Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.701
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Mass Spectrom ; 59(5): e5020, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38659191

RESUMO

Exposure to arsenic can cause various biological effects by increasing the production of reactive oxygen species (ROS). Selenium acts as a beneficial element by regulating ROS and limiting heavy metal uptake and translocation. There are studies on the interactive effects of As and Se in plants, but the antagonistic and synergistic effects of these elements based on their binding to glutathione (GSH) molecules have not been studied yet. In this study, we aimed to investigate the antagonistic or synergistic effects of As and Se on the binding mechanism of Se and As with GSH at pH 3.0, 5.0, or 6.5. The interaction of As and Se in Se(SG)2 + As(III) or As(SG)3 + Se(IV) binary systems and As(III) + Se(IV) + GSH ternary system were examined depending on their ratios via liquid chromatography diode array detector/electrospray mass spectrometry (LC-DAD/MS) and liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). The results showed that the formation of As(GS)3 was not detected in the As(III) + Se(SG)2 binary system, indicating that As(III) did not affect the stability of Se(SG)2 complex antagonistically. However, in the Se(IV) + As(SG)3 binary system, the addition of Se(IV) to As(SG)3 affected the stability of As(SG)3 antagonistically. Se(IV) reacted with GSH, disrupting the As(SG)3 complex, and consequently, Se(SG)2 formation was measured using LC-MS/DAD. In the Se(IV) + GSH + As(III) ternary system, Se(SG)2 formation was detected upon mixing As(III), Se(IV), and GSH. The increase in the concentration of As(III) did not influence the stability of the Se(SG)2 complex. Additionally, Se(IV) has a higher affinity than As(III) to the GSH, regardless of the pH of the solution. In both binary and ternary systems, the formation of the by-product glutathione trisulfide (GSSSG) was detected using LC-ESI-MS/MS.


Assuntos
Arsenitos , Glutationa , Ácido Selenioso , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Glutationa/química , Glutationa/metabolismo , Arsenitos/química , Ácido Selenioso/química , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida/métodos
2.
J Pharm Biomed Anal ; 244: 116121, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581932

RESUMO

Natural approach became a high demand for the prevention and treatment of such diseases for their proven safety and efficacy. This study is aimed to perform comparative phytochemical analysis of white pitaya (Hylocereus undatus) peel, pulp and seed extracts via determination of total flavonoid content, phenolic content, and antioxidant capacity, coupled with HPLC-ESI/MS-MS analysis. Further, we evaluated the synergistic cytotoxic potential with Cisplatin against cervical cancer cells with investigation of underlying mechanism. The highest content of phenolics and antioxidants were found in both seed and peel extracts. The HPLC-ESI/MS-MS revealed identification of flavonoids, phenolic acids, anthocyanin glycosides, lignans, stilbenes, and coumarins. The cytotoxicity effects were evaluated by MTT assay against prostate, breast and cervical (HeLa) and Vero cell lines. The seed and peel extracts showed remarkable cytotoxic effect against all tested cell lines. Moreover, the selectivity index confirmed high selectivity of pitaya extracts to cancer cells and safety on normal cells. The combined therapy with Cisplatin effectively enhanced its efficacy and optimized the treatment outcomes, through the apoptotic ability of pitaya extracts in HeLa cells, as evaluated by flow cytometry. Besides, RT-PCR and western blotting analysis showed downregulation of Bcl-2 and overexpression of P53, BAX among HeLa cells treated with pitaya extracts, which eventually activated apoptosis process. Thus, pitaya extract could be used as adjuvant therapy with cisplatin for treatment of cervical cancer. Furthermore, in-vivo extensive studies on the seed and peel extracts, and their compounds are recommended to gain more clarification about the required dose, and side effects.


Assuntos
Apoptose , Cactaceae , Cisplatino , Sinergismo Farmacológico , Frutas , Extratos Vegetais , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Frutas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão/métodos , Células HeLa , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Feminino , Animais , Cactaceae/química , Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Células Vero , Chlorocebus aethiops , Sementes/química , Antineoplásicos Fitogênicos/farmacologia , Flavonoides/farmacologia , Flavonoides/análise , Antioxidantes/farmacologia , Fenóis/farmacologia , Fenóis/análise , Metabolômica/métodos
3.
J Am Soc Mass Spectrom ; 35(5): 922-934, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602416

RESUMO

DESI-MSI is an ambient ionization technique used frequently for the detection of lipids, small molecules, and drug targets. Until recently, DESI had only limited use for the detection of proteins and peptides due to the setup and needs around deconvolution of data resulting in a small number of species being detected at lower spatial resolution. There are known differences in the ion species detected using DESI and MALDI for nonpeptide molecules, and here, we identify that this extends to proteomic species. DESI MS images were obtained for tissue sections of mouse and rat brain using a precommercial heated inlet (approximately 450 °C) to the mass spectrometer. Ion mobility separation resolved spectral overlap of peptide ions and significantly improved the detection of multiply charged species. The images acquired were of pixel size 100 µm (rat brain) and 50 µm (mouse brain), respectively. Observed tryptic peptides were filtered against proteomic target lists, generated by LC-MS, enabling tentative protein assignment for each peptide ion image. Precise localizations of peptide ions identified by DESI and MALDI were found to be comparable. Some spatially localized peptides ions were observed in DESI that were not found in the MALDI replicates, typically, multiply charged species with a low mass to charge ratio. This method demonstrates the potential of DESI-MSI to detect large numbers of tryptic peptides from tissue sections with enhanced spatial resolution when compared to previous DESI-MSI studies.


Assuntos
Química Encefálica , Espectrometria de Massas por Ionização por Electrospray , Animais , Camundongos , Ratos , Espectrometria de Massas por Ionização por Electrospray/métodos , Peptídeos/análise , Peptídeos/química , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Tripsina/metabolismo , Tripsina/química , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química
4.
Anal Methods ; 16(17): 2684-2692, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38623768

RESUMO

This study presents the development and validation of a comprehensive high-resolution mass spectrometry (HRMS) methodology for the detection of 771 pesticides in olive oil, using liquid chromatography with electrospray ionization, operating in positive and negative mode, and gas chromatography with atmospheric-pressure chemical ionization in positive mode, both coupled to quadrupole-time-of-flight mass spectrometry (LC-(ESI)-/GC-(APCI)-QTOF MS). Special reference is made to the post-acquisition evaluation step, in which all LC/GC-HRMS analytical evidence (i.e. mass accuracy, retention time, isotopic pattern, MS/MS fragmentation) is taken into account in order to successfully identify the compounds. The sample preparation of the method involves a QuEChERS-based protocol, common for both techniques, differentiated only on the reconstitution step, making the method highly applicable in routine analysis. A smart evaluation of method's performance was carried out, with 65 representative analytes comprising the validation set. The method was validated in terms of linearity, accuracy, matrix effect and precision, while the limits of detection and quantification of the method were estimated. Finally, twenty Greek olive oil samples were analysed in both analytical platforms and the findings included the pesticides lambda-cyhalothrin, chlorpyrifos, phosphamidon, pirimiphos-methyl and esprocarb at low ng g-1 level.


Assuntos
Azeite de Oliva , Espectrometria de Massas por Ionização por Electrospray , Azeite de Oliva/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida/métodos , Praguicidas/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Resíduos de Praguicidas/análise , Limite de Detecção , Reprodutibilidade dos Testes , Contaminação de Alimentos/análise
5.
Anal Biochem ; 689: 115497, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38461948

RESUMO

The naturally occurring peptides and digested proteins of fetal versus adult bovine serum were compared by LC-ESI-MS/MS after correction against noise from blank injections and random MS/MS spectra as statistical controls. Serum peptides were extracted by differential precipitation with mixtures of acetonitrile and water. Serum proteins were separated by partition chromatography over quaternary amine resin followed by tryptic digestion. The rigorous X!TANDEM goodness of fit algorithm that has a low error rate as demonstrated by low FDR q-values (q ≤ 0.01) showed qualitative and quantitative agreement with the SEQUEST cross correlation algorithm on 12,052 protein gene symbols. Tryptic digestion provided a quantitative identification of the serum proteins where observation frequency reflected known high abundance. In contrast, the naturally occurring peptides reflected the cleavage of common serum proteins such as C4A, C3, FGB, HPX, A2M but also proteins in lower concentration such as F13A1, IK, collagens and protocadherins. Proteins associated with cellular growth and development such as actins (ACT), ribosomal proteins like Ribosomal protein S6 (RPS6), synthetic enzymes and extracellular matrix factors were enriched in fetal calf serum. In contrast to the large literature from cord blood, IgG light chains were absent from fetal serum as observed by LC-ESI-MS/MS and confirmed by ELISA.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Peptídeos/química , Proteínas Sanguíneas/análise , Digestão
6.
Adv Sci (Weinh) ; 11(16): e2306659, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359005

RESUMO

High-coverage mass spectrometry analysis of single-cell metabolomics remains challenging due to the extremely low abundance and wide polarity of metabolites and ultra-small volume in single cells. Herein, a novel concentric hybrid ionization source, nanoelectrospray ionization-atmospheric pressure chemical ionization (nanoESI-APCI), is ingeniously designed to detect polar and nonpolar metabolites simultaneously in single cells. The source is constructed by inserting a pulled glass capillary coaxially into a glass tube that acts as a dielectric barrier layer. Benefitting from the integrated advantages of nanoESI and APCI, its limit of detection is improved by one order of magnitude to 10 pg mL-1. After the operational parameter optimization, 254 metabolites detected in nanoESI-APCI are tentatively identified from a single cell, and 82 more than those in nanoESI. The developed nanoESI-APCI is successively applied to study the metabolic heterogeneity of human hepatocellular carcinoma tissue microenvironment united with laser capture microdissection (LCM), the discrimination of cancer cell types and subtypes, the metabolic perturbations to glucose starvation in MCF7 cells and the metabolic regulation of cancer stem cells. These results demonstrated that the nanoESI-APCI not only opens a new avenue for high-coverage and high-sensitivity metabolomics analysis of single cell, but also facilitates spatially resolved metabolomics study coupled with LCM.


Assuntos
Metabolômica , Análise de Célula Única , Espectrometria de Massas por Ionização por Electrospray , Metabolômica/métodos , Humanos , Análise de Célula Única/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Pressão Atmosférica , Nanotecnologia/métodos , Células MCF-7 , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo
7.
J Am Soc Mass Spectrom ; 35(3): 498-507, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38374644

RESUMO

Native ion mobility-mass spectrometry (IM-MS) typically introduces protein ions into the gas phase through nano-electrospray ionization (nESI). Many nESI setups have mobile stages for tuning the ion signal and extent of co-solute and salt adduction. However, tuning the position of the emitter capillary in nESI can have unintended downstream consequences for collision-induced unfolding or collision-induced dissociation (CIU/D) experiments. Here, we show that relatively small variations in the nESI emitter position can shift the midpoint (commonly called the "CID50" or "CIU50") potential of CID breakdown curves and CIU transitions by as much as 8 V on commercial instruments. A spatial "map" of the shift in CID50 for the loss of heme from holomyoglobin onto the emitter position on a Waters Synapt G2-Si mass spectrometer shows that emitter positions closer to the instrument inlet can result in significantly greater in-source activation, whereas different effects are found on an Agilent 6545XT instrument for the ions studied. A similar effect is observed for CID of the singly protonated leucine enkephalin peptide and Shiga toxin 1 subunit B homopentamer on the Waters Synapt G2-Si instrument. In-source activation effects on a Waters Synapt G2-Si are also investigated by examining the RMSD between CIU fingerprints acquired at different emitter positions and the shifts in CIU50 for structural transitions of bovine serum albumin and NIST monoclonal antibody.


Assuntos
Peptídeos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Peptídeos/química , Íons , Soroalbumina Bovina
8.
Rapid Commun Mass Spectrom ; 38(5): e9696, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355880

RESUMO

RATIONALE: Enasidenib (EDB) is an orally active selective mutant isocitrate dehydrogenase-2 enzyme inhibitor approved by the U.S. Food and Drug Administration to treat acute myeloid leukemia. It lacks a reported forced degradation study and a stability-indicating assay method (SIAM). This study addresses this gap by establishing a degradation profile in accordance with the International Council for Harmonisation Q1A and Q1B (R2) guidelines and developing a validated SIAM for EDB. METHODS: EDB was exposed to forced degradation under various conditions (hydrolytic, photolytic, oxidative, and thermal stress). Degradation samples were analyzed using high-performance liquid chromatography on an Agilent ZORBAX Eclipse Plus C18 column with a mobile phase consisting of 0.1% formic acid in Milli-Q water and acetonitrile at a flow rate of 1 mL/min and detection at 270 nm. Liquid chromatography-quadrupole time-of-flight-high-resolution mass spectrometry (LC/Q-TOF HRMS) was used for the identification and characterization of degradation products. Nitrosamine risk assessment was conducted using a modified nitrosation assay procedure (NAP) test due to the presence of a secondary amine group in the drug, which is liable to forming nitrosamine drug substance-related impurities (NDSRI). RESULTS: The drug exhibited significant degradation under acidic, basic, photolytic, and oxidative conditions in the solution state. A total of nine degradation products (DP) were formed (DP-I, DP-III, and DP-IV: acidic conditions; DP-I and DP-III: basic conditions; DP-II, DP-V, DP-VI, and DP-VII: oxidative stress; and DP-VII, DP-VIII, and DP-IX: photolytic conditions), which were separated and identified using reversed-phase high-performance liquid chromatography and characterized using liquid chromatography-tandem mass spectrometry. The mechanism behind the formation of EDB degradation products has been discussed, and this study was the first to develop a degradation pathway for EDB. In addition, the possibilities of NDSRI formation for EDB were studied using a modified NAP test, which can contribute to the risk assessment of the drug. CONCLUSIONS: Forced degradation studies were conducted by establishing a SIAM for EDB. All the degradation products were characterized by mass spectral data obtained using LC/Q-TOF-HRMS.


Assuntos
Aminopiridinas , Nitrosaminas , Espectrometria de Massas por Ionização por Electrospray , Triazinas , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Estabilidade de Medicamentos , Hidrólise , Oxirredução , Fotólise
9.
PLoS One ; 19(2): e0297752, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38363755

RESUMO

The increased fragmentation caused by harsher ionization methods used during mass spectrometry such as electron ionization can make interpreting the mass spectra of peptides difficult. Therefore, the development of tools to aid in this spectral analysis is important in utilizing these harsher ionization methods to study peptides, as these tools may be more accessible to some researchers. We have compiled fragmentation mechanisms described in the literature, confirmed them experimentally, and used them to create a Python-based fragment prediction model for peptides analyzed under direct exposure probe electron ionization mass spectrometry. This initial model has been tested using single amino acids as well as targeted libraries of short peptides. It was found that the model does well in predicting fragments of peptides composed of amino acids for which the model is well-defined, but several cases where additional mechanistic information needs to be incorporated have been identified.


Assuntos
Aminoácidos , Fragmentos de Peptídeos , Fragmentos de Peptídeos/metabolismo , Aminoácidos/química , Elétrons , Espectrometria de Massas/métodos , Peptídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos
10.
Biomed Chromatogr ; 38(5): e5837, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38316604

RESUMO

Primary hepatocellular carcinoma (HCC) is one of the most common malignant tumors, but its pathogenesis remains incompletely elucidated. Recently, many studies indicated that lipid remodeling plays an important role in the occurrence and development of HCC. Furthermore, lipids have been proven to be indispensable mediators in promoting communication between tumor cells and extracellular matrix in the tumor microenvironment. Thus, this study aims to comprehensively investigate the process of lipid remodeling during HCC metastasis based on the LC-electrospray ionization-MS (LC-ESI-MS) combined with multiple reaction monitoring technology. M2 tumor-associated macrophages and the recombinant human protein CXCL2 were used to simulate the tumor microenvironment. After co-incubating SMMC7721 and MHCC97-H cell lines with M2 tumor-associated macrophages or the recombinant human protein CXCL2 for 48 h, LC-ESI-MS was used to quantify the levels of two major classes of lipid molecules, namely, glycerophospholipids and sphingolipids. Our results suggest that lipid remodeling in the tumor microenvironment may promote the migration and invasion of HCC cell lines.


Assuntos
Carcinoma Hepatocelular , Quimiocina CXCL2 , Neoplasias Hepáticas , Macrófagos Associados a Tumor , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Quimiocina CXCL2/metabolismo , Macrófagos Associados a Tumor/metabolismo , Metabolismo dos Lipídeos , Microambiente Tumoral , Cromatografia Líquida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos
11.
Biomed Chromatogr ; 38(5): e5841, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38324999

RESUMO

Super-selective adrenal venous sampling (ssAVS) can collect the adrenal tributary venous blood in the aldosterone (ALD)-hypersecreting segments in primary aldosteronism. The concentrations of the C18-oxygenated steroids, especially 18-oxocortisol (18-oxoF), in the lesion segments might be more useful indices than those in the peripheral or adrenal central veins (current candidate indexes) for the differential diagnosis of unilateral ALD-producing adenoma (APA) and bilateral adrenal hyperplasia (BAH). To verify this hypothesis, we developed a liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) method for simultaneously quantifying ALD, 18-oxoF and 18-hydroxycortisol in the adrenal tributary venous serum sample collected by ssAVS (ssAVS serum) and compared their concentrations between APA and BAH patients. Only deproteinization was required for a 10 µl sample prior to the LC/ESI-MS/MS analysis. Endogenous corticoids did not interfere with the quantifications, and the intra-assay and interassay precisions (≤ 8.3%) and accuracies (94.2-102.7%) were acceptable. The clinical study revealed that the 18-oxoF concentration was significantly higher in the ALD-producing tumor tissues (from APA patients) than in the hyperplastic tissues (from BAH patients). However, in conclusion, the 18-oxoF concentration in the ssAVS serum sample can be a rough indication but cannot be decisive for the differential diagnosis between APA and BAH owing to the significant individual difference.


Assuntos
Glândulas Suprarrenais , Hidrocortisona/análogos & derivados , Hiperaldosteronismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Hiperaldosteronismo/sangue , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida/métodos , Glândulas Suprarrenais/irrigação sanguínea , Glândulas Suprarrenais/química , Glândulas Suprarrenais/metabolismo , Reprodutibilidade dos Testes , Masculino , Pessoa de Meia-Idade , Feminino , Aldosterona/sangue , Hidrocortisona/sangue , Modelos Lineares , Adulto , Idoso , Limite de Detecção
12.
Food Res Int ; 179: 114025, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342545

RESUMO

Bamboo is a highly sustainable plant with a wide variety of leaves, yet little is known about its bioactive composition. Therefore, this study aims to characterize the phenolic profile and antioxidant capacity of 11 different varieties of bamboo leaves using liquid chromatography coupled with mass spectrometry. As a result, 81 phenolic compounds were tentatively identified, 29 of which were identified for the first time in the literature for bamboo leaves. The tentatively identified compounds fell into five classes (hydroxybenzoic and hydroxycinnamic acids, flavones, flavanones, and flavonols). The concentration of phenolic compounds ranged from 103 to 1291 mg/100 g. Among the provisionally identified compounds, there was a predominance of derivatives from the luteolin and apigenin group, with orientin and schaftoside being the majority in each group, respectively. The leaves also showed significant variation in antioxidant activity, highlighting the potential bioactive composition of bamboo leaves for future applications in the food industry.


Assuntos
Antioxidantes , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Extratos Vegetais/química , Fenóis/análise
13.
Methods Mol Biol ; 2769: 199-209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315399

RESUMO

Liver cancers are characterized by interindividual and intratumoral heterogeneity, which makes early diagnosis and the development of therapies challenging. Desorption electrospray ionization mass spectrometry (DESI-MS) imaging is a potent and sensitive MS ionization technique for direct, unaltered 2D and 3D imaging of metabolites in complex biological samples. Indeed, DESI gently desorbs and ionizes analyte molecules from the sample surface using an electrospray source of highly charged aqueous spray droplets in ambient conditions. DESI-MS imaging of biological samples allows untargeted analysis and characterization of metabolites in liver cancers to identify new biomarkers of malignancy. In this chapter, we described a detailed protocol using liver cancer samples collected and stored for histopathology examination, either as frozen or as formalin-fixed, paraffin-embedded specimens. Such hepatocellular carcinoma samples can be subjected to DESI-MS analyses, illustrating the capacity of spatially resolved metabolomics to distinguish malignant lesions from adjacent normal liver tissue.


Assuntos
Neoplasias Hepáticas , Espectrometria de Massas por Ionização por Electrospray , Humanos , Espectrometria de Massas por Ionização por Electrospray/métodos , Metabolômica , Neoplasias Hepáticas/diagnóstico por imagem , Biomarcadores
14.
Anal Chem ; 96(10): 4259-4265, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38418962

RESUMO

Mass spectrometry (MS) imaging of lipids in tissues with high structure specificity is challenging in the effective fragmentation of position-selective structures and the sensitive detection of multiple lipid isomers. Herein, we develop an MS3 imaging method for the simultaneous analysis of phospholipid C═C and sn-position isomers by on-tissue photochemical derivatization, nanospray desorption electrospray ionization (nano-DESI), and a dual-linear ion trap MS system. A novel laser-based sensing probe is developed for the real-time adjustment of the probe-to-surface distance for nano-DESI. This method is validated in mouse brain and kidney sections, showing its capability of sensitive resolving and imaging of the fatty acyl chain composition, the sn-position, and the C═C location of phospholipids in an MS3 scan. MS3 imaging of phospholipids has shown the capability of differentiation of cancerous, fibrosis, and adjacent normal regions in liver cancer tissues.


Assuntos
Fosfolipídeos , Espectrometria de Massas por Ionização por Electrospray , Camundongos , Animais , Fosfolipídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Isomerismo , Cromatografia Gasosa-Espectrometria de Massas , Diagnóstico por Imagem
15.
J Am Soc Mass Spectrom ; 35(1): 90-99, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38095561

RESUMO

Electrospray ionization is a powerful and prevalent technique used to ionize analytes in mass spectrometry. The distribution of charges that an analyte receives (charge state distribution, CSD) is an important consideration for interpreting mass spectra. However, due to an incomplete understanding of the ionization mechanism, the analyte properties that influence CSDs are not fully understood. Here, we employ a machine learning-based approach and analyze CSDs of hundreds of thousands of peptides. Interestingly, half of the peptides exhibit charges that differ from what one would naively expect (the number of basic sites). We find that these peptides can be classified into two regimes (undercharging and overcharging) and that these two regimes display markedly different charging characteristics. Notably, peptides in the overcharging regime show minimal dependence on basic site count, and more generally, the two regimes exhibit distinct sequence determinants. These findings highlight the rich ionization behavior of peptides and the potential of CSDs for enhancing peptide identification.


Assuntos
Peptídeos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Peptídeos/química
16.
Anal Bioanal Chem ; 416(2): 597-608, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38082136

RESUMO

The quantification of serum/plasma estradiol (E2) is useful for the diagnosis, pathological analysis, and monitoring of the therapeutic efficacy of estrogen-dependent diseases. In this study, an improved derivatization method using 1-(2,4-dinitro-5-fluorophenyl)-4,4-dimethylpiperazinium iodide (MPDNP-F) was developed and combined with liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) for the sensitive and specific quantification of the serum/plasma E2. In the new method, the reaction time was reduced to 15 min from 90 min (two-step reaction in the previous method) by the direct reaction of MPDNP-F with E2 at 60°C in the presence of 4-dimethylaminopyridine (DMAP). DMAP served as the organic catalyst and had a less negative effect on the LC/ESI-MS/MS instrument compared to the non-volatile inorganic salt (NaHCO3), which was used in the previous method. The collision-induced dissociation of the molecular cation ([M]+) of the resulting derivative provided a product ion containing the E2-skeleton ([M-NO2-H]+), which significantly enhanced the assay sensitivity and specificity; compared to the dansyl chloride derivatization, which is the currently most-used derivatization procedure for the LC/ESI-MS/MS assays of E2, the MPDNP-F derivatization had significantly fewer interfering peaks and a clear and flat baseline in the serum sample analysis. The MPDNP-F derivatization-LC/ESI-MS/MS method enabled the precise and accurate quantification of E2 even at a 5.0 pg/mL concentration (lower limit of quantification) with a small sample volume (100 µL of serum/plasma) and had a tolerance for the matrix effect. This method was also proven to serve as a more sensitive and specific alternative to the clinically used chemiluminescence enzyme immunoassay.


Assuntos
Estradiol , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Compostos Radiofarmacêuticos , Esqueleto , Espectrometria de Massas por Ionização por Electrospray/métodos
17.
Biomed Chromatogr ; 38(2): e5775, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37942577

RESUMO

EBNA1 is an Epstein Barr virus (EBV) protein expressed in all EBV-associated cancers. EBNA1 plays a critical role in the replication and maintenance of EBV episomes in latently infected cells. VK-2019 was developed as a highly specific inhibitor of EBNA1 DNA binding activity and is currently in phase 1 development as a treatment for EBV-associated carcinomas. A sensitive and reliable method was developed to quantify VK-2019 in human plasma using liquid chromatography with tandem mass spectrometry to perform detailed pharmacokinetic studies. VK-2019 was extracted from plasma using protein precipitation with acetonitrile. Separation of VK-2019, two purported metabolites, and the internal standard, VK-2019-d6, was achieved with a Zorbax XDB C18 column using a gradient flow over 6 min. VK-2019 was detected using a SCIEX 4500 triple quadrupole mass spectrometer operating in positive electrospray ionization mode. The assay range was 0.5-500 ng/mL and proved to be accurate and precise. Dilutions of 1:10 were accurately quantified. VK-2019 was stable in plasma at -70°C for approximately 18 months. The method was applied to assess the total plasma concentrations of VK-2019 in a patient who received a single and multiple oral daily doses of 120 mg.


Assuntos
Antineoplásicos , Antígenos Nucleares do Vírus Epstein-Barr , Humanos , Antineoplásicos/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Antígenos Nucleares do Vírus Epstein-Barr/química , Antígenos Nucleares do Vírus Epstein-Barr/farmacologia
18.
Talanta ; 269: 125402, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979510

RESUMO

The accurate analysis of ultra-trace (e.g. <10-4 ng/mL) substances in complex matrices is a burdensome but vital problem in pharmaceutical analysis, with important implications for precise quality control of drugs, discovery of innovative medicines and elucidation of pharmacological mechanisms. Herein, an innovative constant-flow perfusion nano-electrospray ionization (PnESI) technique was developed firstly features significant quantitative advantages in high-sensitivity ambient MS analysis of complex matrix sample. More importantly, double-labeled addition enrichment quantitation strategies of gas-liquid microextraction (GLME) were proposed for the first time, allowing highly selective extraction and enrichment of specific target analytes in a green and ultra-efficient (>1000-fold) manner. Using complex processed Aconitum herbs as example, PnESI-MS directly enabled the qualitative and absolute quantitative analysis of the processed Aconitum extracts and characterized the target toxic diester alkaloids with high sensitivity, high stability, wide linearity range, and strong resistance to matrix interference. Further, GLME device was applied to obtain the highly specific enrichment of the target diester alkaloids more than 1000-fold, and accurate absolute quantitation of trace aconitine, mesaconitine, and hypaconitine in the extracts of Heishunpian, Zhichuanwu and Zhicaowu was accomplished (e.g., 0.098 pg/mL and 0.143 pg/mL), with the quantitation results well below the LODs of aconitines from any analytical instruments available. This study built a systematic strategy for accurate quantitation of ultra-trace substances in complex matrix sample and expected to provide a technological revolution in many fields of pharmaceutical research.


Assuntos
Aconitum , Alcaloides , Aconitina/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Alcaloides/análise , Perfusão , Aconitum/química , Controle de Qualidade
19.
Anal Chem ; 96(1): 28-32, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38155587

RESUMO

We report a technique for the noninvasive detection of skin cancer by imprint desorption electrospray ionization mass spectrometry imaging (DESI-MSI) using a transfer agent that is pressed against the tissue of interest. By noninvasively pressing a tape strip against human skin, metabolites, fatty acids, and lipids on the skin surface are transferred to the tape with little spatial distortion. Running DESI-MSI on the tape strip provides chemical images of the molecules on the skin surface, which are valuable for distinguishing cancer from healthy skin. Chemical components of the tissue imprint on the tape strip and the original basal cell carcinoma (BCC) section from the mass spectra show high consistency. By comparing MS images (about 150-µm resolution) of same molecules from the tape strip and from the BCC section, we confirm that chemical patterns are successfully transferred to the tape stripe. We also used the technique to distinguish cherry angiomas from normal human skin by comparing the molecular patterns from a tape strip. These results demonstrate the potential of the imprint DESI-MSI technique for the noninvasive detection of skin cancers as well as other skin diseases before and during clinical surgery.


Assuntos
Carcinoma Basocelular , Neoplasias Cutâneas , Humanos , Espectrometria de Massas por Ionização por Electrospray/métodos , Neoplasias Cutâneas/diagnóstico por imagem , Carcinoma Basocelular/diagnóstico , Ácidos Graxos
20.
Anal Chem ; 96(2): 624-629, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38157203

RESUMO

Tumor metastasis and cancer recurrence are often a result of cell heterogeneity, where specific subpopulations of tumor cells may be resistant to radio- or chemotherapy. To investigate this physiological and phenotypic diversity, single-cell metabolomics provides a powerful approach at the chemical level, where distinct lipid profiles can be found in different tumor cells. Here, we established a highly sensitive platform using nanoflow liquid chromatography (nLC) combined with multinozzle emitter electrospray ionization mass spectrometry for more in-depth metabolomics profiling. Our platform identified 15 and 17 lipids from individual osteosarcoma (U2OS) and glioblastoma (GBM) cells when analyzing single-cell samples. Additionally, we used the functional single-cell selection (fSCS) pipeline to analyze the subpopulations of cells with a DNA damage response (DDR) in U2OS cells and fast migration in GBM cells. Specifically, we observed a down-regulation of polyunsaturated fatty acids (PUFAs) in U2OS cells undergoing DDR, such as fatty acids FA 20:3; O2 and FA 17:4; O3. Furthermore, ceramides (Cer 38:0; O3) and triglycerides (TG 36:0) were found to be down-regulated in fast-migrating GBM cells compared to the slow-migrating subpopulation. These findings suggest the potential roles of these metabolites and/or lipids in the cellular behavior of the subpopulations.


Assuntos
Glioblastoma , Espectrometria de Massas por Ionização por Electrospray , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Metabolômica/métodos , Ácidos Graxos Insaturados/metabolismo , Triglicerídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA