Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003659

RESUMO

Polyamines (Pas) are short molecules that exhibit two or three amine groups that are positively charged at a physiological pH. These small molecules are present in high concentrations in a wide variety of organisms and tissues, suggesting that they play an important role in cellular physiology. Polyamines include spermine, spermidine, and putrescine, which play important roles in age-related diseases that have not been completely elucidated. Aging is a natural process, defined as the time-related deterioration of the physiological functions; it is considered a risk factor for degenerative diseases such as cardiovascular, neurodegenerative, and musculoskeletal diseases; arthritis; and even cancer. In this review, we provide a new perspective on the participation of Pas in the cellular and molecular processes related to age-related diseases, focusing our attention on important degenerative diseases such as Alzheimerߣs disease, Parkinsonߣs disease, osteoarthritis, sarcopenia, and osteoporosis. This new perspective leads us to propose that Pas function as novel biomarkers for age-related diseases, with the main purpose of achieving new molecular alternatives for healthier aging.


Assuntos
Poliaminas , Espermidina , Espermina/fisiologia , Putrescina
2.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35163181

RESUMO

Polyamines are essential biomolecules for normal cellular metabolism in humans. The roles of polyamines in cancer development have been widely discussed in recent years. Among all, spermine alongside with its acetylated derivative, N1, N12-Diacetylspermine, demonstrate a relationship with the diagnosis and staging of various cancers, including lung, breast, liver, colorectal and urogenital. Numerous studies have reported the level of spermine in different body fluids and organ tissues in patients with different types of cancers. Currently, the role and the underlying mechanisms of spermine in cancer development and progression are still under investigation. This review summarized the roles of spermine in cancer development and as a diagnostic, prognostic and therapeutic tool in various cancers.


Assuntos
Neoplasias/metabolismo , Espermina/análogos & derivados , Espermina/fisiologia , Acetilação , Biomarcadores Tumorais , Humanos , Neoplasias/genética , Neoplasias/terapia , Poliaminas/metabolismo , Prognóstico , Espermidina , Espermina/química , Espermina/metabolismo
3.
Plant Cell Physiol ; 61(9): 1576-1589, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32544243

RESUMO

Spermine (Spm) regulates water balance involved in water channel proteins, aquaporins (AQPs), in plants. An increase in endogenous Spm content via exogenous Spm application significantly improved cell membrane stability, photosynthesis, osmotic adjustment (OA) and water use efficiency (WUE) contributing to enhanced tolerance to water stress in white clover. Spm upregulated TrTIP2-1, TrTIP2-2 and TrPIP2-7 expressions and also increased the abundance of TIP2 and PIP2-7 proteins in white clover under water stress. Spm quickly activated intracellular Ca2+ signaling and Spm-induced TrTIP2-2 and TrPIP2-7 expressions could be blocked by Ca2+ channel blockers and the inhibitor of Ca2+-dependent protein kinase in leaves of white clover. TrSAMS in relation to Spm biosynthesis was first cloned from white clover and the TrSAMS was located in the nucleus. Transgenic Arabidopsis overexpressing the TrSAMS had significantly higher endogenous Spm content and improved cell membrane stability, photosynthesis, OA, WUE and transcript levels of AtSIP1-1, AtSIP1-2, AtTIP2-1, AtTIP2-2, AtPIP1-2, AtPIP2-1 and AtNIP2-1 than wild type in response to water stress. Current findings indicate that Spm regulates water balance via an enhancement in OA, WUE and water transport related to Ca2+-dependent AQP expression in plants under water stress.


Assuntos
Aquaporina 2/metabolismo , Proteínas de Plantas/metabolismo , Espermina/fisiologia , Aquaporina 2/fisiologia , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Clonagem Molecular , Desidratação , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Espermina/metabolismo , Trifolium/metabolismo , Trifolium/fisiologia , Água/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 39(3): 482-495, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30626206

RESUMO

Objective- This study aims to determine whether and how the enriched metabolites of endothelial extracellular vesicles (eEVs) are critical for cigarette smoke-induced direct injury of endothelial cells and the development of pulmonary hypertension, rarely explored in contrast to long-investigated mechanisms secondary to chronic hypoxemia. Approach and Results- Metabonomic screen of eEVs from cigarette-smoking human subjects reveals prominent elevation of spermine-a polyamine metabolite with potent agonist activity for the extracellular CaSR (calcium-sensing receptor). CaSR inhibition with the negative allosteric modulator Calhex231 or CaSR knockdown attenuates cigarette smoke-induced pulmonary hypertension in rats without emphysematous changes in lungs or chronic hypoxemia. Cigarette smoke exposure increases the generation of spermine-positive eEVs and their spermine content. Immunocytochemical staining and immunogold electron microscopy recognize the spermine enrichment not only within the cytosol but also on the outer surface of eEV membrane. The repression of spermine synthesis, the inhibitory analog of spermine, N1-dansyl-spermine, Calhex231, or CaSR knockdown profoundly suppresses eEV exposure-mobilized cytosolic calcium signaling, pulmonary artery constriction, and smooth muscle cell proliferation. Confocal imaging of immunohistochemical staining demonstrates the migration of spermine-positive eEVs from endothelium into smooth muscle cells in pulmonary arteries of cigarette smoke-exposed rats. The repression of spermine synthesis or CaSR knockout results in attenuated development of pulmonary hypertension induced by an intravascular administration of eEVs. Conclusions- Cigarette smoke enhances eEV generation with spermine enrichment at their outer surface and cytosol, which activates CaSR and subsequently causes smooth muscle cell constriction and proliferation, therefore, directly leading to the development of pulmonary hypertension.


Assuntos
Células Endoteliais/metabolismo , Vesículas Extracelulares/fisiologia , Hipertensão Pulmonar/prevenção & controle , Receptores de Detecção de Cálcio/fisiologia , Espermina/fisiologia , Poluição por Fumaça de Tabaco/efeitos adversos , Fumar Tabaco/efeitos adversos , Animais , Benzamidas/farmacologia , Transporte Biológico , Cálcio/fisiologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Cicloexilaminas/farmacologia , Endotélio Vascular/metabolismo , Vesículas Extracelulares/química , Técnicas de Silenciamento de Genes , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/fisiopatologia , Masculino , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Receptores de Detecção de Cálcio/antagonistas & inibidores , Receptores de Detecção de Cálcio/deficiência , Receptores de Detecção de Cálcio/genética , Espermina/biossíntese
5.
Mol Microbiol ; 104(6): 1037-1051, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28370665

RESUMO

Growth of Pseudomonas aeruginosa on spermine requires a functional γ-glutamylpolyamine synthetase PauA2. Not only subjected to growth inhibition by spermine, the pauA2 mutant became more sensitive to ß-lactam antibiotics in human serum. To explore PauA2 as a potential target of drug development, suppressors of the pauA2 mutant, which alleviated toxicity, were isolated from selection plates containing spermine. These suppressors share common phenotypic changes including delayed growth rate, retarded swarming motility, and pyocyanin overproduction. Genome resequencing of a representative suppressor revealed a unique C599 T mutation at the phoU gene that results in Ser200 Leu substitution and a constitutive expression of the Pho regulon. Identical phenotypes were also observed in a ΔpauA2ΔphoU double knockout mutant and complemented by the wild-type phoU gene. Accumulation of polyphosphate granules and spermine resistance in the suppressor were reversed concomitantly when expressing exopolyphosphatase PPX from a recombinant plasmid, or by the introduction of deletion alleles in pstS pstC for phosphate uptake, phoB for Pho regulation, and ppk for polyphosphate synthesis. In conclusion, this study identifies polyphosphate accumulation due to an activated Pho regulon and phosphate uptake by the phoU mutation as a potential protection mechanism against spermine toxicity.


Assuntos
Polifosfatos/metabolismo , Pseudomonas aeruginosa/metabolismo , Espermina/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Fosfatos/metabolismo , Regiões Promotoras Genéticas/genética , Pseudomonas aeruginosa/genética , Regulon/genética , Espermina/fisiologia , Fatores de Transcrição/metabolismo
6.
Clin Nutr ; 33(1): 14-22, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24144912

RESUMO

Aliphatic polyamines are a family of polycationic molecules derived from decarboxylation of the amino acid ornithine that classically comprise three molecules: putrescine, spermidine and spermine. In-cell polyamine homeostasis is tightly controlled at key steps of cell metabolism. Polyamines are involved in an array of cellular functions from DNA stabilization, and regulation of gene expression to ion channel function and, particularly, cell proliferation. As such, aliphatic polyamines play an essential role in rapidly dividing cells such as in the immune system and digestive tract. Because of their role in cell proliferation, polyamines are also involved in carcinogenesis, prompting intensive research into polyamine metabolism as a target in cancer therapy. More recently, another aliphatic polyamine, agmatine, the decarboxylated derivative of arginine, has been identified as a neurotransmitter in mammals, and investigations have focused on its effects in the CNS, notably as a neuroprotector in brain injury.


Assuntos
Putrescina/fisiologia , Espermidina/fisiologia , Espermina/fisiologia , Agmatina/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Neoplasias/patologia , Ornitina/fisiologia
7.
Photosynth Res ; 107(2): 169-75, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21302030

RESUMO

Polyamines (PAs) are small metabolites that are produced and oxidized in chloroplasts with an obscure mode of action. Recently, we showed that qE is stimulated by PAs in higher plants (Nicotiana tabacum) and in genetically modified plants with elevated thylakoid-associated PAs (Ioannidis and Kotzabasis Biochim Biophys Acta 1767:1371-1382, 2007; Ioannidis et al. Biochim Biophys Acta 1787:1215-1222, 2009). Here, we investigated further their quenching properties both in vivo in green algae and in vitro is isolated LHCII. In vivo spermine up-regulates NPQ in Scenedesums obliquus about 30%. In vitro putrescine--the obligatory metabolic precursor of PAs--has a marginal quenching effect, while spermidine and spermine exhibit strong quenching abilities in isolated LHCII up to 40%. Based on available 3D models of LHCII we report a special cavity of about 600 Å(3) and a near-by larger pocket in the trimeric LHCII that could be of importance for the stimulation of qE by amines.


Assuntos
Poliaminas Biogênicas/metabolismo , Clorofila/metabolismo , Scenedesmus/metabolismo , Clorofila A , Fluorescência , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Estrutura Terciária de Proteína , Espermidina/metabolismo , Espermidina/fisiologia , Espermina/metabolismo , Espermina/fisiologia
8.
Anticancer Drugs ; 21(10): 897-906, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20838207

RESUMO

Cancer stem cells (CSCs) are considered to be of particular concern in cancer as they possess inherent properties of self-renewal and differentiation, along with expressing certain genes related to a mesenchymal phenotype. These features favour the promotion of tumour recurrence and metastasis in cancer patients. Thus, the optimal chemotherapeutic treatment should target the CSC population, either by killing these cells and/or by inducing their transition to a more differentiated epithelial-like phenotype. Experiments were carried out on the trastuzumab-resistant human epidermal growth factor receptor 2-overexpressing breast cancer cell line JIMT-1 to unravel the chemotherapeutic effects of the polyamine analogue [1N,12N]bis(ethyl)-cis-6,7-dehydrospermine (PG11047) and of the polyamine biosynthetic inhibitor 2-difluoromethylornithine (DFMO) on the CD44+CD24- CSC population. Furthermore, effects on the properties of self-renewal and epithelial/mesenchymal markers were also investigated. Treatment with PG11047 reduced the CD44+CD24- subpopulation of JIMT-1 cells by approximately 50%, inhibited and/or reduced self-renewal capability of the CSC population, decreased cell motility and induced expression of mesenchymal to epithelial transition-associated proteins that are involved in promoting an epithelial phenotype. By contrast, DFMO slightly increased the CD44+CD24- subpopulation, increased cell motility and the level of mesenchymal-related proteins. DFMO treatment reduced the self-renewal capability of the CSC population. Both PG11047 and DFMO reduced the expression of the human epidermal growth factor receptor 2 protein, which is correlated to malignancy and resistance to trastuzumab in JIMT-1 cells. Our findings indicate that treatment with PG11047 targeted the CSC population by interfering with several stem cell-related properties, such as self-renewal, differentiation, motility and the mesenchymal phenotype.


Assuntos
Células-Tronco Neoplásicas/efeitos dos fármacos , Espermina/análogos & derivados , Espermina/fisiologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antígeno CD24/imunologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Eflornitina/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/fisiologia , Feminino , Humanos , Receptores de Hialuronatos/imunologia , Metástase Neoplásica , Recidiva Local de Neoplasia/tratamento farmacológico , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/patologia , Espermina/farmacologia , Trastuzumab
9.
Cell Calcium ; 48(2-3): 114-23, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20728215

RESUMO

TRPC channels play significant roles in the regulation of neuronal plasticity and development. The mechanism by which these nonselective cation channels exert their trophic actions appears to involve entry of Ca(2+) into the cells. Using a neuronal cell model (differentiated human IMR32 neuroblastoma cells), we demonstrate a central role for sodium entry via TRPC3/6 channels in receptor-mediated increases in intracellular calcium. These Na(+)-dependent Ca(2+) influxes, which were observed in a subpopulation of cells, were efficiently blocked by protein kinase C activation, by the Na(+)/Ca(2+) exchanger inhibitors, and by molecular disruption of TRPC3/6 channel function. On the other hand, another subpopulation of cells showed a Na(+)-independent Ca(2+) entry upon stimulation of the same receptors, orexin/hypocretin and bradykinin receptors. This second type of response was not affected by the above mentioned treatments, but it was sensitive to polyvalent cations, such as ruthenium red, spermine and Gd(3+). The data suggest that a NCX-TRPC channel interaction constitutes an important functional unit in receptor-mediated Ca(2+) influx in neuronal cells.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/fisiologia , Proteínas de Homeodomínio/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Neuropeptídeos/fisiologia , Canais de Cátion TRPC/fisiologia , Cálcio/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Humanos , Neuroblastoma/química , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/metabolismo , Neurônios/patologia , Receptores de Orexina , Proteína Quinase C/fisiologia , Receptores da Bradicinina/fisiologia , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos/genética , Rutênio Vermelho/farmacologia , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/fisiologia , Espermina/fisiologia , Canais de Cátion TRPC/antagonistas & inibidores , Canal de Cátion TRPC6
10.
Epilepsia ; 51 Suppl 3: 43-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20618399

RESUMO

We have shown that the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is the kinase involved in the endogenous phosphorylation of the alpha1 subunit of the gamma-aminobutyric acid (GABA)(A) receptor (GABA(A)R), maintaining GABA(A)-R function. GABA(A)R endogenous phosphorylation is opposed by one or several atypical phosphatases. We have shown in addition, using cerebral tissue obtained during epilepsy surgery and control tissue from patients undergoing brain tumor surgery, that both endogenous phosphorylation and GABA(A)R function are significantly reduced in the "epileptogenic" cerebral cortex when compared to control. This dysfunction likely contributes to seizure generation and/or transition from the interictal to the ictal state. The therapeutic challenge is to alleviate the endogenous phosphorylation deficiency of GABA(A)R in the epileptogenic cortical tissue, either through activating the endogenous kinase activity, or inhibiting dephosphorylation of the alpha1 subunit. Following the first trail, we have shown that spermine (the most effective polyamine) increases the GAPDH kinase activity on GABA(A)R and that subsequently such modulation potentiates its function as assessed by rundown studies on isolated neurons. Following the second trail, we have developed methods to identify these atypical membrane-bound phosphatases. Their activities were detected using two synthetic phosphopeptides corresponding to the alpha1 regions of phosphorylation by GAPDH. After purification, the active fractions are submitted to proteomic analysis by nanoLC-Maldi-TOF/TOF for protein identification. Two candidate proteins have been identified, which will be used as targets for high-throughput screening in order to develop original antiepileptic molecules.


Assuntos
Anticonvulsivantes/farmacologia , Epilepsia/tratamento farmacológico , Animais , Anticonvulsivantes/uso terapêutico , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/enzimologia , Córtex Cerebral/fisiopatologia , Epilepsia/etiologia , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/fisiologia , Humanos , Fosforilação/efeitos dos fármacos , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/fisiologia , Espermina/fisiologia
11.
Essays Biochem ; 46: 1-9, 2009 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-20095966

RESUMO

The polyamines, spermidine and spermine, were first discovered in 1678 by Antonie van Leeuwenhoek. In the early part of the 20th century their structure was determined and their pathway of biosynthesis established. The polyamines are essential elements of cells from all species. They are required for optimum cell growth, and cells where polyamine production has been prevented by mutation, or blocked by inhibitors, require exogenous provision of at least one polyamine for continued survival. Despite this critical function, the polyamines have not attracted as much attention as they deserve in the wider field of biochemistry and cell biology. They are rarely mentioned in standard textbooks, despite over 75000 research papers having been written on the subject since 1900, and more than half (54%) were published after 1990. There have been a number of books dedicated to the polyamines published and "The Guide to the Polyamines" by Seymour Cohen deserves mention as a work of outstanding scholarship describing "everything you ever wanted to know about the polyamines" in exquisite detail. The current volume of Essays in Biochemistry has a much humbler aim: to introduce the polyamines to interested researchers and students, and to describe how they are associated with, and might be utilized as a target for intervention in major diseases such as cancer.


Assuntos
Poliaminas/química , Animais , Bioquímica/história , Bioquímica/tendências , História do Século XVII , História do Século XX , Humanos , Modelos Biológicos , Espermidina/fisiologia , Espermina/fisiologia
12.
Oncol Rep ; 19(2): 535-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18202804

RESUMO

The polyamines are aliphatic cations which are present in millimolar concentrations in all mammalian cells, and are required for optimal growth of almost all cell types. In this study, the roles of polyamines in DNA replication in vitro and the mechanism by which polyamines affected DNA replication were examined using simian virus 40 DNA replication system in vitro. We found that polyamines inhibited DNA replication, but it is not clear at which stage this occurs. Spermidine inhibited the DNA cleavage by topoisomerase I at 8.0 mM, but stimulated its activity at 1.0 mM. Spermine also inhibited its activity at 4.0 mM, but stimulated at 1.0 mM. The ssDNA binding activity of replication protein A was slightly affected by polyamines. Polyamines, especially spermine, also significantly reduced polymerase alpha-primase activity at 133 microM. Taken together, we suggest that the major inhibition of SV40 DNA replication may be due to the inhibition of pol alpha-primase activity, and possible roles for polyamines in the initiation process are discussed.


Assuntos
DNA Polimerase I/antagonistas & inibidores , DNA Primase/antagonistas & inibidores , Replicação do DNA , Espermidina/fisiologia , Espermina/fisiologia , Clivagem do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA de Cadeia Simples/efeitos dos fármacos , DNA de Cadeia Simples/metabolismo , Humanos , Poliaminas/farmacologia , Proteína de Replicação A/antagonistas & inibidores , Vírus 40 dos Símios/efeitos dos fármacos , Vírus 40 dos Símios/genética , Espermidina/farmacologia , Espermina/farmacologia , Inibidores da Topoisomerase I
13.
Amino Acids ; 33(2): 231-40, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17396215

RESUMO

The polyamines spermidine and spermine have been hypothesized to possess different functions in the protection of DNA from reactive oxygen species. The growth and survival of mouse fibroblasts unable to synthesize spermine were compared to their normal counterparts in their native and polyamine-depleted states in response to oxidative stress. The results of these studies suggest that when present at normal or supraphysiological concentrations, either spermidine or spermine can protect cells from reactive oxygen species. However, when polyamine pools are pharmacologically manipulated to produce cells with low levels of predominately spermine or spermidine, spermine appears to be more effective. Importantly, when cells are depleted of both glutathione and endogenous polyamines, they exhibit increased sensitivity to hydrogen peroxide as compared to glutathione depletion alone, suggesting that polyamines not only play a role in protecting cells from oxidative stress but this role is distinct from that played by glutathione.


Assuntos
Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espermidina/fisiologia , Espermina/fisiologia , Animais , Apoptose , Células Cultivadas , Dano ao DNA , Eflornitina/farmacologia , Glutationa/farmacologia , Guanidinas/farmacologia , Marcação In Situ das Extremidades Cortadas , Camundongos
14.
Plant J ; 40(4): 586-95, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15500473

RESUMO

A cellular signal transduction pathway induced by the polyamine, spermine (Spm), and transmitted by mitochondrial dysfunction is proposed in tobacco. In this investigation, we further resolve the pathway by identifying a subset of hypersensitive response (HR) marker genes as downstream components. In a previous report, we identified harpin-induced 1 (HIN1) and two closely related genes as responsive to Spm. Other HR marker genes, HSR203J, HMGR, HSR201, and HSR515, are also Spm-responsive. Induction of these HR marker genes, including HIN1, by Spm was suppressed by pre-treatment with antioxidants, calcium channel blockers, inhibitor of mitochondrial permeability transition pore openings, and blockers of amine oxidase/polyamine oxidase. Such quenching is also observed for Spm-induced activation of two mitogen-activated protein kinases (MAPKs), salicylic acid-induced protein kinase (SIPK), and wound-induced protein kinase (WIPK), and upregulation of the WIPK gene, suggesting that all these components are part of the same signaling pathway. Furthermore, gain-of-function and loss-of-function studies on MAPK cascade members reveal that the expression of Spm-induced HR marker genes varies with respect to involvement of SIPK/WIPK activation.


Assuntos
Esterases/metabolismo , Genes de Plantas , Nicotiana/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Espermina/fisiologia , Antioxidantes/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Dados de Sequência Molecular , Nicotiana/efeitos dos fármacos , Nicotiana/metabolismo
15.
Cancer Res ; 64(20): 7432-8, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15492267

RESUMO

The role of putrescine, spermidine and spermine in phorbol 12-myristate-13-acetate (PMA)-induced macrophage differentiation was examined in human HL-60 and U-937 myeloid leukemia cells. Unlike other polyamines, spermine affected this differentiation by acting as a negative regulator. This negative regulation was established by showing that the PMA-induced macrophage phenotype, but not PMA-associated replication arrest, was abrogated (a) by replenishing the PMA-evoked decrease in cellular spermine levels with this polyamine from an exogenous source and (b) by blocking PMA-induced expression of the polyamine catabolic enzyme N(1)-spermidine/spermine acetyltransferase (SSAT) with antisense oligonucleotides in the presence of low substrate level. The PMA-evoked reduction in cellular spermine appears to result from an increase in the activity of SSAT and a decrease in the activity of ornithine decarboxylase, the polyamine biosynthetic enzyme. To a degree, these changes are due to corresponding changes in the expression of the genes that code for these enzymes. When cell differentiation is initiated, SSAT expression is increased after PMA-evoked activation of protein kinase C-beta. The present studies raise the possibility that agents able to reduce spermine levels in patients' myeloid leukemia cells may enhance the activity of differentiation therapy drugs for this type of leukemia.


Assuntos
Macrófagos/patologia , Espermina/fisiologia , Acetiltransferases/biossíntese , Acetiltransferases/genética , Acetiltransferases/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Poliaminas Biogênicas/biossíntese , Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Guanidinas/farmacologia , Células HL-60 , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fator 2 Relacionado a NF-E2 , Proteína Quinase C/metabolismo , Proteína Quinase C beta , Espermina/antagonistas & inibidores , Espermina/metabolismo , Espermina/farmacologia , Acetato de Tetradecanoilforbol/antagonistas & inibidores , Acetato de Tetradecanoilforbol/farmacologia , Transativadores/fisiologia , Células U937
16.
Plant J ; 36(6): 820-9, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14675447

RESUMO

Polyamines (PAs) play important roles in cell proliferation, growth and environmental stress responses of all living organisms. In this study, we examine whether these compounds act as signal mediators. Spermine (Spm) specifically activated protein kinases of tobacco leaves, which were identified as salicylic acid (SA)-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK), using specific antibodies. Upon Spm treatment, upregulation of WIPK, but not SIPK, was observed. Spm-induced mitogen-activated protein kinases (MAPKs) activation and WIPK upregulation were prevented upon pre-treatment with antioxidants and Ca2+ channel blockers. Additionally, Spm specifically stimulated expression of the alternative oxidase (AOX) gene, which was disrupted by these antioxidants and Ca2+ channel blockers. Bongkrekic acid (BK), an inhibitor of the opening of mitochondrial permeability transition (PT) pores, suppressed MAPKs activation and accumulation of WIPK and AOX mRNA. Our data collectively suggest that Spm causes mitochondrial dysfunction via a signalling pathway in which reactive oxygen species and Ca2+ influx are involved. As a result, the phosphorylation activities of the two MAPK enzymes SIPK and WIPK are stimulated.


Assuntos
Mitocôndrias/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Nicotiana/enzimologia , Transdução de Sinais/fisiologia , Espermina/farmacologia , Espermina/fisiologia , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Dimetil Sulfóxido/farmacologia , Ativação Enzimática/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Cinética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Proteínas Mitocondriais , Peso Molecular , Oxirredutases/genética , Folhas de Planta/enzimologia , Proteínas de Plantas , Plantas Geneticamente Modificadas/genética , Nicotiana/genética
17.
Biochem J ; 374(Pt 2): 481-8, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12793857

RESUMO

Naproxen, sulindac and salicylate, three NSAIDs (non-steroidal anti-inflammatory drugs), were cytotoxic to human colorectal cancer cells in culture. Toxicity was accompanied by significant depletion of intracellular polyamine content. Inhibition of ornithine decarboxylase (the first enzyme of the polyamine biosynthetic pathway), induction of polyamine oxidase and spermidine/spermine N(1)-acetyltransferase (the enzymes responsible for polyamine catabolism) and induction of polyamine export all contributed to the decreased intracellular polyamine content. Morphological examination of the cells showed typical signs of apoptosis, and this was confirmed by DNA fragmentation and measurement of caspase-3-like activity. Re-addition of spermidine to the cells partially prevented apoptosis and recovered the cell number. Thus polyamines appear to be an integral part of the signalling pathway mediating NSAID toxicity in human colorectal cancer cells, and may therefore also be important in cancer chemoprevention in humans.


Assuntos
Anti-Inflamatórios não Esteroides/antagonistas & inibidores , Anti-Inflamatórios não Esteroides/toxicidade , Neoplasias Colorretais/metabolismo , Poliaminas/farmacologia , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/metabolismo , Apoptose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/química , Neoplasias Colorretais/patologia , Fragmentação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Corantes Fluorescentes/metabolismo , Humanos , Indóis/metabolismo , Substâncias Intercalantes/metabolismo , Naproxeno/administração & dosagem , Naproxeno/antagonistas & inibidores , Naproxeno/metabolismo , Naproxeno/toxicidade , Poliaminas/metabolismo , Putrescina/metabolismo , Putrescina/farmacologia , Putrescina/fisiologia , Salicilatos/administração & dosagem , Salicilatos/antagonistas & inibidores , Salicilatos/metabolismo , Salicilatos/toxicidade , Espermidina/metabolismo , Espermidina/farmacologia , Espermidina/fisiologia , Espermina/metabolismo , Espermina/farmacologia , Espermina/fisiologia , Sulindaco/administração & dosagem , Sulindaco/antagonistas & inibidores , Sulindaco/metabolismo , Sulindaco/toxicidade , Células Tumorais Cultivadas
18.
Invest Ophthalmol Vis Sci ; 43(4): 1228-33, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11923270

RESUMO

PURPOSE: Migration of retinal pigment epithelial (RPE) cells can be triggered by disruption of the RPE monolayer or injury to the neural retina. Migrating cells may re-establish a confluent monolayer, or they may invade the neural retina and disrupt visual function. The purpose of this study was to examine the role of endogenous polyamines in mechanisms of RPE migration. METHODS: Endogenous polyamine levels were determined in an immortalized RPE cell line, D407, using HPLC. Activities of the two rate-limiting enzymes for polyamine synthesis, ornithine decarboxylase (ODC), and S-adenosylmethionine decarboxylase (SAMdc), were measured by liberation of ((14)CO(2))(.) Migration was assessed in confluent cultures by determining the number of cells migrating into a mechanically denuded area. All measurements were obtained both in control cultures and in cultures treated with synthesis inhibitors that deplete endogenous polyamines. Subcellular localization of endogenous polyamines was determined using a polyamine antibody. RESULTS: The polyamines, spermidine and spermine, as well as their precursor, putrescine, were normal constituents of RPE cells. The two rate-limiting synthetic enzymes were also present, and their activities were stimulated dramatically by addition of serum to the culture medium. Cell migration was similarly stimulated by serum exposure. When endogenous polyamines were depleted, migration was blocked. When polyamines were replenished through uptake, migration was restored. Polyamine immunoreactivity was limited to membrane patches in quiescent cells. In actively migrating and dividing cells, immunoreactivity was enhanced throughout the cytoplasm. CONCLUSIONS: Polyamines are essential for RPE migration. Pharmacologic manipulation of the polyamine pathway could provide a therapeutic strategy for regulating anomalous migration.


Assuntos
Movimento Celular/fisiologia , Mitoguazona/análogos & derivados , Epitélio Pigmentado Ocular/citologia , Putrescina/fisiologia , Espermidina/fisiologia , Espermina/fisiologia , Adenosilmetionina Descarboxilase/antagonistas & inibidores , Adenosilmetionina Descarboxilase/metabolismo , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Eflornitina/farmacologia , Inibidores Enzimáticos/farmacologia , Humanos , Mitoguazona/farmacologia , Ornitina Descarboxilase/metabolismo , Inibidores da Ornitina Descarboxilase , Epitélio Pigmentado Ocular/enzimologia
19.
Genes Cells ; 7(1): 41-7, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11856372

RESUMO

BACKGROUND: S-Adenosylmethionine decarboxylase (AdoMetDC) is one of the key enzymes involved in the biosynthesis of spermidine and spermine, which are essential for normal cell growth. To examine the role of polyamines in embryogenesis, we carried out targeted disruption of the mouse Amd1 gene, encoding AdoMetDC, to generate mice that can not synthesize spermidine and spermine. RESULTS: Amd1 heterozygous mice were viable, normal and fertile. However, homozygous Amd1(-/-) embryos died early in embryonic development, between E3.5 and E6.5 days post-coitus. Homozygous (Amd1(-/-)) blastocysts at E3.5 arrested cell proliferation immediately after the onset of cell culture, and this arrest was rescued by the addition of spermidine. Chromosomal DNA breakage did not occur in Amd1(-/-) blastocysts at E3.5, as determined by TUNEL assay. CONCLUSIONS: These results indicate that AdoMetDC plays an essential role in embryonic development and that polyamines are required for cell proliferation in the embryo after E3.5.


Assuntos
Adenosilmetionina Descarboxilase/fisiologia , Camundongos/embriologia , Adenosilmetionina Descarboxilase/genética , Animais , Desenvolvimento Embrionário e Fetal/genética , Desenvolvimento Embrionário e Fetal/fisiologia , Marcação de Genes , Camundongos/genética , Camundongos/fisiologia , Espermidina/fisiologia , Espermina/fisiologia
20.
Exp Cell Res ; 266(2): 333-41, 2001 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-11399061

RESUMO

Two experimental systems representative of the mitochondrial and death receptor apoptotic pathways are the dexamethasone-induced programmed cell death in mouse thymocytes and the antibody-mediated cross-ligation of the Fas receptor in the human leukemic T-cell line Jurkat, respectively. In both cell systems, caspase-9, -8, and -3 were activated upon induction of apoptosis and a sub-G(1) peak appeared as a sign of ongoing DNA fragmentation. Addition of 1 mM spermine together with dexamethasone inhibited caspase activation and the appearance of the sub-G(1) peak in mouse thymocytes. In contrast, Fas-induced cell death was totally unaffected by spermine addition. Spermine addition significantly elevated the spermine concentration in both thymocytes and Jurkat cells. Thus, spermine per se did not inhibit the caspases but rather their activation. The fact that spermine inhibited caspase activation only in the thymocytes implies that spermine inhibited dexamethasone-induced apoptosis upstream of caspase-9 activation.


Assuntos
Apoptose/efeitos dos fármacos , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Espermina/fisiologia , Receptor fas/metabolismo , Animais , Caspases/metabolismo , Ciclo Celular , Células Cultivadas , Citometria de Fluxo , Fase G1 , Humanos , Células Jurkat , Cinética , Linfócitos/citologia , Linfócitos/metabolismo , Camundongos , Poliaminas/metabolismo , Espermina/farmacologia , Timo/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA