Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Sci Rep ; 14(1): 17384, 2024 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075143

RESUMO

Bacillus thuringiensis (Bt) is a widely used microbial insecticide, but its effectiveness is limited due to the degradation of Bt spores and crystals under UV radiation from sunlight. The objective of this study was to develop a novel Bt formulation with improved UV protection by utilizing sulfur quantum dots (SQDs) as stabilizing agents in a Pickering emulsion. The SQDs were comprehensively characterized using FTIR, XRD, TEM, HRTEM, UV, and fluorescence analyses, which confirmed the formation of well-dispersed, spherical SQDs. The microcapsule formulation with SQDs demonstrated superior UV stability, as it maintained 57.77% spore viability after 96 h of UV exposure, in comparison to 33.74% and 31.25% for the SQDs formulation (non-microcapsules) and unprotected Bt formulations (free spore, as a control), respectively. Furthermore, the microcapsule formulation exhibited higher insecticidal activity, resulting in a larval mortality of 71.22%, as opposed to 42.34% and 38.42% for the other formulations. These findings emphasize the effectiveness of microcapsule formulation with SQDs in safeguarding Bt spores and crystals against UV radiation, thereby enhancing their practical application in pest control. This approach presents a promising strategy for the development of biopesticides that are more resilient and have a longer shelf life.


Assuntos
Bacillus thuringiensis , Pontos Quânticos , Esporos Bacterianos , Enxofre , Raios Ultravioleta , Pontos Quânticos/química , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/efeitos da radiação , Enxofre/química , Enxofre/farmacologia , Animais , Inseticidas/química , Inseticidas/farmacologia , Larva/efeitos dos fármacos
2.
J Nanobiotechnology ; 22(1): 303, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822376

RESUMO

Radiation-induced intestinal injury is the most common side effect during radiotherapy of abdominal or pelvic solid tumors, significantly impacting patients' quality of life and even resulting in poor prognosis. Until now, oral application of conventional formulations for intestinal radioprotection remains challenging with no preferred method available to mitigate radiation toxicity in small intestine. Our previous study revealed that nanomaterials derived from spore coat of probiotics exhibit superior anti-inflammatory effect and even prevent the progression of cancer. The aim of this work is to determine the radioprotective effect of spore coat (denoted as spore ghosts, SGs) from three clinically approved probiotics (B.coagulans, B.subtilis and B.licheniformis). All the three SGs exhibit outstanding reactive oxygen species (ROS) scavenging ability and excellent anti-inflammatory effect. Moreover, these SGs can reverse the balance of intestinal flora by inhibiting harmful bacteria and increasing the abundance of Lactobacillus. Consequently, administration of SGs significantly reduce radiation-induced intestinal injury by alleviating diarrhea, preventing X-ray induced apoptosis of small intestinal epithelial cells and promoting restoration of barrier integrity in a prophylactic study. Notably, SGs markedly improve weight gain and survival of mice received total abdominal X-ray radiation. This work may provide promising radioprotectants for efficiently attenuating radiation-induced gastrointestinal syndrome and promote the development of new intestinal predilection.


Assuntos
Probióticos , Protetores contra Radiação , Esporos Bacterianos , Animais , Probióticos/farmacologia , Camundongos , Administração Oral , Protetores contra Radiação/farmacologia , Protetores contra Radiação/uso terapêutico , Protetores contra Radiação/química , Esporos Bacterianos/efeitos da radiação , Lesões por Radiação/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Intestino Delgado/microbiologia , Intestino Delgado/efeitos da radiação , Intestino Delgado/patologia , Humanos , Apoptose/efeitos dos fármacos , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/efeitos da radiação , Intestinos/microbiologia , Intestinos/patologia , Lesões Experimentais por Radiação/patologia
3.
Astrobiology ; 22(11): 1337-1350, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36282180

RESUMO

Increasingly, national space agencies are expanding their goals to include Mars exploration with sample return. To better protect Earth and its biosphere from potential extraterrestrial sources of contamination, as set forth in the Outer Space Treaty of 1967, international efforts to develop planetary protection measures strive to understand the danger of cross-contamination processes in Mars sample return missions. We aim to better understand the impact of the martian surface on microbial dormancy and survivability. Radiation resistance of microbes is a key parameter in considering survivability of microbes over geologic times on the frigid, arid surface of Mars that is bombarded by solar and galactic cosmic radiation. We tested the influence of desiccation and freezing on the ionizing radiation survival of six model microorganisms: vegetative cells of two bacteria (Deinococcus radiodurans, Escherichia coli) and a strain of budding yeast (Saccharomyces cerevisiae); and vegetative cells and endospores of three Bacillus bacteria (B. subtilis, B. megaterium, B. thuringiensis). Desiccation and freezing greatly increased radiation survival of vegetative polyploid microorganisms when applied separately, and when combined, desiccation and freezing increased radiation survival even more so. Thus, the radiation survival threshold of polyploid D. radiodurans cells can be extended from the already high value of 25 kGy in liquid culture to an astonishing 140 kGy when the cells are both desiccated and frozen. However, such synergistic radioprotective effects of desiccation and freezing were not observed in monogenomic or digenomic Bacillus cells and endospores, which are generally sterilized by 12 kGy. This difference is associated with a critical requirement for survivability under radiation, that is, repair of genome damage caused by radiation. Deinococcus radiodurans and S. cerevisiae accumulate similarly high levels of the Mn antioxidants that are required for extreme radiation resistance, as do endospores, though they greatly exceed spores in radioresistance because they contain multiple identical genome copies, which in D. radiodurans are joined by persistent Holliday junctions. We estimate ionizing radiation survival limits of polyploid DNA-based life-forms to be hundreds of millions of years of background radiation while buried in the martian subsurface. Our findings imply that forward contamination of Mars will essentially be permanent, and backward contamination is a possibility if life ever existed on Mars.


Assuntos
Meio Ambiente Extraterreno , Marte , Humanos , Dessecação , Congelamento , Saccharomyces cerevisiae , Esporos Bacterianos/efeitos da radiação , Radiação Ionizante , Poliploidia
4.
J Appl Microbiol ; 129(5): 1227-1237, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32418285

RESUMO

AIMS: The objective of this study was to evaluate the antimicrobial effects of radio frequency (RF) heating and the combination treatment of RF heating with ultraviolet (UV) radiation against foodborne pathogens in roasted grain powder (RGP). METHODS AND RESULTS: Foodborne pathogens inoculated on RGP were subjected to RF heating or RF-UV combination treatments. After 120 s of RF heating, 4·68, 3·89 and 4·54 log reductions were observed for Escherichia coli, Salmonella Typhimurium and Bacillus cereus vegetative cells respectively. The combined RF-UV treatment showed synergistic effects of over 1 log unit compared to the sum of individual treatment for E. coli and S. Typhimurium, but not for B. cereus vegetative cells because of their high UV resistance. Germinated B. cereus cells were not significantly inactivated by RF heating (<1 log CFU per gram), and increased heat resistance compared to the vegetative cells was verified with mild heat treatment. The colour of RGP was not significantly affected by the RF or RF-UV treatments. CONCLUSIONS: Applying RF heating to grain-based food products has advantages for the inactivation of E. coli and S. Typhimurium in RGP. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of the present study could be used as a basis for determining the treatment conditions for inactivating E. coli and other foodborne pathogens such as S. Typhimurium and B. cereus in RGP.


Assuntos
Bactérias/efeitos da radiação , Grão Comestível/microbiologia , Irradiação de Alimentos/métodos , Bactérias/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Viabilidade Microbiana/efeitos da radiação , Ondas de Rádio , Esporos Bacterianos/fisiologia , Esporos Bacterianos/efeitos da radiação , Raios Ultravioleta
5.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32033948

RESUMO

This study examined the microbicidal activity of 222-nm UV radiation (UV222), which is potentially a safer alternative to the 254-nm UV radiation (UV254) that is often used for surface decontamination. Spores and/or growing and stationary-phase cells of Bacillus cereus, Bacillus subtilis, Bacillus thuringiensis, Staphylococcus aureus, and Clostridioides difficile and a herpesvirus were all killed or inactivated by UV222 and at lower fluences than with UV254B. subtilis spores and cells lacking the major DNA repair protein RecA were more sensitive to UV222, as were spores lacking their DNA-protective proteins, the α/ß-type small, acid-soluble spore proteins. The spore cores' large amount of Ca2+-dipicolinic acid (∼25% of the core dry weight) also protected B. subtilis and C. difficile spores against UV222, while spores' proteinaceous coat may have given some slight protection against UV222 Survivors among B. subtilis spores treated with UV222 acquired a large number of mutations, and this radiation generated known mutagenic photoproducts in spore and cell DNA, primarily cyclobutane-type pyrimidine dimers in growing cells and an α-thyminyl-thymine adduct termed the spore photoproduct (SP) in spores. Notably, the loss of a key SP repair protein markedly decreased spore UV222 resistance. UV222-treated B. subtilis spores germinated relatively normally, and the generation of colonies from these germinated spores was not salt sensitive. The latter two findings suggest that UV222 does not kill spores by general protein damage, and thus, the new results are consistent with the notion that DNA damage is responsible for the killing of spores and cells by UV222IMPORTANCE Spores of a variety of bacteria are resistant to common decontamination agents, and many of them are major causes of food spoilage and some serious human diseases, including anthrax caused by spores of Bacillus anthracis Consequently, there is an ongoing need for efficient methods for spore eradication, in particular methods that have minimal deleterious effects on people or the environment. UV radiation at 254 nm (UV254) is sporicidal and commonly used for surface decontamination but can cause deleterious effects in humans. Recent work, however, suggests that 222-nm UV (UV222) may be less harmful to people than UV254 yet may still kill bacteria and at lower fluences than UV254 The present work has identified the damage by UV222 that leads to the killing of growing cells and spores of some bacteria, many of which are human pathogens, and UV222 also inactivates a herpesvirus.


Assuntos
Bacillus/efeitos da radiação , Clostridioides difficile/efeitos da radiação , Dano ao DNA , Simplexvirus/efeitos da radiação , Esporos Bacterianos/efeitos da radiação , Staphylococcus aureus/efeitos da radiação , Bacillus/fisiologia , Clostridioides difficile/fisiologia , Simplexvirus/fisiologia , Esporos Bacterianos/fisiologia , Staphylococcus aureus/fisiologia , Raios Ultravioleta/efeitos adversos
6.
Food Sci Technol Int ; 26(1): 65-77, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31403830

RESUMO

This work assesses the effect of Drypetes gossweileri essential oil on germination of Bacillus spores inoculated in orange juice and milk. We also report the capacity of the essential oil at 0.25, 0.5 and 1 µg/mL to induce sensitivity of spores to some irradiation treatments. The concentrations of essential oil were chosen after sensory analysis. The results show that the essential oil inhibited spores germination with minimal inhibitory concentrations inhibiting spore germination (MICg) of 10 µg/mL in the orange juice. In milk, the spores appeared to be less sensitive with MICg varying from 20 to 40 µg/mL. The sensory analysis revealed 2.5 µg/mL as the acceptable concentration of essential oil in orange juice. The essential oil at 1 µg/mL induced the sensitivity of spore of three Bacillus to alpha radiation of 101.4 Gy. Ultraviolet-C and microwave treatments in the presence of essential oil in general led to higher inactivation of spores up to 100% in some cases.


Assuntos
Antibacterianos/farmacologia , Irradiação de Alimentos , Malpighiales , Óleos Voláteis/farmacologia , Esporos Bacterianos , Malpighiales/efeitos dos fármacos , Malpighiales/efeitos da radiação , Testes de Sensibilidade Microbiana , Micro-Ondas , Óleos de Plantas/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/efeitos da radiação , Raios Ultravioleta
7.
Int J Food Microbiol ; 305: 108238, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31174101

RESUMO

Bacteria of the genus Alicyclobacillus pose serious quality problems for the juice processing industries that have sought effective alternatives for its control. The present study evaluated the effect of UV-C radiation on the reduction of spores and biofilm formation of Alicyclobacillus spp. on stainless steel and rubber surfaces using industrialized orange juice as a culture medium. Four reference Alicyclobacillus spp. species and different UV-C dosages were investigated. After exposed for 20 min (16.8 kJ/m2) to UV-C, the spores of Alicyclobacillus acidoterrestris, Alicyclobacillus herbarius, and Alicyclobacillus cycloheptanicus decreased drastically more of 4 log CFU/mL, with counts below the detection limit of the method (<1.7 log CFU/mL), while the Alicyclobacillus acidocaldarius spores were more sensitive to UV-C, once this spore reduction was observed within 15 min (12.6 kJ/m2). Morphological changes in the Alicyclobacillus acidoterrestris spores were observed by scanning electron microscopy. A reduction of biofilm formation was observed for all UV-C treatments, and the higher reductions (approximately 2 log CFU/mL) were found for the Alicyclobacillus acidocaldarius species after 30 min (26.2 kJ/m2), on the stainless steel and rubber surfaces. The results suggest that UV-C can be used to reduce the biofilm formation and could be a promising alternative for controlling Alicyclobacillus spp. spores in industrialized orange juice.


Assuntos
Alicyclobacillus/efeitos da radiação , Biofilmes/efeitos da radiação , Citrus sinensis/química , Irradiação de Alimentos/métodos , Sucos de Frutas e Vegetais/microbiologia , Esporos Bacterianos/efeitos da radiação , Alicyclobacillus/classificação , Alicyclobacillus/crescimento & desenvolvimento , Alicyclobacillus/isolamento & purificação , Manipulação de Alimentos/instrumentação , Microbiologia de Alimentos , Esporos Bacterianos/crescimento & desenvolvimento , Aço Inoxidável/análise , Raios Ultravioleta
8.
Foodborne Pathog Dis ; 16(10): 704-711, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31135181

RESUMO

Bacterial spores are generally more resistant than vegetative bacteria to ultraviolet (UV) inactivation. The UV sensitivity of these spores must be known for implementing UV disinfection of low acid liquid foods. UV inactivation kinetics of bacterial spores in coconut water (CW) and distilled sterile water was studied. Populations of Bacillus cereus and Clostridium sporogenes dormant spores were reduced by more than 5.5 log10 at the UV-C photon fluence of 1142 µE·m-2 and 1919 µE·m-2 respectively. C. sporogenes spores showed higher UV-C resistance than B. cereus, with the photon fluence 300 µE·m-2 required for one log inactivation (D10) and 194 µE·m-2, respectively. No significant difference was observed in D10 values of spores suspended in the two fluid types (p > 0.05). The inactivation kinetics of microorganisms were described by log linear models with low root mean square error and high coefficient of determination (R2 > 0.98). This study clearly demonstrated that high levels of inactivation of bacterial spores can be achieved in CW. The baseline data generated from this study will be used to conduct spore inactivation studies in continuous flow UV systems. Further proliferation of the technology will include conducting extensive pilot studies.


Assuntos
Bacillus cereus/efeitos da radiação , Clostridium botulinum/efeitos da radiação , Cocos/microbiologia , Sucos de Frutas e Vegetais/microbiologia , Raios Ultravioleta , Bacillus cereus/crescimento & desenvolvimento , Clostridium botulinum/crescimento & desenvolvimento , Desinfecção/métodos , Contaminação de Alimentos/prevenção & controle , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Cinética , Esporos Bacterianos/efeitos da radiação
9.
Infect Control Hosp Epidemiol ; 40(2): 158-163, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30698135

RESUMO

OBJECTIVE: To evaluate the efficacy of multiple ultraviolet (UV) light decontamination devices in a radiology procedure room. DESIGN: Laboratory evaluation. METHODS: We compared the efficacy of 8 UV decontamination devices with a 4-minute UV exposure time in reducing recovery of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), and Clostridium difficile spores on steel disk carriers placed at 5 sites on a computed tomography patient table. Analysis of variance was used to compare reductions for the different devices. A spectrometer was used to obtain irradiance measurements for the devices. RESULTS: Four standard vertical tower low-pressure mercury devices achieved 2 log10CFU or greater reductions in VRE and MRSA and ~1 log10CFU reductions in C. difficile spores, whereas a pulsed-xenon device resulted in less reduction in the pathogens (P<.001). In comparison to the vertical tower low-pressure mercury devices, equal or greater reductions in the pathogens were achieved by 3 nonstandard low-pressure mercury devices that included either adjustable bulbs that could be oriented directly over the exam table, a robotic base allowing movement along the side of the table during operation, or 3 vertical towers operated simultaneously. The low-pressure mercury devices produced primarily UV-C light, whereas the pulsed-xenon device produced primarily UV-A and UV-B light. The time required to move the devices from the corner of the room and set up for operation varied from 18 to 59 seconds. CONCLUSIONS: Many currently available UV devices could provide an effective and efficient adjunct to manual cleaning and disinfection in radiology procedure rooms.


Assuntos
Desinfecção/métodos , Equipamentos Médicos Duráveis , Fômites/microbiologia , Raios Ultravioleta , Clostridioides difficile/efeitos da radiação , Contagem de Colônia Microbiana , Infecção Hospitalar/prevenção & controle , Descontaminação/métodos , Contaminação de Equipamentos/prevenção & controle , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Esporos Bacterianos/efeitos da radiação , Fatores de Tempo , Enterococos Resistentes à Vancomicina/efeitos da radiação , Xenônio
10.
Food Microbiol ; 76: 374-381, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30166163

RESUMO

The present work was performed to evaluate the potential of electron beam ionizing radiation for the inactivation of three psychrophilic spore forming bacteria (Bacillus mycoides, Bacillus weihenstephanensis and Psychrobacillus psychrodurans) isolated from ready-to-eat brown crab (Cancer pagurus). Inactivation curves for the three spores were performed in both types of crab meat, brown and white. Also the effect of pH and water activity (aw) on the lethal efficacy of ionizing radiation, for the three different psychrophilic spore forming bacteria, was evaluated. The effects of pH, aw and their possible interactions were assessed in citrate-phosphate buffers of different pH, ranging between 7 and 4, and aw, ranging from <0.99 to 0.80. A reduction of aw increased the spores resistance between >0.99 and 0.90, while an aw reduction from 0.90 to 0.80 had a minor impact on their resistance. In contrast to aw, the effect of pH showed a greater variability depending on the spore species. While pH did not affect the resistance of B. weihenstephanensis at any aw, B. mycoides showed slightly higher resistance at pH 5.5 at aw of 0.90 and 0.80. pH showed a significant effect on the resistance of P. psychrodurans. For the two types of crab meat, slightly differences were observed in 6D values. B. weihenstephanensis was the most resistant, requiring 7.3-7.6 kGy to inactivate 6 Log10-cycles of this spore forming bacterium, while for B. mycoides and P. psychrodurans 6.1-6.3 and 5.4-5.3 kGy respectively were necessary to reach the same inactivation level in crab meat. An agreement between spore resistance in crab meats and lab media, with similar characteristics in pH and aw, was also observed. The results obtained in this research demonstrated the potential for ionizing radiation to achieve an appropriate inactivation level of spores naturally present in brown crab with the application of doses lower than 10 kGy.


Assuntos
Bactérias/efeitos da radiação , Braquiúros/microbiologia , Irradiação de Alimentos/métodos , Carne/microbiologia , Frutos do Mar/microbiologia , Esporos Bacterianos/efeitos da radiação , Animais , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Radiação Ionizante , Frutos do Mar/análise , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/isolamento & purificação
11.
PLoS One ; 13(8): e0201448, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30102709

RESUMO

Bacterial spores are one of the most resilient life forms on earth and are involved in many human diseases, such as infectious diarrhea, fatal paralytic illnesses and respiratory infections. Here, we investigated the mechanisms involved in the death of Bacillus pumilus spores after exposure to electric arcs in water. Cutting-edge microscopies at the nanoscale did not reveal any structural disorganization of spores exposed to electric arcs. This result suggested the absence of physical destruction by a propagating shock wave or an exposure to an electric field. However, Pulsed-Field Gel Electrophoresis (PFGE) revealed genomic DNA damage induced by UV radiation and Reactive Oxygen Species (ROS). UV induced single-strand DNA breaks and thymine dimers while ROS were mainly involved in base excision. Our findings revealed a correlation between DNA damage and the treatment of spores with electrical discharges.


Assuntos
Dano ao DNA/efeitos da radiação , DNA Bacteriano/efeitos da radiação , Eletricidade , Esporos Bacterianos/genética , Purificação da Água/métodos , Bacillus pumilus/genética , Bacillus pumilus/metabolismo , Bacillus pumilus/efeitos da radiação , Infecções Bacterianas/prevenção & controle , DNA Bacteriano/genética , Eletroforese em Gel de Campo Pulsado , Genoma Bacteriano/genética , Genoma Bacteriano/efeitos da radiação , Humanos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/efeitos da radiação , Esporos Bacterianos/metabolismo , Esporos Bacterianos/efeitos da radiação , Raios Ultravioleta , Microbiologia da Água
12.
Photochem Photobiol Sci ; 17(12): 1918-1931, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29978175

RESUMO

Many microorganisms are alive while suspended in the atmosphere, and some seem to be metabolically active during their time there. One of the most important factors threatening their life and activity is solar ultraviolet (UV) radiation. Quantitative understanding of the spatial and temporal survival patterns in the atmosphere, and of the ultimate deposition of microbes to the surface, is limited by a number factors some of which are discussed here. These include consideration of appropriate spectral sensitivity functions for biological damage (e.g. inactivation), and the estimation of UV radiation impingent on a microorganism suspended in the atmosphere. We show that for several bacteria (E. coli, S. typhimurium, and P. acnes) the inactivation rates correlate well with irradiances weighted by the DNA damage spectrum in the UV-B spectral range, but when these organisms show significant UV-A (or visible) sensitivities, the correlations become clearly non-linear. The existence of these correlations enables the use of a single spectrum (here DNA damage) as a proxy for sensitivity spectra of other biological effects, but with some caution when the correlations are strongly non-linear. The radiative quantity relevant to the UV exposure of a suspended particle is the fluence rate at an altitude above ground, while down-welling irradiance at ground-level is the quantity most commonly measured or estimated in satellite-derived climatologies. Using a radiative transfer model that computes both quantities, we developed a simple parameterization to exploit the much larger irradiance data bases to estimate fluence rates, and present the first fluence-rate based climatology of DNA-damaging UV radiation in the atmosphere. The estimation of fluence rates in the presence of clouds remains a particularly challenging problem. Here we note that both reductions and enhancements in the UV radiation field are possible, depending mainly on cloud optical geometry and prevailing solar zenith angles. These complex effects need to be included in model simulations of the atmospheric life cycle of the organisms.


Assuntos
Escherichia coli/efeitos da radiação , Propionibacterium acnes/efeitos da radiação , Salmonella typhimurium/efeitos da radiação , Raios Ultravioleta , Bacillus/fisiologia , Dano ao DNA/efeitos da radiação , Escherichia coli/crescimento & desenvolvimento , Propionibacterium acnes/crescimento & desenvolvimento , Salmonella typhimurium/crescimento & desenvolvimento , Esporos Bacterianos/efeitos da radiação , Temperatura
13.
Food Chem Toxicol ; 116(Pt B): 129-137, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29621576

RESUMO

Although chlorination can inactivate most of the microorganisms in water but protozoan parasites like C. parvum oocysts and Giardia cysts can resist against it. Therefore, many researches have been conducted to find a novel method for water disinfection. Present study evaluated the synergistic effect of H2O2 and ferrate followed by UV radiation to inactivate Bacillus subtilis spores as surrogate microorganisms. Response surface methodology(RSM) was employed for the optimization for UV/H2O2/ferrate and H2O2/ferrate processes. By using central composite design(CCD), the effect of three main parameters including time, hydrogen peroxide, and ferrate concentrations was examined on process performance. The results showed that the combination of UV, H2O2 and ferrate was the most effective disinfection process in compare with when H2O2 and ferrate were used. This study indicated that by UV/H2O2/ferrate, about 5.2 log reductions of B. subtilis spores was inactivated at 9299 mg/l of H2O2 and 0.4 mg/l of ferrate concentrations after 57 min of contact time which was the optimum condition, but H2O2/ferrate can inactivate B. subtilis spores about 4.7 logs compare to the other process. Therefore, the results of this research demonstrated that UV/H2O2 /ferrate process is a promising process for spore inactivation and water disinfection.


Assuntos
Bacillus subtilis/efeitos dos fármacos , Desinfecção , Peróxido de Hidrogênio/farmacologia , Ferro/farmacologia , Modelos Teóricos , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/efeitos da radiação , Raios Ultravioleta , Bacillus subtilis/crescimento & desenvolvimento , Microscopia Eletrônica de Varredura , Propriedades de Superfície
14.
Artigo em Inglês | MEDLINE | ID: mdl-29484174

RESUMO

Background: Ultraviolet germicidal irradiation (UVGI) systems are gaining popularity, however objective comparisons of their characteristics are lacking. While environmental cultures and reduction of hospital-associated infections rates are excellent study endpoints, they are impractical for centers with limited resources who want to compare or optimize UVGI systems use. Methods: We evaluated radiometry and commercial test cards, two simple and low cost tools, to compare 2 full size UVGI systems (Tru-D and Optimum-UV Enlight) and 2 small units (Lumalier EDU 435 and MRSA-UV Turbo-UV). Results: Radiometry-derived output curves show that if both large devices emit enough energy to reach C. difficile lethal doses at 10 ft, the reduction in output in distance is almost perfectly logarithmic. In a patient room environment, Enlight and Tru-D performed similarly when compared using radiometry and commercial test cards. The two small devices reached C. difficile range around the bathroom with the device raised above the floor, but longer times are needed. Conclusions: Despite different workflows and price points, no clear superiority emerges between Tru-D and Enlight. Bathroom disinfection should be dealt with separately from the main room and small, cheaper units can be used. Radiometry and commercial test cards are promising ways to compare UVGI systems, but further validation is needed using correlation with environmental cultures. Trial registration: Not applicable.


Assuntos
Anti-Infecciosos/farmacologia , Desinfecção/métodos , Quartos de Pacientes , Radiometria/métodos , Esporos Bacterianos/efeitos da radiação , Raios Ultravioleta , Clostridioides difficile/efeitos da radiação , Infecção Hospitalar/prevenção & controle , Desinfecção/instrumentação , Relação Dose-Resposta à Radiação , Ambiente Controlado , Equipamentos e Provisões/microbiologia , Controle de Infecções/instrumentação , Controle de Infecções/métodos , Análise de Regressão
15.
J Occup Environ Hyg ; 15(1): 1-12, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29059039

RESUMO

Ambulances are frequently contaminated with infectious microorganisms shed by patients during transport that can be transferred to subsequent patients and emergency medical service workers. Manual decontamination is tedious and time-consuming, and persistent contamination is common even after cleaning. Ultraviolet germicidal irradiation (UVGI) has been proposed as a terminal disinfection method for ambulance patient compartments. However, no published studies have tested the use of UVGI in ambulances. The objectives of this study were to investigate the efficacy of a UVGI system in an ambulance patient compartment and to examine the impact of UVGI fixture position and the UV reflectivity of interior surfaces on the time required for disinfection. A UVGI fixture was placed in the front, middle, or back of an ambulance patient compartment, and the UV irradiance was measured at 49 locations. Aluminum sheets and UV-reflective paint were added to examine the effects of increasing surface reflectivity on disinfection time. Disinfection tests were conducted using Bacillus subtilis spores as a surrogate for pathogens. Our results showed that the UV irradiance varied considerably depending upon the surface location. For example, with the UVGI fixture in the back position and without the addition of UV-reflective surfaces, the most irradiated location received a dose of UVGI sufficient for disinfection in 16 s, but the least irradiated location required 15 hr. Because the overall time required to disinfect all of the interior surfaces is determined by the time required to disinfect the surfaces receiving the lowest irradiation levels, the patient compartment disinfection times for different UVGI configurations ranged from 16.5 hr to 59 min depending upon the UVGI fixture position and the interior surface reflectivity. These results indicate that UVGI systems can reduce microbial surface contamination in ambulance compartments, but the systems must be rigorously validated before deployment. Optimizing the UVGI fixture position and increasing the UV reflectivity of the interior surfaces can substantially improve the performance of a UVGI system and reduce the time required for disinfection.


Assuntos
Ambulâncias , Bacillus subtilis/efeitos da radiação , Desinfecção/métodos , Raios Ultravioleta , Infecção Hospitalar/prevenção & controle , Desinfecção/instrumentação , Pintura , Esporos Bacterianos/efeitos da radiação
16.
J Photochem Photobiol B ; 178: 69-75, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29125984

RESUMO

Disinfection by pulsed ultraviolet (UV) radiation is a commonly used method, e.g. in industry or medicine and can be carried out either with lasers or broadband UV radiation sources. Detrimental effects to biological materials depending on parameters such as pulse duration τ or pulse repetition frequency fp are well-understood for pulsed coherent UV radiation, however, relatively little is known for its incoherent variant. Therefore, within this work, it is the first time that disinfection rates of pulsed and continuous (cw) incoherent UV radiation studied by means of spore film dosimetry are presented, compared with each other, and in a second step further investigated regarding two pulse parameters. After analyzing the dynamic range of the Bacillus subtilis spore films with variable cw radiant exposures H=5-100Jm-2 a validation of the Bunsen-Roscoe law revealed its restricted applicability and a 28% enhanced detrimental effect of pulsed compared to cw incoherent UV radiation. A radiant exposure H=50Jm-2 and an irradiance E=0.5Wm-2 were found to be suitable parameters for an analysis of the disinfection rate as a function of τ=0.5-10ms and fp=25-500Hz unveiling that shorter pulses and lower frequencies inactivate more spores. Finally, the number of applied pulses as well as the experiment time were considered with regard to spore film disinfection.


Assuntos
Desinfecção/métodos , Dosimetria Fotográfica , Esporos Bacterianos/fisiologia , Esporos Bacterianos/efeitos da radiação , Raios Ultravioleta , Bacillus subtilis/fisiologia , Bacillus subtilis/efeitos da radiação , Fatores de Tempo
17.
Sci Rep ; 7(1): 11019, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887475

RESUMO

The focus of this study is investigating the performance of graphene oxide (GO) in the protective effect of olive oil on Bacillus thuringiensis (Bt) after being exposed to UV radiations. Biological pesticides Bt subsp. Kurstaki is one of the most important biological control agents. We compared the protective effect of two UV protectant; GO and olive oil and also the combination of both, on the stability of the formulation of Bt after exposure to UV radiations. Spore viability was measured for protective effect and bioassay test was performed on the formulations of Bt. The combination of GO and olive oil revealed the highest viabilities of 50.62% after 96 h exposure to UV radiation, while viabilities of free spore, olive oil formulation and GO formulation were 32.54%, 37.19%,and 45.20%, respectively. The mortality of irradiated combination formulation on second-instar larvae Ephestia Kuehniella was 68.89%, while the same parameter for free spore, olive oil formulation and GO formulation were 40%, 46.66%,and 56%, respectively.


Assuntos
Bacillus thuringiensis/fisiologia , Bacillus thuringiensis/efeitos da radiação , Grafite/farmacologia , Viabilidade Microbiana/efeitos da radiação , Azeite de Oliva/farmacologia , Protetores contra Radiação/farmacologia , Raios Ultravioleta , Animais , Bioensaio , Larva/microbiologia , Larva/fisiologia , Lepidópteros/microbiologia , Lepidópteros/fisiologia , Esporos Bacterianos/fisiologia , Esporos Bacterianos/efeitos da radiação , Análise de Sobrevida
19.
J Microbiol Methods ; 122: 43-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26825005

RESUMO

Recent studies have demonstrated the potential to use Bacillus pumilus endospores as a surrogate for human adenovirus (HAdV) in UV disinfection studies. The use of endospores has been limited by observations of batch-to-batch variation in UV sensitivity. This study reports on a propagation method that utilizes a commercially available medium to produce UV tolerant B. pumilus endospores with a consistent UV sensitivity. It is further demonstrated that the endospores of B. pumilus strain (ATCC 27142), produced using this protocol (half strength Columbia broth, 5 days incubation, with 0.1mM MnSO4), display a UV dose-response that is similar to that of HAdV. Endospore stocks could be stored in ethanol for up to two months at 4 °C without a significant change in UV sensitivity. Synergistic endospore damage was observed by pre-heat treatment of water samples followed by UV irradiation. UV tolerant B. pumilus endospores are a potential surrogate of HAdV for UV treatment performance tests in water utilities which do not have in-house research virology laboratories.


Assuntos
Adenovírus Humanos/efeitos da radiação , Bacillus/efeitos da radiação , Esporos Bacterianos/efeitos da radiação , Inativação de Vírus/efeitos da radiação , Linhagem Celular , Desinfecção/métodos , Relação Dose-Resposta à Radiação , Escherichia coli/efeitos da radiação , Temperatura Alta , Humanos , Levivirus/efeitos da radiação , Tolerância a Radiação , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/crescimento & desenvolvimento , Raios Ultravioleta , Microbiologia da Água , Purificação da Água/métodos
20.
Appl Radiat Isot ; 107: 33-39, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26408912

RESUMO

In this work, molybdenum-99 loaded columns were challenged with Bacillus subtilis vegetative cells and Bacillus pumilus spores inside and outside the alumina column, and microbial recovery and radiation effect were assessed. Alumina was a barrier for the passage of microorganisms regardless the species, whilst spores were more retained than vegetative cells with a lower microbial recovery, without significant differences between 9.25 and 74 GBq generators. Bacillus pumilus biological indicator showed lower recoveries, suggesting a radiation inactivating effect on microorganisms.


Assuntos
Bacillus subtilis/efeitos da radiação , Bacillus/efeitos da radiação , Molibdênio/administração & dosagem , Radioisótopos/administração & dosagem , Compostos Radiofarmacêuticos/administração & dosagem , Tecnécio/administração & dosagem , Óxido de Alumínio , Carga Bacteriana/métodos , Humanos , Doses de Radiação , Espectrofotometria , Esporos Bacterianos/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA