism. ORP9 and ORP11 form a heterodimer to localize at the ER-trans-Golgi membrane contact sites, where the dimer exchanges phosphatidylserine (PS) for phosphatidylinositol-4-phosphate (PI(4)P) between the two organelles. Consequently, loss of either protein causes phospholipid imbalances in the Golgi apparatus that result in lowered sphingomyelin synthesis at this organelle. Overall, our LTP knockout library toolbox identifies various proteins in control of cellular lipid levels, including the ORP9-ORP11 heterodimer, which exchanges PS and PI(4)P at the ER-Golgi membrane contact site as a critical step in sphingomyelin synthesis in the Golgi apparatus.


Assuntos
Retículo Endoplasmático , Esfingomielinas , Esfingomielinas/metabolismo , Esfingomielinas/biossíntese , Humanos , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Multimerização Proteica , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Técnicas de Inativação de Genes , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatos de Fosfatidilinositol/biossíntese
2.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125655

RESUMO

Pancreatic cancer is a very aggressive disease with a dismal prognosis. The tumor microenvironment exerts immunosuppressive activities through the secretion of several cytokines, including interleukin (IL)-1. The IL-1/IL-1 receptor (IL-1R) axis is a key regulator in tumor-promoting T helper (Th)2- and Th17-type inflammation. Th2 cells are differentiated by dendritic cells endowed with Th2-polarizing capability by the thymic stromal lymphopoietin (TSLP) that is secreted by IL-1-activated cancer-associated fibroblasts (CAFs). Th17 cells are differentiated in the presence of IL-1 and other IL-1-regulated cytokines. In pancreatic cancer, the use of a recombinant IL-1R antagonist (IL1RA, anakinra, ANK) in in vitro and in vivo models has shown efficacy in targeting the IL-1/IL-1R pathway. In this study, we have developed sphingomyelin nanosystems (SNs) loaded with ANK (ANK-SNs) to compare their ability to inhibit Th2- and Th17-type inflammation with that of the free drug in vitro. We found that ANK-SNs inhibited TSLP and other pro-tumor cytokines released by CAFs at levels similar to ANK. Importantly, inhibition of IL-17 secretion by Th17 cells, but not of interferon-γ, was significantly higher, and at lower concentrations, with ANK-SNs compared to ANK. Collectively, the use of ANK-SNs might be beneficial in reducing the effective dose of the drug and its toxic effects.


Assuntos
Proteína Antagonista do Receptor de Interleucina 1 , Interleucina-1 , Neoplasias Pancreáticas , Esfingomielinas , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Humanos , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-1/metabolismo , Esfingomielinas/metabolismo , Citocinas/metabolismo , Linhagem Celular Tumoral , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Células Th17/imunologia , Células Th17/efeitos dos fármacos , Células Th17/metabolismo , Células Th2/imunologia , Células Th2/efeitos dos fármacos , Células Th2/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Nanopartículas/química , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos
3.
Lipids Health Dis ; 23(1): 202, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937739

RESUMO

BACKGROUND: Digestive system cancers represent a significant global health challenge and are attributed to a combination of demographic and lifestyle changes. Lipidomics has emerged as a pivotal area in cancer research, suggesting that alterations in lipid metabolism are closely linked to cancer development. However, the causal relationship between specific lipid profiles and digestive system cancer risk remains unclear. METHODS: Using a two-sample Mendelian randomization (MR) approach, we elucidated the causal relationships between lipidomic profiles and the risk of five types of digestive system cancer: stomach, liver, esophageal, pancreatic, and colorectal cancers. The aim of this study was to investigate the effect impact of developing lipid profiles on the risk of digestive system cancers utilizing data from public databases such as the GWAS Catalog and the UK Biobank. The inverse‒variance weighted (IVW) method and other strict MR methods were used to evaluate the potential causal links. In addition, we performed sensitivity analyses and reverse MR analyses to ensure the robustness of the results. RESULTS: Significant causal relationships were identified between certain lipidomic traits and the risk of developing digestive system cancers. Elevated sphingomyelin (d40:1) levels were associated with a reduced risk of developing gastric cancer (odds ratio (OR) = 0.68, P < 0.001), while elevated levels of phosphatidylcholine (16:1_20:4) increased the risk of developing esophageal cancer (OR = 1.31, P = 0.02). Conversely, phosphatidylcholine (18:2_0:0) had a protective effect against colorectal cancer (OR = 0.86, P = 0.036). The bidirectional analysis did not suggest reverse causality between cancer risk and lipid levels. Strict MR methods demonstrated the robustness of the above causal relationships. CONCLUSION: Our findings underscore the significant causal relationships between specific lipidomic traits and the risk of developing various digestive system cancers, highlighting the potential of lipid profiles in informing cancer prevention and treatment strategies. These results reinforce the value of MR in unraveling complex lipid-cancer interactions, offering new avenues for research and clinical application.


Assuntos
Neoplasias do Sistema Digestório , Análise da Randomização Mendeliana , Humanos , Neoplasias do Sistema Digestório/genética , Neoplasias do Sistema Digestório/epidemiologia , Neoplasias do Sistema Digestório/sangue , Estudo de Associação Genômica Ampla , Metabolismo dos Lipídeos/genética , Lipídeos/sangue , Lipídeos/genética , Fatores de Risco , Lipidômica , Predisposição Genética para Doença , Esfingomielinas/sangue , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/epidemiologia
4.
BMC Med ; 22(1): 262, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915026

RESUMO

BACKGROUND: A better understanding of lung cancer etiology and the development of screening biomarkers have important implications for lung cancer prevention. METHODS: We included 623 matched case-control pairs from the Cancer Prevention Study (CPS) cohorts. Pre-diagnosis blood samples were collected between 1998 and 2001 in the CPS-II Nutrition cohort and 2006 and 2013 in the CPS-3 cohort and were sent for metabolomics profiling simultaneously. Cancer-free controls at the time of case diagnosis were 1:1 matched to cases on date of birth, blood draw date, sex, and race/ethnicity. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using conditional logistic regression, controlling for confounders. The Benjamini-Hochberg method was used to correct for multiple comparisons. RESULTS: Sphingomyelin (d18:0/22:0) (OR: 1.32; 95% CI: 1.15, 1.53, FDR = 0.15) and taurodeoxycholic acid 3-sulfate (OR: 1.33; 95% CI: 1.14, 1.55, FDR = 0.15) were positively associated with lung cancer risk. Participants diagnosed within 3 years of blood draw had a 55% and 48% higher risk of lung cancer per standard deviation increase in natural log-transformed sphingomyelin (d18:0/22:0) and taurodeoxycholic acid 3-sulfate level, while 26% and 28% higher risk for those diagnosed beyond 3 years, compared to matched controls. Lipid and amino acid metabolism accounted for 47% to 80% of lung cancer-associated metabolites at P < 0.05 across all participants and subgroups. Notably, ever-smokers exhibited a higher proportion of lung cancer-associated metabolites (P < 0.05) in xenobiotic- and lipid-associated pathways, whereas never-smokers showed a more pronounced involvement of amino acid- and lipid-associated metabolic pathways. CONCLUSIONS: This is the largest prospective study examining untargeted metabolic profiles regarding lung cancer risk. Sphingomyelin (d18:0/22:0), a sphingolipid, and taurodeoxycholic acid 3-sulfate, a bile salt, may be risk factors and potential screening biomarkers for lung cancer. Lipid and amino acid metabolism may contribute significantly to lung cancer etiology which varied by smoking status.


Assuntos
Neoplasias Pulmonares , Metabolômica , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/diagnóstico , Masculino , Feminino , Metabolômica/métodos , Estudos de Casos e Controles , Pessoa de Meia-Idade , Idoso , Esfingomielinas/sangue
5.
J Proteome Res ; 23(6): 2054-2066, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38775738

RESUMO

The metabolites and microbiota in tongue coating display distinct characteristics in certain digestive disorders, yet their relationship with colorectal cancer (CRC) remains unexplored. Here, we employed liquid chromatography coupled with tandem mass spectrometry to analyze the lipid composition of tongue coating using a nontargeted approach in 30 individuals with colorectal adenomas (CRA), 32 with CRC, and 30 healthy controls (HC). We identified 21 tongue coating lipids that effectively distinguished CRC from HC (AUC = 0.89), and 9 lipids that differentiated CRC from CRA (AUC = 0.9). Furthermore, we observed significant alterations in the tongue coating lipid composition in the CRC group compared to HC/CRA groups. As the adenoma-cancer sequence progressed, there was an increase in long-chain unsaturated triglycerides (TG) levels and a decrease in phosphatidylethanolamine plasmalogen (PE-P) levels. Furthermore, we noted a positive correlation between N-acyl ornithine (NAOrn), sphingomyelin (SM), and ceramide phosphoethanolamine (PE-Cer), potentially produced by members of the Bacteroidetes phylum. The levels of inflammatory lipid metabolite 12-HETE showed a decreasing trend with colorectal tumor progression, indicating the potential involvement of tongue coating microbiota and tumor immune regulation in early CRC development. Our findings highlight the potential utility of tongue coating lipid analysis as a noninvasive tool for CRC diagnosis.


Assuntos
Neoplasias Colorretais , Lipidômica , Fosfatidiletanolaminas , Espectrometria de Massas em Tandem , Língua , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Lipidômica/métodos , Masculino , Feminino , Língua/microbiologia , Língua/metabolismo , Língua/patologia , Língua/química , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem/métodos , Fosfatidiletanolaminas/metabolismo , Fosfatidiletanolaminas/análise , Idoso , Cromatografia Líquida , Lipídeos/análise , Lipídeos/química , Triglicerídeos/metabolismo , Triglicerídeos/análise , Adenoma/metabolismo , Adenoma/microbiologia , Esfingomielinas/análise , Esfingomielinas/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/química , Plasmalogênios/análise , Plasmalogênios/metabolismo , Plasmalogênios/química , Estudos de Casos e Controles , Etanolaminas/metabolismo , Etanolaminas/análise , Etanolaminas/química , Ceramidas/metabolismo , Ceramidas/análise , Adulto
6.
Nat Commun ; 15(1): 2073, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453918

RESUMO

Cholesterol (Chol) fortifies packing and reduces fluidity and permeability of the lipid bilayer in vesicles (liposomes)-mediated drug delivery. However, under the physiological environment, Chol is rapidly extracted from the lipid bilayer by biomembranes, which jeopardizes membrane stability and results in premature leakage for delivered payloads, yielding suboptimal clinic efficacy. Herein, we report a Chol-modified sphingomyelin (SM) lipid bilayer via covalently conjugating Chol to SM (SM-Chol), which retains membrane condensing ability of Chol. Systemic structure activity relationship screening demonstrates that SM-Chol with a disulfide bond and longer linker outperforms other counterparts and conventional phospholipids/Chol mixture systems on blocking Chol transfer and payload leakage, increases maximum tolerated dose of vincristine while reducing systemic toxicities, improves pharmacokinetics and tumor delivery efficiency, and enhances antitumor efficacy in SU-DHL-4 diffuse large B-cell lymphoma xenograft model in female mice. Furthermore, SM-Chol improves therapeutic delivery of structurally diversified therapeutic agents (irinotecan, doxorubicin, dexamethasone) or siRNA targeting multi-drug resistant gene (p-glycoprotein) in late-stage metastatic orthotopic KPC-Luc pancreas cancer, 4T1-Luc2 triple negative breast cancer, lung inflammation, and CT26 colorectal cancer animal models in female mice compared to respective FDA-approved nanotherapeutics or lipid compositions. Thus, SM-Chol represents a promising platform for universal and improved drug delivery.


Assuntos
Bicamadas Lipídicas , Esfingomielinas , Humanos , Feminino , Camundongos , Animais , Bicamadas Lipídicas/química , Esfingomielinas/química , Lipossomos/química , Fosfolipídeos/química , Colesterol/química
7.
Ital J Pediatr ; 50(1): 52, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486257

RESUMO

BACKGROUND: Orthostatic intolerance, which includes vasovagal syncope and postural orthostatic tachycardia syndrome, is common in children and adolescents. Elevated plasma homocysteine levels might participate in the pathogenesis of orthostatic intolerance. This study was designed to analyze the plasma metabolomic profile in orthostatic intolerance children with high levels of plasma homocysteine. METHODS: Plasma samples from 34 orthostatic intolerance children with a plasma homocysteine concentration > 9 µmol/L and 10 healthy children were subjected to ultra-high-pressure liquid chromatography and quadrupole-time-of-flight mass spectrometry analysis. RESULTS: A total of 875 metabolites were identified, 105 of which were significantly differential metabolites. Choline, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine, 1-(1Z-octadecenyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine, histidine, isocitric acid, and DL-glutamic acid and its downstream metabolites were upregulated, whereas 1-palmitoyl-sn-glycero-3-phosphocholine, 1-stearoyl-sn-glycerol 3-phosphocholine, sphingomyelin (d18:1/18:0), betaine aldehyde, hydroxyproline, and gamma-aminobutyric acid were downregulated in the orthostatic intolerance group compared with the control group. All these metabolites were related to choline and glutamate. Heatmap analysis demonstrated a common metabolic pattern of higher choline, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine, and DL-glutamic acid, and lower sphingomyelin (d18:1/18:0), 1-stearoyl-sn-glycerol 3-phosphocholine, and 1-palmitoyl-sn-glycero-3-phosphocholine in patients with certain notable metabolic changes (the special group) than in the other patients (the common group). The maximum upright heart rate, the change in heart rate from the supine to the upright position, and the rate of change in heart rate from the supine to the upright position of vasovagal syncope patients were significantly higher in the special group than in the common group (P < 0.05). Choline, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine, and DL-glutamic acid were positively correlated with the rate of change in heart rate from the supine to the upright position in vasovagal syncope patients (P < 0.05). CONCLUSIONS: The levels of choline-related metabolites and glutamate-related metabolites changed significantly in orthostatic intolerance children with high levels of plasma homocysteine, and these changes were associated with the severity of illness. These results provided new light on the pathogenesis of orthostatic intolerance.


Assuntos
Glicerol/análogos & derivados , Intolerância Ortostática , Fosforilcolina/análogos & derivados , Síncope Vasovagal , Adolescente , Criança , Humanos , Ácido Glutâmico , Glicerilfosforilcolina , Esfingomielinas , Colina , Homocisteína
8.
J Proteomics ; 299: 105154, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38471622

RESUMO

High-grade serous ovarian cancer (HGSOC) has a high death rate and poor prognosis. The main causes of poor prognosis are asymptomatic early disease, no effective screening method at present, and advanced disease. Changes in cellular metabolism are characteristic of cancer, and plasma metabolome analysis can be used to identify biomarkers. In this study, we used Q Exactive liquid chromatography tandem mass spectrometry (LC-MS/MS, QE) to compare the differentiation between plasma samples (22 HGSOC samples and 22 normal samples). In total, we detected 124 metabolites, and an orthogonal partial least-squares-discriminant analysis (OPLS-DA) model was useful to distinguish HGSOC patients from healthy controls. Choline, 25-hydroxyvitamin D2, and sphingomyelin (d18:0/16:1(9Z) (OH))/SM(d18:0/16:1(9Z) (OH)) showed significantly differential plasma levels in HGSOC patients under the conditions of variable importance in projection (VIP) > 1, p < 0.05 using Student's t-test, and fold change (FC)  ≥ 1.5 or ≤ 0.667. Metabolic pathway analysis can provide valuable information to enhance the understanding of the underlying pathophysiology of HGSOC. In conclusion, the Q Exactive LC/MS/MS method validation-based plasma metabolomics approach may have potential as a convenient screening method for HGSOC and may be a method to monitor tumor recurrence in patients with HGSOC after surgery SIGNIFICANCE: High-grade serous ovarian cancer (HGSOC) has a high death rate and poor prognosis. The main causes of poor prognosis are asymptomatic early disease, no effective screening method at present, and advanced disease. Changes in cellular metabolism are characteristic of cancer, and plasma metabolome analysis can be used to identify biomarkers. In this study, we used Q Exactive liquid chromatography tandem mass spectrometry (LC-MS/MS, QE) to compare the differentiation between plasma samples (20 HGSOC samples and 20 normal samples). In total, we detected 124 metabolites, and an orthogonal partial least-squares-discriminant analysis (OPLS-DA) model was useful to distinguish HGSOC patients from healthy controls. Choline, 25-hydroxyvitamin D2, and sphingomyelin (d18:0/16:1(9Z) (OH))/SM(d18:0/16:1(9Z) (OH)) showed significantly differential plasma levels in HGSOC patients under the conditions of variable importance in projection (VIP) > 1, p < 0.05 using Student's t-test, and fold change (FC) ≥ 1.5 or ≤ 0.667. Metabolic pathway analysis can provide valuable information to enhance the understanding of the underlying pathophysiology of HGSOC. In conclusion, the Q Exactive LC/MS/MS method validation-based plasma metabolomics approach may have potential as a convenient screening method for HGSOC and may be a method to monitor tumor recurrence in patients with HGSOC after surgery.


Assuntos
Neoplasias Ovarianas , Espectrometria de Massas em Tandem , Humanos , Feminino , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , 25-Hidroxivitamina D 2 , Esfingomielinas , Colina , Recidiva Local de Neoplasia , Detecção Precoce de Câncer , Biomarcadores , Metabolômica/métodos , Neoplasias Ovarianas/diagnóstico
9.
Biochim Biophys Acta Biomembr ; 1866(4): 184292, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342362

RESUMO

Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) is an enzyme present in matrix vesicles (MV). NPP1 participates on the regulation of bone formation by producing pyrophosphate (PPi) from adenosine triphosphate (ATP). Here, we have used liposomes bearing dipalmitoylphosphatidylcholine (DPPC), sphingomyelin (SM), and cholesterol (Chol) harboring NPP1 to mimic the composition of MV lipid rafts to investigate ionic and lipidic influence on NPP1 activity and mineral propagation. Atomic force microscopy (AFM) revealed that DPPC-liposomes had spherical and smooth surface. The presence of SM and Chol elicited rough and smooth surface, respectively. NPP1 insertion produced protrusions in all the liposome surface. Maximum phosphodiesterase activity emerged at 0.082 M ionic strength, whereas maximum phosphomonohydrolase activity arose at low ionic strength. Phosphoserine-Calcium Phosphate Complex (PS-CPLX) and amorphous calcium-phosphate (ACP) induced mineral propagation in DPPC- and DPPC:SM-liposomes and in DPPC:Chol-liposomes, respectively. Mineral characterization revealed the presence of bands assigned to HAp in the mineral propagated by NPP1 harbored in DPPC-liposomes without nucleators or in DPPC:Chol-liposomes with ACP nucleators. These data show that studying how the ionic and lipidic environment affects NPP1 properties is important, especially for HAp obtained under controlled conditions in vitro.


Assuntos
Lipossomos , Diester Fosfórico Hidrolases , Monoéster Fosfórico Hidrolases , Fosfatos de Cálcio/química , Íons , Lipossomos/química , Minerais , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Esfingomielinas , Pirofosfatases/química , Pirofosfatases/metabolismo
10.
Biochim Biophys Acta Biomembr ; 1866(3): 184294, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316379

RESUMO

This study presents a new approach to designing a lithocholic acid functionalized oligomer (OLithocholicAA-X) that can be used as a drug carrier with additional, beneficial activity. Namely, this novel oligomer can incorporate an anti-cancer drug due to the application of an effective backbone as its component (lithocholic acid) alone is known to have anticancer activity. The oligomer was synthesized and characterized in detail by nuclear magnetic resonance, attenuated total reflectance Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, thermal analysis, and mass spectrometry analysis. We selected lipid rafts as potential drug carrier-membrane binding sites. In this respect, we investigated the effects of OLithocholicAA-X on model lipid raft of normal and altered composition, containing an increased amount of cholesterol (Chol) or sphingomyelin (SM), using Langmuir monolayers and liposomes. The surface topography of the studied monolayers was additionally investigated by atomic force microscopy (AFM). The obtained results showed that the investigated oligomer has affinity for a system that mimics a normal lipid raft (SM:Chol 2:1). On the other hand, for systems with an excess of SM or Chol, thermodynamically unfavorable fluidization of the films occurs. Moreover, AFM topographies showed that the amount of SM determines the bioavailability of the oligomer, causing fragmentation of its lattice.


Assuntos
Lipossomos , Ácido Litocólico , Ácido Litocólico/análise , Ácido Litocólico/metabolismo , Lipossomos/química , Sistemas de Liberação de Medicamentos , Espectroscopia de Ressonância Magnética , Microdomínios da Membrana/química , Esfingomielinas/química , Colesterol/química
11.
BMC Pulm Med ; 24(1): 37, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233819

RESUMO

BACKGROUND: Type 2 diabetes (T2D) leads to serious respiratory problems. This study investigated the effectiveness of high-intensity interval training (HIIT) on T2D-induced lung injuries at histopathological and molecular levels. METHODS: Forty-eight male Wistar rats were randomly allocated into control (CTL), Diabetes (Db), exercise (Ex), and Diabetes + exercise (Db + Ex) groups. T2D was induced by a high-fat diet plus (35 mg/kg) of streptozotocin (STZ) administration. Rats in Ex and Db + Ex performed HIIT for eight weeks. Tumor necrosis factor-alpha (TNFα), Interleukin 10 (IL-10), BAX, Bcl2, Lecithin, Sphingomyelin (SPM) and Surfactant protein D (SPD) levels were measured in the bronchoalveolar lavage fluid (BALF) and malondialdehyde (MDA) and total antioxidant capacity (TAC) levels were measured in lung tissue. Lung histopathological alterations were assessed by using H&E and trichrome mason staining. RESULTS: Diabetes was significantly associated with imbalance in pro/anti-inflammatory, pro/anti-apoptosis and redox systems, and reduced the SPD, lecithin sphingomyelin and alveolar number. Performing HIIT by diabetic animals increased Bcl2 (P < 0.05) and IL10 (P < 0.01) levels as well as surfactants components and TAC (P < 0.05) but decreased fasting blood glucose (P < 0.001), TNFα (P < 0.05), BAX (P < 0.05) and BAX/Bcl2 (P < 0.001) levels as well as MDA (P < 0.01) and MDA/TAC (P < 0.01) compared to the diabetic group. Furthermore, lung injury and fibrosis scores were increased by T2D and recovered in presence of HIIT. CONCLUSION: These findings suggested that the attenuating effect of HIIT on diabetic lung injury mediated by reducing blood sugar, inflammation, oxidative stress, and apoptosis as well as improving pulmonary surfactants components.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Treinamento Intervalado de Alta Intensidade , Lesão Pulmonar , Ratos , Masculino , Animais , Ratos Wistar , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Lecitinas/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo , Esfingomielinas/efeitos adversos , Proteína X Associada a bcl-2/farmacologia , Pulmão/metabolismo , Antioxidantes/metabolismo
12.
Bioorg Chem ; 143: 107002, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38006790

RESUMO

Hormone treatments are frequently associated with cardiovascular diseases and cancers in women. Additionally, the detrimental effects of their presence as contaminants in water remain a concern. The transport of hormones through cell membranes is essential for their biological action, but investigating cell permeability is challenging owing to the experimental difficulty in dealing with whole cells. In this paper, we study the interaction of the synthetic hormone 17α-ethynylestradiol (EE2) with membrane models containing the key raft components sphingomyelin (SM) and cholesterol (Chol). The models consisted of Langmuir monolayers and giant unilamellar vesicles (GUVs) that represent bilayers. EE2 induced expansion of SM monolayers upon interacting with the non-hydrated amide group of SM head, but it had practically no effect on SM GUVs because these group are not available for interaction in bilayers. In contrast, EE2 interacted with hydrated phosphate group (PO2-) and amide group of SM/Chol mixture monolayer, which could explain the loss in phase contrast of liquid-ordered GUVs suggesting pore formation. A comparison with reported EE2 effects on GUVs in the fluid phase, for which no loss in phase contrast was observed, indicates that the liquid-ordered phase consisting of lipid rafts is relevant to be associated with the changes on cell permeability caused by the hormones.


Assuntos
Esfingomielinas , Lipossomas Unilamelares , Feminino , Humanos , Esfingomielinas/metabolismo , Hormônios , Colesterol , Microdomínios da Membrana/metabolismo , Amidas
13.
Biomolecules ; 13(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38136603

RESUMO

Lysosomes are degradative organelles that facilitate the removal and recycling of potentially cytotoxic materials and mediate a variety of other cellular processes, such as nutrient sensing, intracellular signaling, and lipid metabolism. Due to these central roles, lysosome dysfunction can lead to deleterious outcomes, including the accumulation of cytotoxic material, inflammation, and cell death. We previously reported that cationic amphiphilic drugs, such as imipramine, alter pH and lipid metabolism within macrophage lysosomes. Therefore, the ability for imipramine to induce changes to the lipid content of isolated macrophage lysosomes was investigated, focusing on sphingomyelin, cholesterol, and glycerophospholipid metabolism as these lipid classes have important roles in inflammation and disease. The lysosomes were isolated from control and imipramine-treated macrophages using density gradient ultracentrifugation, and mass spectrometry was used to measure the changes in their lipid composition. An unsupervised hierarchical cluster analysis revealed a clear differentiation between the imipramine-treated and control lysosomes. There was a significant overall increase in the abundance of specific lipids mostly composed of cholesterol esters, sphingomyelins, and phosphatidylcholines, while lysophosphatidylcholines and ceramides were overall decreased. These results support the conclusion that imipramine's ability to change the lysosomal pH inhibits multiple pH-sensitive enzymes in macrophage lysosomes.


Assuntos
Imipramina , Esfingomielinas , Humanos , Esfingomielinas/metabolismo , Imipramina/farmacologia , Colesterol/metabolismo , Macrófagos/metabolismo , Lisossomos/metabolismo , Inflamação/metabolismo , Metabolismo dos Lipídeos , Glicerofosfolipídeos/metabolismo
14.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139092

RESUMO

The role of sphingomyelin metabolism and vitamin C in cancer has been widely described with conflicting results ranging from a total absence of effect to possible preventive and/or protective effects. The aim of this study was to establish the possible involvement of sphingomyelin metabolism in the changes induced by vitamin C in breast cancer cells. The MCF7 cell line reproducing luminal A breast cancer and the MDA-MB-231 cell line reproducing triple-negative breast cancer were used. Cell phenotype was tested by estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 expression, and proliferation index percentage. Sphingomyelin was localized by an EGFP-NT-Lys fluorescent probe. Sphingomyelin metabolism was analyzed by RT-PCR, Western blotting and UFLC-MS/MS. The results showed that a high dose of vitamin C produced reduced cell viability, modulated cell cycle related genes, and changed the cell phenotype with estrogen receptor downregulation in MCF7 cell. In these cells, the catabolism of sphingomyelin was promoted with a large increase in ceramide content. No changes in viability and molecular expression were observed in MB231 cells. In conclusion, a high dose of vitamin C induces changes in the luminal A cell line involving sphingomyelin metabolism.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Células MCF-7 , Neoplasias da Mama/metabolismo , Esfingomielinas , Ácido Ascórbico/farmacologia , Espectrometria de Massas em Tandem , Vitaminas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células
15.
J Phys Chem Lett ; 14(49): 10886-10893, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38033106

RESUMO

Transthyretin (TTR) is a small tetrameric protein that aggregates, forming highly toxic oligomers and fibrils. In the blood and cerebrospinal fluid, TTR can interact with various biomolecules, phospho- and sphingolipids, and cholesterol on the red blood cell plasma membrane. However, the role of these molecules in TTR aggregation remains unclear. In this study, we investigated the extent to which phosphatidylcholine (PC), sphingomyelin (SM), and cholesterol (Cho), important components of plasma membranes, could alter the rate of TTR aggregation. We found that PC and SM inhibited TTR aggregation whereas Cho strongly accelerated it. The presence of these lipids during the stage of protein aggregation uniquely altered the morphology and secondary structure of the TTR fibrils, which changed the toxicity of these protein aggregates. These results suggest that interactions of TTR with red blood cells, whose membranes are rich with these lipids, can trigger irreversible aggregation of TTR and cause transthyretin amyloidosis.


Assuntos
Neuropatias Amiloides Familiares , Amiloide , Humanos , Amiloide/química , Esfingomielinas , Pré-Albumina/química , Pré-Albumina/metabolismo , Neuropatias Amiloides Familiares/metabolismo , Agregados Proteicos , Colesterol
16.
Nat Commun ; 14(1): 7235, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945606

RESUMO

Epacadostat (EPA), the most advanced IDO1 inhibitor, in combination with PD-1 checkpoint inhibitor, has failed in a recent Phase III clinical trial for treating metastatic melanoma. Here we report an EPA nanovesicle therapeutic platform (Epacasome) based on chemically attaching EPA to sphingomyelin via an oxime-ester bond highly responsive to hydrolase cleavage. Via clathrin-mediated endocytosis, Epacasome displays higher cellular uptake and enhances IDO1 inhibition and T cell proliferation compared to free EPA. Epacasome shows improved pharmacokinetics and tumour accumulation with efficient intratumoural drug release and deep tumour penetration. Additionally, it outperforms free EPA for anticancer efficacy, potentiating PD-1 blockade with boosted cytotoxic T lymphocytes (CTLs) and reduced regulatory T cells and myeloid-derived suppressor cells responses in a B16-F10 melanoma model in female mice. By co-encapsulating immunogenic dacarbazine, Epacasome further enhances anti-tumor effects and immune responses through the upregulation of NKG2D-mediated CTLs and natural killer cells responses particularly when combined with the PD-1 inhibitor in the late-stage metastatic B16-F10-Luc2 model in female mice. Furthermore, this combination prevents tumour recurrence and prolongs mouse survival in a clinically relevant, post-surgical melanoma model in female mice. Epacasome demonstrates potential to synergize with PD-1 blockade for improved response to melanoma immunotherapy.


Assuntos
Melanoma Experimental , Esfingomielinas , Feminino , Camundongos , Animais , Receptor de Morte Celular Programada 1 , Melanoma Experimental/tratamento farmacológico , Oximas , Ativação Linfocitária , Imunoterapia
17.
Nat Commun ; 14(1): 7755, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012235

RESUMO

Enzymatic breakdown of sphingomyelin by sphingomyelinase (SMase) is the main source of the membrane lipids, ceramides, which are involved in many cellular physiological processes. However, the full-length structure of human neutral SMase has not been resolved; therefore, its catalytic mechanism remains unknown. Here, we resolve the structure of human full-length neutral SMase, sphingomyelinase 1 (SMPD2), which reveals that C-terminal transmembrane helices contribute to dimeric architecture of hSMPD2 and that D111 - K116 loop domain is essential for substrate hydrolysis. Coupled with molecular docking, we clarify the binding pose of sphingomyelin, and site-directed mutagenesis further confirms key residues responsible for sphingomyelin binding. Hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamic (MD) simulations are utilized to elaborate the catalysis of hSMPD2 with the reported in vitro substrates, sphingomyelin and lyso-platelet activating fator (lyso-PAF). Our study provides mechanistic details that enhance our knowledge of lipid metabolism and may lead to an improved understanding of ceramide in disease and in cancer treatment.


Assuntos
Esfingomielina Fosfodiesterase , Esfingomielinas , Humanos , Esfingomielinas/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Simulação de Acoplamento Molecular , Ceramidas/metabolismo
18.
Nat Commun ; 14(1): 7572, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989747

RESUMO

Patients with polycystic kidney disease (PKD) encounter a high risk of clear cell renal cell carcinoma (ccRCC), a malignant tumor with dysregulated lipid metabolism. SET domain-containing 2 (SETD2) has been identified as an important tumor suppressor and an immunosuppressor in ccRCC. However, the role of SETD2 in ccRCC generation in PKD remains largely unexplored. Herein, we perform metabolomics, lipidomics, transcriptomics and proteomics within SETD2 loss induced PKD-ccRCC transition mouse model. Our analyses show that SETD2 loss causes extensive metabolic reprogramming events that eventually results in enhanced sphingomyelin biosynthesis and tumorigenesis. Clinical ccRCC patient specimens further confirm the abnormal metabolic reprogramming and sphingomyelin accumulation. Tumor symptom caused by Setd2 knockout is relieved by myriocin, a selective inhibitor of serine-palmitoyl-transferase and sphingomyelin biosynthesis. Our results reveal that SETD2 deficiency promotes large-scale metabolic reprogramming and sphingomyelin biosynthesis during PKD-ccRCC transition. This study introduces high-quality multi-omics resources and uncovers a regulatory mechanism of SETD2 on lipid metabolism during tumorigenesis.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Camundongos , Humanos , Carcinoma de Células Renais/patologia , Esfingomielinas , Neoplasias Renais/patologia , Genes Supressores de Tumor , Transformação Celular Neoplásica/genética , Histona-Lisina N-Metiltransferase
19.
Nat Commun ; 14(1): 7353, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990014

RESUMO

Although the human immunodeficiency virus type 1 lipid envelope has been reported to be enriched with host cell sphingomyelin and cholesterol, the molecular mechanism of the enrichment is not well understood. Viral Gag protein plays a central role in virus budding. Here, we report the interaction between Gag and host cell lipids using different quantitative and super-resolution microscopy techniques in combination with specific probes that bind endogenous sphingomyelin and cholesterol. Our results indicate that Gag in the inner leaflet of the plasma membrane colocalizes with the outer leaflet sphingomyelin-rich domains and cholesterol-rich domains, enlarges sphingomyelin-rich domains, and strongly restricts the mobility of sphingomyelin-rich domains. Moreover, Gag multimerization induces sphingomyelin-rich and cholesterol-rich lipid domains to be in close proximity in a curvature-dependent manner. Our study suggests that Gag binds, coalesces, and reorganizes pre-existing lipid domains during assembly.


Assuntos
HIV-1 , Humanos , HIV-1/metabolismo , Esfingomielinas/metabolismo , Membrana Celular/metabolismo , Produtos do Gene gag/metabolismo , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo
20.
Nanoscale ; 15(47): 19110-19127, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37990926

RESUMO

Breast cancer is a complex and heterogeneous disease with a high mortality rate due to non-specific cytotoxicity, low intratumoral accumulation and drug resistance associated with the ineffectiveness of chemotherapy. In recent years, all efforts have been focused on finding new markers and therapeutic targets, protein kinase MNK1b being a promising candidate. Recently, an aptamer known as apMNK2F showed a highly specific interaction with this protein kinase, leading to a significant reduction in tumour cell proliferation, migration and colony formation. However, as aptamers are unable to penetrate the cell membrane and reach the target, these small biomolecules need to be conjugated to suitable vectors that can transport and protect them inside the cells. In this work, covalent conjugation between biocompatible and non-harmful nanoemulsions of vitamin E and sphingomyelin and the aptamer was performed to facilitate intracellular delivery of the therapeutic aptamer apMNK2F. All strategies employed were based on 2-step bioconjugation and optimized to get the simplest and most reproducible vehicle with the highest association efficiency (about 70% in all cases). The ability of the nanosystems to successfully deliver the conjugated therapeutic aptamer was demonstrated and compared to other commercial transfection agents such as Lipofectamine 2000, leading to an effective decrease of breast cancer cell proliferation in the MDA-MB-231 cell line. The proliferation inhibition of the aptamer nanoconjugates compared to the non-conjugated aptamer provides evidence that the antitumoral capacity derived from kinase interaction is improved in a dose-dependent manner. Furthermore, various experiments including cell migration and colony formation assays, along with apoptosis induction experiments, emphasize the significant antitumoral potential. Overall, the obtained results indicate that the developed formulation could be a promising therapy for the treatment of breast cancer.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias da Mama , Neoplasias Mamárias Animais , Animais , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Esfingomielinas , Aptâmeros de Nucleotídeos/química , Proliferação de Células , Proteínas Quinases , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA