Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 17478, 2024 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080336

RESUMO

The mechanisms underlying lipid metabolic disorders in Parkinson's diseases (PD) remain unclear. Weighted Gene Co-Expression Network Analysis (WGCNA) was conducted to identify PD-related modular genes and differentially expressed genes (DEGs). Lipid metabolism-related genes (LMRGs) were extracted from Molecular Signatures Database. Candidate genes were assessed with overlapping modular genes, DEGs, and LMRGs for the purpose of building protein-protein interaction (PPI) networks. Then, biomarkers were generated by machine learning and Backpropagation Neural Network development according to candidate genes. Biomarker-based enrichment and network modulation analyses were executed to investigate related signaling pathways. Following dimensionality reduction clustering and annotation, scRNA-seq was submitted to cellular interactions and trajectory analysis to analyze regulatory mechanisms of critical cells. Finally, qRT-PCR was conducted to confirm the expression of biomarkers in PD patients. Four biomarkers (MSMO1, ELOVL6, AACS, and CERS2) were obtained and highly predictive after analysis mentioned above. Then, OPC, Oli, and Neu cells were the primary expression sites for biomarkers according to scRNA-seq studies. Finally, we confirmed mRNA of MSMO1, ELOVL6 and AACS were downregulated in PD patients comparing with control, while CERS2 was upregulated. In conclusion, MSMO1, ELOVL6, AACS, and CERS2 related to LMRGs could be new biomarkers for diagnosing and treating PD.


Assuntos
Biomarcadores , Elongases de Ácidos Graxos , Metabolismo dos Lipídeos , Proteínas de Membrana , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Biomarcadores/metabolismo , Metabolismo dos Lipídeos/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Redes Reguladoras de Genes , Mapas de Interação de Proteínas/genética , Masculino , Perfilação da Expressão Gênica , Feminino , Idoso , Esfingosina N-Aciltransferase/genética , Esfingosina N-Aciltransferase/metabolismo
2.
Diabetes ; 73(8): 1361-1371, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38776413

RESUMO

Genetic determinants of interindividual differences in energy expenditure (EE) are largely unknown. Sphingolipids, such as ceramides, have been implicated in the regulation of human EE via mitochondrial uncoupling. In this study, we investigated whether genetic variants within enzymes involved in sphingolipid synthesis and degradation affect EE and insulin-related traits in a cohort of American Indians informative for 24-h EE and glucose disposal rates during a hyperinsulinemic-euglycemic clamp. Association analysis of 10,084 genetic variants within 28 genes involved in sphingolipid pathways identified a missense variant (rs267738, A>C, E115A) in exon 4 of CERS2 that was associated with higher sleeping EE (116 kcal/day) and increased rates of endogenous glucose production during basal (5%) and insulin-stimulated (43%) conditions, both indicators of hepatic insulin resistance. The rs267738 variant did not affect ceramide synthesis in HepG2 cells but resulted in a 30% decrease in basal mitochondrial respiration. In conclusion, we provide evidence that the CERS2 rs267738 missense variant may influence hepatic glucose production and postabsorptive sleeping metabolic rate.


Assuntos
Metabolismo Energético , Indígenas Norte-Americanos , Resistência à Insulina , Fígado , Proteínas de Membrana , Esfingosina N-Aciltransferase , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Metabolismo Energético/genética , Técnica Clamp de Glucose , Células Hep G2 , Indígenas Norte-Americanos/genética , Resistência à Insulina/genética , Fígado/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Sono/genética , Sono/fisiologia , Esfingosina N-Aciltransferase/genética , Esfingosina N-Aciltransferase/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
3.
BMC Med ; 22(1): 19, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38191448

RESUMO

BACKGROUND: The benefits of first-line, cisplatin-based chemotherapy for muscle-invasive bladder cancer are limited due to intrinsic or acquired resistance to cisplatin. Increasing evidence has revealed the implication of cancer stem cells in the development of chemoresistance. However, the underlying molecular mechanisms remain to be elucidated. This study investigates the role of LASS2, a ceramide synthase, in regulating Wnt/ß-catenin signaling in a subset of stem-like bladder cancer cells and explores strategies to sensitize bladder cancer to cisplatin treatment. METHODS: Data from cohorts of our center and published datasets were used to evaluate the clinical characteristics of LASS2. Flow cytometry was used to sort and analyze bladder cancer stem cells (BCSCs). Tumor sphere formation, soft agar colony formation assay, EdU assay, apoptosis analysis, cell viability, and cisplatin sensitivity assay were used to investigate the functional roles of LASS2. Immunofluorescence, immunoblotting, coimmunoprecipitation, LC-MS, PCR array, luciferase reporter assays, pathway reporter array, chromatin immunoprecipitation, gain-of-function, and loss-of-function approaches were used to investigate the underlying mechanisms. Cell- and patient-derived xenograft models were used to investigate the effect of LASS2 overexpression and a combination of XAV939 on cisplatin sensitization and tumor growth. RESULTS: Patients with low expression of LASS2 have a poorer response to cisplatin-based chemotherapy. Loss of LASS2 confers a stem-like phenotype and contributes to cisplatin resistance. Overexpression of LASS2 results in inhibition of self-renewal ability of BCSCs and increased their sensitivity to cisplatin. Mechanistically, LASS2 inhibits PP2A activity and dissociates PP2A from ß-catenin, preventing the dephosphorylation of ß-catenin and leading to the accumulation of cytosolic phospho-ß-catenin, which decreases the transcription of the downstream genes ABCC2 and CD44 in BCSCs. Overexpression of LASS2 combined with a tankyrase inhibitor (XAV939) synergistically inhibits tumor growth and restores cisplatin sensitivity. CONCLUSIONS: Targeting the LASS2 and ß-catenin pathways may be an effective strategy to overcome cisplatin resistance and inhibit tumor growth in bladder cancer patients.


Assuntos
Cisplatino , Esfingosina N-Aciltransferase , Neoplasias da Bexiga Urinária , Humanos , Apoptose , beta Catenina , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Esfingosina N-Aciltransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA