Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.085
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
ACS Nano ; 18(33): 22245-22256, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39116272

RESUMO

The spatial organization characteristics and redox status of the extracellular space (ECS) are crucial in the development of brain diseases. However, it remains a challenge to simultaneously capture dynamic changes in microstructural features and redox states at the submicron level within the ECS. Here, we developed a reversible glutathione (GSH)-responsive nanoprobe (RGN) for mapping the spatial organization features and redox status of the ECS in brain tissues with nanoscale resolution. The RGN is composed of polymer nanoparticles modified with GSH-responsive molecules and amino-functionalized methoxypoly(ethylene glycol), which exhibit exceptional single-particle brightness and excellent free diffusion capability in the ECS of brain tissues. Tracking single RGNs in acute brain slices allowed us to dynamically map spatial organizational features and redox levels within the ECS of brain tissues in disease models. This provides a powerful super-resolution imaging method that offers a potential opportunity to study the dynamic changes in the ECS microenvironment and to understand the physiological and pathological roles of the ECS in vivo.


Assuntos
Encéfalo , Espaço Extracelular , Glutationa , Nanopartículas , Oxirredução , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Animais , Espaço Extracelular/metabolismo , Espaço Extracelular/química , Glutationa/química , Glutationa/metabolismo , Nanopartículas/química , Camundongos , Polietilenoglicóis/química
2.
Cell Signal ; 121: 111281, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38945420

RESUMO

Adenosine 5'-triphosphate (ATP) is a vital element in energy information. It plays a critical role in transmitting signals inside the body, which is necessary for controlling the life activities of all cells, including tumor cells [1]. Its significance extends from intracellular signaling pathways to tumor regression. Purinergic signaling, a form of extracellular paracrine signaling, relies on purine nucleotides. Extracellular ectonucleotidases convert these purine nucleotides to their respective di and mono-phosphate nucleoside forms, contributing significantly to immune biology, cancer biology, and inflammation studies. ATP functions as a mighty damage-linked molecular pattern when released outside the cell, accumulating in inflammatory areas. In the tumor microenvironment (TME), purinergic receptors such as ATP-gated ion channels P2X1-5 and G protein-coupled receptors (GPCR) (P2Y) interact with ATP and other nucleotides, influencing diverse immune cell activities. CD39 and CD73-mediated extracellular ATP degradation contributes to immunosuppression by diminishing ATP-dependent activation and generating adenosine (ADO), potentially hindering antitumor immunity and promoting tumor development. Unraveling the complexities of extracellular ATP (e-ATP) and ADO effects on the TME poses challenges in identifying optimal treatment targets, yet ongoing investigations aim to devise strategies combating e-ATP/ADO-induced immunosuppression, ultimately enhancing anti-tumor immunity. This review explores e-ATP metabolism, its purinergic signaling, and therapeutic strategies targeting associated receptors and enzymes.


Assuntos
Trifosfato de Adenosina , Neoplasias , Microambiente Tumoral , Humanos , Trifosfato de Adenosina/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Transdução de Sinais , Progressão da Doença , 5'-Nucleotidase/metabolismo , Espaço Extracelular/metabolismo
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124724, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38941755

RESUMO

Many studies show that ortho-phenylenediamine (OPD) produces an oxidized fluorescent product when exposed to an oxidizing agent that enables the direct or indirect fluorescence detection of a range chemical and biochemical analytes. However, there is no report on this unique optical behavior for other two isomers of phenylenediamine. This study demonstrates that a simple hydrothermal treatment of para-phenylenediamine (PPD) in the presence of sulfuric acid results in the formation of fluorescent N, S-doped carbon dots (CDs) with triple functionalities including the reduction of Au3+ into gold nanoparticles (AuNPs), the stabilization of the produced AuNPs, and the determination of Au3+ concentration through an intrinsic ratiometric fluorescence signal. In the presence of Au3+, the blue emission of CDs at 437 nm quenched, and a green emission at 540 nm emerged. The linear concentration range for the determination of Au3+ was 20 nM-16 µM with a detection limit of 16 nM. Additionally, the dual emissive CDs-AuNPs hybrid probe showed potential for the indirect fluorescence ratiometric determination of cysteine and sulfide ions. The linear concentration range for cysteine and sulfide ions were 0.25-8 µM and 0.1-6 µΜ, with detection limits of 0.095 µM and 0.041 µM, respectively. Accordingly, CDs were applied to detect Au3+ and S2- in real water samples. Moreover, the synthesized CDs showed no cytotoxicity for HeLa cells up to 300 µg mL-1, as determined by the MTT assay. Therefore, their potential for intracellular imaging of Au3+ in living cells was also investigated.


Assuntos
Carbono , Espaço Extracelular , Ouro , Carbono/química , Fluorescência , Oxirredução , Cátions/química , Ouro/análise , Ouro/química , Humanos , Células HeLa , Dicroísmo Circular , Espaço Extracelular/química , Nanopartículas Metálicas/química , Sobrevivência Celular , Fenilenodiaminas/química , Cisteína/química , Sulfetos/química , Limite de Detecção
4.
Anal Chim Acta ; 1304: 342576, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637043

RESUMO

BACKGROUND: Small endosome-derived lipid nanovesicles (30-200 nm) are actively secreted by living cells and serve as pivotal biomarkers for early cancer diagnosis. However, the study of extracellular vesicles (EVs) requires isolation and purification from various body fluids. Although traditional EVs isolation and detection technologies are mature, they usually require large amount of sample, consumes long-time, and have relatively low-throughput. How to efficiently isolate, purify and detect these structurally specific EVs from body fluids with high-throughput remains a great challenge in in vitro diagnostics and clinical research. RESULTS: Herein, we suggest a nanosized microfluidic device for efficient and economical EVs filtration based on an alumina nanochannel array membrane. We evaluated the filtration device performance of alumina membranes with different diameters and found that an optimized chamber array with a hydrophilic-treated channel diameter of 90 nm could realize a filtration efficiency of up to 82% without any assistance from chemical or physical separation methods. Importantly, by integrating meticulously designed multichannel microfluidic biochips, EVs can be captured in-situ and monitored by antibody barcode biochip. The proposed filtration chip together with the high-throughput detection chip were capable of filtration of a few tens of µL samples and recognition of different phonotypes. The practical filtration and detection of EVs from clinical samples demonstrated the high performance of the device. SIGNIFICANT: Overall, this work provides a cost-effective, highly efficient and automated EVs filtration chip and detection dual-function integrated chip platform, which can directly separate EVs from serum or cerebrospinal fluid with an efficiency of 82% and conduct in-situ detection. This small fluidic device can provide a powerful tool for highly efficient identifying and analyzing EVs, presenting great application potential in clinical detection.


Assuntos
Vesículas Extracelulares , Microfluídica , Espaço Extracelular , Anticorpos , Biomarcadores Tumorais
5.
Mol Neurobiol ; 61(10): 8361-8386, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38499905

RESUMO

The purinergic signaling system comprises a complex network of extracellular purines and purine-metabolizing ectoenzymes, nucleotide and nucleoside receptors, ATP release channels, and nucleoside transporters. Because of its immunomodulatory function, this system is critically involved in the pathogenesis of multiple sclerosis (MS) and its best-characterized animal model, experimental autoimmune encephalomyelitis (EAE). MS is a chronic neuroinflammatory demyelinating and neurodegenerative disease with autoimmune etiology and great heterogeneity, mostly affecting young adults and leading to permanent disability. In MS/EAE, alterations were detected in almost all components of the purinergic signaling system in both peripheral immune cells and central nervous system (CNS) glial cells, which play an important role in the pathogenesis of the disease. A decrease in extracellular ATP levels and an increase in its downstream metabolites, particularly adenosine and inosine, were frequently observed at MS, indicating a shift in metabolism toward an anti-inflammatory environment. Accordingly, upregulation of the major ectonucleotidase tandem CD39/CD73 was detected in the blood cells and CNS of relapsing-remitting MS patients. Based on the postulated role of A2A receptors in the transition from acute to chronic neuroinflammation, the association of variants of the adenosine deaminase gene with the severity of MS, and the beneficial effects of inosine treatment in EAE, the adenosinergic system emerged as a promising target in neuroinflammation. More recently, several publications have identified ADP-dependent P2Y12 receptors and the major extracellular ADP producing enzyme nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) as novel potential targets in MS.


Assuntos
Esclerose Múltipla , Purinas , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Humanos , Purinas/metabolismo , Animais , Espaço Extracelular/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Receptores Purinérgicos/metabolismo
6.
NMR Biomed ; 37(8): e5145, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38488205

RESUMO

Noninvasive extracellular pH (pHe) mapping with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) using MR spectroscopic imaging (MRSI) has been demonstrated on 3T clinical MR scanners at 8 × 8 × 10 mm3 spatial resolution and applied to study various liver cancer treatments. Although pHe imaging at higher resolution can be achieved by extending the acquisition time, a postprocessing method to increase the resolution is preferable, to minimize the duration spent by the subject in the MR scanner. In this work, we propose to improve the spatial resolution of pHe mapping with BIRDS by incorporating anatomical information in the form of multiparametric MRI and using an unsupervised deep-learning technique, Deep Image Prior (DIP). Specifically, we used high-resolution T 1 , T 2 , and diffusion-weighted imaging (DWI) MR images of rabbits with VX2 liver tumors as inputs to a U-Net architecture to provide anatomical information. U-Net parameters were optimized to minimize the difference between the output super-resolution image and the experimentally acquired low-resolution pHe image using the mean-absolute error. In this way, the super-resolution pHe image would be consistent with both anatomical MR images and the low-resolution pHe measurement from the scanner. The method was developed based on data from 49 rabbits implanted with VX2 liver tumors. For evaluation, we also acquired high-resolution pHe images from two rabbits, which were used as ground truth. The results indicate a good match between the spatial characteristics of the super-resolution images and the high-resolution ground truth, supported by the low pixelwise absolute error.


Assuntos
Neoplasias Hepáticas , Imageamento por Ressonância Magnética Multiparamétrica , Animais , Concentração de Íons de Hidrogênio , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Coelhos , Aprendizado Profundo , Espaço Extracelular/diagnóstico por imagem , Espaço Extracelular/metabolismo , Imagem de Difusão por Ressonância Magnética
7.
Nat Biomed Eng ; 8(6): 787-799, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38438799

RESUMO

Extracellular pH impacts many molecular, cellular and physiological processes, and hence is tightly regulated. Yet, in tumours, dysregulated cancer cell metabolism and poor vascular perfusion cause the tumour microenvironment to become acidic. Here by leveraging fluorescent pH nanoprobes with a transistor-like activation profile at a pH of 5.3, we show that, in cancer cells, hydronium ions are excreted into a small extracellular region. Such severely polarized acidity (pH <5.3) is primarily caused by the directional co-export of protons and lactate, as we show for a diverse panel of cancer cell types via the genetic knockout or inhibition of monocarboxylate transporters, and also via nanoprobe activation in multiple tumour models in mice. We also observed that such spot acidification in ex vivo stained snap-frozen human squamous cell carcinoma tissue correlated with the expression of monocarboxylate transporters and with the exclusion of cytotoxic T cells. Severely spatially polarized tumour acidity could be leveraged for cancer diagnosis and therapy.


Assuntos
Transportadores de Ácidos Monocarboxílicos , Microambiente Tumoral , Concentração de Íons de Hidrogênio , Humanos , Animais , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Camundongos , Linhagem Celular Tumoral , Neoplasias/metabolismo , Neoplasias/patologia , Ácido Láctico/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Espaço Extracelular/metabolismo
8.
Int J Radiat Biol ; 100(5): 802-816, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38319688

RESUMO

PURPOSE: Immunogenic cell death plays an important role in anticancer treatment because it combines cell death with appearance of damage associated molecular patterns that have the potential to activate anticancer immunity. Effects of damage associated molecular patterns induced by aminolevulinic acid-based photodynamic therapy were studied mainly on dendritic cells. They have not been deeply studied on macrophages that constitute the essential component of the tumor microenvironment. The aim of this study was to analyze features of esophageal cancer cell death in relation to release capacity of damage associated molecular pattern species, and to test the effect of related extracellular environmental alterations on macrophages. MATERIAL AND METHODS: Esophageal Kyse 450 carcinoma cells were subjected to aminolevulinic acid-based photodynamic therapy at different concentrations of aminolevulinic acid. Resting, IFN/LPS and IL-4 macrophage subtypes were prepared from monocytic THP-1 cell line. Cell death features and macrophage modifications were analyzed by fluorescence-based live cell imaging. ATP and HMGB1 levels in cell culture media were determined by ELISA assays. The presence of lipid peroxidation products in culture media was assessed by spectrophotometric detection of thiobarbituric acid reactive substances. RESULTS: Aminolevulinic acid-based photodynamic therapy induced various death pathways in Kyse 450 cells that included features of apoptosis, necrosis and ferroptosis. ATP amounts in extracellular environment of treated Kyse 450 cells increased with increasing aminolevulinic acid concentration. Levels of HMGB1, detectable by ELISA assay in culture media, were decreased after the treatment. Aminolevulinic acid-based photodynamic therapy induced lipid peroxidation of cellular structures and increased levels of extracellular lipid peroxidation products. Incubation of resting and IL-4 macrophages in conditioned medium from Kyse 450 cells treated by aminolevulinic acid-based photodynamic therapy induced morphological changes in macrophages, however, comparable alterations were induced also by conditioned medium from untreated cancer cells. CONCLUSION: Aminolevulinic acid-based photodynamic therapy leads to alterations in local extracellular levels of damage associated molecular patterns, however, comprehensive studies are needed to find whether they can be responsible for macrophage phenotype modifications.


Assuntos
Ácido Aminolevulínico , Neoplasias Esofágicas , Macrófagos , Fotoquimioterapia , Ácido Aminolevulínico/farmacologia , Humanos , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Linhagem Celular Tumoral , Macrófagos/efeitos dos fármacos , Macrófagos/efeitos da radiação , Macrófagos/metabolismo , Espaço Extracelular/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Células THP-1 , Morte Celular/efeitos dos fármacos
9.
In Vitro Cell Dev Biol Anim ; 60(5): 441-448, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38379096

RESUMO

Wnt, a family of secreted signaling proteins, serves diverse functions in embryogenesis, organogenesis, cancer, and stem cell functions. In the context of development, Wnt has been considered a representative morphogen, forming concentration gradients to give positional information to cells or tissues. However, although gradients are often illustrated in schemata, the reality of concentration gradients, or in other words, actual spatial distribution of Wnt ligands, and their behaviors in the extracellular space still remain poorly known. To understand extracellular behavior of Wnt ligands, quantitative analyses such as fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP) are highly informative because Wnt dispersal involves physical and biochemical processes, such as diffusion and binding to or dissociation from cell surface molecules, including heparan sulfate proteoglycans (HSPGs). Here, I briefly discuss representative methods to quantify morphogen dynamics. In addition, I discuss molecular manipulations of morphogens, mainly focusing on use of protein binders, and synthetic biology of morphogens as indicators of current and future directions in this field.


Assuntos
Proteínas Wnt , Ligantes , Animais , Humanos , Proteínas Wnt/metabolismo , Espaço Extracelular/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Proteoglicanas de Heparan Sulfato/metabolismo , Via de Sinalização Wnt
10.
Nano Lett ; 24(5): 1570-1578, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38287297

RESUMO

Glioblastoma (GBM) is the most complex and lethal primary brain cancer. Adequate drug diffusion and penetration are essential for treating GBM, but how the spatial heterogeneity in GBM impacts drug diffusion and transport is poorly understood. Herein, we report a new method, photoactivation of plasmonic nanovesicles (PANO), to measure molecular diffusion in the extracellular space of GBM. By examining three genetically engineered GBM mouse models that recapitulate key clinical features including the angiogenic core and diffuse infiltration, we found that the tumor margin has the lowest diffusion coefficient (highest tortuosity) compared with the tumor core and surrounding brain tissue. Analysis of the cellular composition shows that tortuosity in the GBM is strongly correlated with neuronal loss and astrocyte activation. Our all-optical measurement reveals the heterogeneous GBM microenvironment and highlights the tumor margin as a diffusion barrier for drug transport in the brain, with implications for therapeutic delivery.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Camundongos , Animais , Glioblastoma/patologia , Neoplasias Encefálicas/tratamento farmacológico , Encéfalo/patologia , Linhagem Celular Tumoral , Espaço Extracelular , Microambiente Tumoral
11.
Elife ; 122024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252473

RESUMO

Fibroblast growth factor 2 (FGF2) exits cells by direct translocation across the plasma membrane, a type I pathway of unconventional protein secretion. This process is initiated by phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)-dependent formation of highly dynamic FGF2 oligomers at the inner plasma membrane leaflet, inducing the formation of lipidic membrane pores. Cell surface heparan sulfate chains linked to glypican-1 (GPC1) capture FGF2 at the outer plasma membrane leaflet, completing FGF2 membrane translocation into the extracellular space. While the basic steps of this pathway are well understood, the molecular mechanism by which FGF2 oligomerizes on membrane surfaces remains unclear. In the current study, we demonstrate the initial step of this process to depend on C95-C95 disulfide-bridge-mediated FGF2 dimerization on membrane surfaces, producing the building blocks for higher FGF2 oligomers that drive the formation of membrane pores. We find FGF2 with a C95A substitution to be defective in oligomerization, pore formation, and membrane translocation. Consistently, we demonstrate a C95A variant of FGF2 to be characterized by a severe secretion phenotype. By contrast, while also important for efficient FGF2 secretion from cells, a second cysteine residue on the molecular surface of FGF2 (C77) is not involved in FGF2 oligomerization. Rather, we find C77 to be part of the interaction interface through which FGF2 binds to the α1 subunit of the Na,K-ATPase, the landing platform for FGF2 at the inner plasma membrane leaflet. Using cross-linking mass spectrometry, atomistic molecular dynamics simulations combined with a machine learning analysis and cryo-electron tomography, we propose a mechanism by which disulfide-bridged FGF2 dimers bind with high avidity to PI(4,5)P2 on membrane surfaces. We further propose a tight coupling between FGF2 secretion and the formation of ternary signaling complexes on cell surfaces, hypothesizing that C95-C95-bridged FGF2 dimers are functioning as the molecular units triggering autocrine and paracrine FGF2 signaling.


Assuntos
Espaço Extracelular , Fator 2 de Crescimento de Fibroblastos , Dimerização , ATPase Trocadora de Sódio-Potássio , Dissulfetos
12.
Fluids Barriers CNS ; 21(1): 6, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212833

RESUMO

BACKGROUND: The brain extracellular fluid (ECF), composed of secreted neurotransmitters, metabolites, peptides, and proteins, may reflect brain processes. Analysis of brain ECF may provide new potential markers for synaptic activity or brain damage and reveal additional information on pathological alterations. Epileptic seizure induction is an acute and harsh intervention in brain functions, and it can activate extra- and intracellular proteases, which implies an altered brain secretome. Thus, we applied a 4-aminopyridine (4-AP) epilepsy model to study the hippocampal ECF peptidome alterations upon treatment in rats. METHODS: We performed in vivo microdialysis in the hippocampus for 3-3 h of control and 4-AP treatment phase in parallel with electrophysiology measurement. Then, we analyzed the microdialysate peptidome of control and treated samples from the same subject by liquid chromatography-coupled tandem mass spectrometry. We analyzed electrophysiological and peptidomic alterations upon epileptic seizure induction by two-tailed, paired t-test. RESULTS: We detected 2540 peptides in microdialysate samples by mass spectrometry analysis; and 866 peptides-derived from 229 proteins-were found in more than half of the samples. In addition, the abundance of 322 peptides significantly altered upon epileptic seizure induction. Several proteins of significantly altered peptides are neuropeptides (Chgb) or have synapse- or brain-related functions such as the regulation of synaptic vesicle cycle (Atp6v1a, Napa), astrocyte morphology (Vim), and glutamate homeostasis (Slc3a2). CONCLUSIONS: We have detected several consequences of epileptic seizures at the peptidomic level, as altered peptide abundances of proteins that regulate epilepsy-related cellular processes. Thus, our results indicate that analyzing brain ECF by in vivo microdialysis and omics techniques is useful for monitoring brain processes, and it can be an alternative method in the discovery and analysis of CNS disease markers besides peripheral fluid analysis.


Assuntos
Epilepsia , Espaço Extracelular , Ratos , Animais , Espaço Extracelular/metabolismo , Uretana/metabolismo , Convulsões/induzido quimicamente , Epilepsia/induzido quimicamente , Epilepsia/metabolismo , Epilepsia/patologia , 4-Aminopiridina/metabolismo , 4-Aminopiridina/farmacologia , Peptídeos/química , Peptídeos/metabolismo , Amidas/metabolismo , Hipocampo/metabolismo
13.
Purinergic Signal ; 20(1): 83-89, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37074620

RESUMO

ATP is a ubiquitous extracellular messenger released in a wide number of pathophysiological conditions. ATP is known to be present in minute amounts in the extracellular space in healthy tissues and in the blood, and to modulate a multiplicity of cell responses. Cell culture systems are widely used to explore purinergic signaling. We show here that currently used fetal bovine sera contain ATP in the 300-1300 pmol/L range. Serum ATP is associated with albumin as well as with microparticle/microvesicle fraction. Serum microparticles/microvesicles affect in vitro cell responses due to their content of miRNAs, growth factors, and other bioactive molecules. ATP is likely to be one of these bioactive factors found in a variable amount in sera of different commercial sources. ATP in serum supports ATP-dependent biochemical reactions such as the hexokinase-dependent phosphorylation of glucose to glucose 6-phosphate, and affects purinergic signaling. These findings show that cells growing in vitro in serum-supplemented media are exposed to varying levels of extracellular ATP, and thus to varying degrees of purinergic stimulation.


Assuntos
Espaço Extracelular , Soroalbumina Bovina , Células Cultivadas , Espaço Extracelular/metabolismo , Trifosfato de Adenosina/metabolismo , Glucose
14.
Front Immunol ; 14: 1268756, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915565

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT) plays a central role in mammalian cell metabolism by contributing to nicotinamide adenine dinucleotide biosynthesis. However, NAMPT activity is not limited to the intracellular compartment, as once secreted, the protein accomplishes diverse functions in the extracellular space. Extracellular NAMPT (eNAMPT, also called visfatin or pre-B-cell colony enhancing factor) has been shown to possess adipocytokine, pro-inflammatory, and pro-angiogenic activities. Numerous studies have reported the association between elevated levels of circulating eNAMPT and various inflammatory and metabolic disorders such as obesity, diabetes, atherosclerosis, arthritis, inflammatory bowel disease, lung injury and cancer. In this review, we summarize the current state of knowledge on eNAMPT biology, proposed roles in disease pathogenesis, and its potential as a disease biomarker. We also briefly discuss the emerging therapeutic approaches for eNAMPT inhibition.


Assuntos
Diabetes Mellitus , Neoplasias , Animais , Humanos , Nicotinamida Fosforribosiltransferase/metabolismo , Espaço Extracelular/metabolismo , Biomarcadores , Mamíferos/metabolismo
15.
Nat Commun ; 14(1): 6411, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828018

RESUMO

Progress in neuroscience research hinges on technical advances in visualizing living brain tissue with high fidelity and facility. Current neuroanatomical imaging approaches either require tissue fixation (electron microscopy), do not have cellular resolution (magnetic resonance imaging) or only give a fragmented view (fluorescence microscopy). Here, we show how regular light microscopy together with fluorescence labeling of the interstitial fluid in the extracellular space provide comprehensive optical access in real-time to the anatomical complexity and dynamics of living brain tissue at submicron scale. Using several common fluorescence microscopy modalities (confocal, light-sheet and 2-photon microscopy) in mouse organotypic and acute brain slices and the intact mouse brain in vivo, we demonstrate the value of this straightforward 'shadow imaging' approach by revealing neurons, microglia, tumor cells and blood capillaries together with their complete anatomical tissue contexts. In addition, we provide quantifications of perivascular spaces and the volume fraction of the extracellular space of brain tissue in vivo.


Assuntos
Encéfalo , Neurônios , Camundongos , Animais , Encéfalo/diagnóstico por imagem , Microscopia de Fluorescência/métodos , Espaço Extracelular , Cabeça
16.
Biosensors (Basel) ; 13(9)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37754086

RESUMO

High-multiplex detection of protein biomarkers across tissue regions has been an attractive spatial biology approach due to significant advantages over traditional immunohistochemistry (IHC) methods. Different from most methods, spatial multiplex in situ tagging (MIST) transfers the spatial protein expression information to an ultrahigh-density, large-scale MIST array. This technique has been optimized to reach single-cell resolution by adoption of smaller array units and 30% 8-arm PEG polymer as transfer medium. Tissue cell nuclei stained with lamin B have been clearly visualized on the MIST arrays and are colocalized with detection of nine mouse brain markers. Pseudocells defined at 10 µm in size have been used to fully profile tissue regions including cells and the intercellular space. We showcased the versatility of our technology by successfully detecting 20 marker proteins in kidney samples with the addition of five minutes atop the duration of standard immunohistochemistry protocols. Spatial MIST is amenable to iterative staining and detection on the same tissue samples. When 25 proteins were co-detected on 1 mouse brain section for each round and 5 rounds were executed, an ultrahigh multiplexity of 125 proteins was obtained for each pseudocell. With its unique abilities, this single-cell spatial MIST technology has the potential to become an important method in advanced diagnosis of complex diseases.


Assuntos
Núcleo Celular , Neoplasias Cutâneas , Animais , Camundongos , Exobiologia , Espaço Extracelular , Rim , Polímeros
17.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686050

RESUMO

Extracellular vesicles (EVs) are membrane vesicles released by cells into the extracellular space. EVs mediate cell-to-cell communication through local and systemic transportation of biomolecules such as DNA, RNA, transcription factors, cytokines, chemokines, enzymes, lipids, and organelles within the human body. EVs gained a particular interest from cancer biology scientists because of their role in the modulation of the tumor microenvironment through delivering bioactive molecules. In this respect, EVs represent an attractive therapeutic target and a means for drug delivery. The advantages of EVs include their biocompatibility, small size, and low immunogenicity. However, there are several limitations that restrict the widespread use of EVs in therapy, namely, their low specificity and payload capacity. Thus, in order to enhance the therapeutic efficacy and delivery specificity, the surface and composition of extracellular vesicles should be modified accordingly. In this review, we describe various approaches to engineering EVs, and further discuss their advantages and disadvantages to promote the application of EVs in clinical practice.


Assuntos
Vesículas Extracelulares , Humanos , Espaço Extracelular , Biologia , Comunicação Celular , Citocinas
19.
Nano Lett ; 23(14): 6424-6432, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37395701

RESUMO

Artificial metalloenzymes (ArMs) are gaining much attention in life sciences. However, the function of the present ArMs for disease treatment is still in its infancy, which may impede the possible therapeutic potential. Herein, we construct an antibody engineered ArM by using the Fc region of IgG and bioorthogonal chemistry, which endows the ArM with the capability of manipulating cell-cell communication and bioorthogonal catalysis for tumor immuno- and chemotherapy. Specially, Fc-Pd ArM is modified on the cancer cell surface by metabolic glycoengineering to catalyze the bioorthogonal activation of prodrug for tumor chemotherapy. More importantly, the antibody-based ArM can mediate cell-cell communication between cancer cells and NK cells, activating the ADCC effect for immunotherapy. In vivo antitumor applications suggest that the ArM can not only eliminate primary tumor but also inhibit tumor lung metastasis. Our work provides a new attempt to develop artificial metalloenzymes with cell-cell communication the ability for bioorthogonal catalysis and combination therapy.


Assuntos
Metaloproteínas , Neoplasias , Humanos , Células Matadoras Naturais , Neoplasias/patologia , Anticorpos , Espaço Extracelular , Metaloproteínas/metabolismo , Linhagem Celular Tumoral
20.
Methods Mol Biol ; 2692: 171-185, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37365468

RESUMO

The phagolysosome is an antimicrobial and degradative organelle that plays a key role in macrophage-mediated inflammation and homeostasis. Before being presented to the adaptive immune system, phagocytosed proteins must first be processed into immunostimulatory antigens. Until recently, little attention has been given to how other processed PAMPs and DAMPs can stimulate an immune response if they are sequestered in the phagolysosome. Eructophagy is a newly described process in macrophages that releases partially digested immunostimulatory PAMPs and DAMPs extracellularly from the mature phagolysosome to activate vicinal leukocytes. This chapter outlines approaches to observe and quantify eructophagy by simultaneously measuring several phagosomal parameters of individual phagosomes. These methods use specifically designed experimental particles capable of conjugating to multiple reporter/reference fluors in combination with real-time automated fluorescent microscopy. Through the use of high-content image analysis software, each phagosomal parameter can be evaluated quantitatively or semiquantitatively during post-analysis.


Assuntos
Espaço Extracelular , Moléculas com Motivos Associados a Patógenos , Moléculas com Motivos Associados a Patógenos/metabolismo , Fagossomos/metabolismo , Fagocitose , Macrófagos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA