Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30109218

RESUMO

Entamoeba histolytica, the causative agent of amoebiasis, does not form cysts in vitro, so reptilian pathogen Entamoeba invadens is used as an Entamoeba encystation model. During the in vitro encystation of E. invadens, a few multinucleated giant cells (MGC) were also appeared in the culture along with cysts. Like the cyst, these MGC's were also formed in the multicellular aggregates found in the encystation culture. Time-lapse live cell imaging revealed that MGC's were the result of repeated cellular fusion with fusion-competent trophozoites as a starting point. The early MGC were non-adherent, and they moved slowly and randomly in the media, but under confinement, MGC became highly motile and directionally persistent. The increased motility resulted in rapid cytoplasmic fissions, which indicated the possibility of continuous cell fusion and division taking place inside the compact multicellular aggregates. Following cell fusion, each nucleus obtained from the fusion-competent trophozoites gave rise to four nuclei with half genomic content. All the haploid nuclei in MGC later aggregated and fused to form a polyploid nucleus. These observations have important implications on Entamoeba biology as they point toward the possibility of E. invadens undergoing sexual or parasexual reproduction.


Assuntos
Fusão Celular , Entamoeba/crescimento & desenvolvimento , Células Gigantes/citologia , Células Gigantes/parasitologia , Esporos de Protozoários/crescimento & desenvolvimento , Entamoeba/genética , Haploidia , Microscopia Intravital , Poliploidia , Esporos de Protozoários/genética , Imagem com Lapso de Tempo
2.
Artigo em Inglês | MEDLINE | ID: mdl-30087858

RESUMO

Amoebiasis is caused by Entamoeba histolytica infection, a protozoan parasite belonging to the phylum Amoebozoa. This parasite undergoes a fundamental cell differentiation process from proliferative trophozoite to dormant cyst, termed "encystation." The cysts formed by encystation are solely responsible for the transmission of amoebiasis; therefore, Entamoeba encystation is an important subject from both biological and medical perspectives. Here, we have established a flow cytometry strategy for not only determining the percentage of formed cysts but also for monitoring changes in cell populations during encystation. This strategy together with fluorescence microscopy enables visualization of the cell differentiation process of Entamoeba encystation. We also standardized another flow cytometry protocol for counting live trophozoites. These two different flow cytometry techniques could be integrated into 96-well plate-based bioassays for monitoring the processes of cyst formation and trophozoite proliferation, which are crucial to maintain the Entamoeba life cycle. The combined two systems enabled us to screen a chemical library, the Pathogen Box of the Medicine for Malaria Venture, to obtain compounds that inhibit either the formation of cysts or the proliferation of trophozoites, or both. This is a prerequisite for the development of new drugs against amoebiasis, a global public health problem. Collectively, the two different 96-well plate-based Entamoeba bioassay and flow cytometry analysis systems (cyst formation and trophozoite proliferation) provide a methodology that can not only overcome the limitations of standard microscopic counting but also is effective in applied as well as basic Entamoeba biology.


Assuntos
Entamoeba/crescimento & desenvolvimento , Citometria de Fluxo/métodos , Parasitologia/métodos , Esporos de Protozoários/crescimento & desenvolvimento , Microscopia de Fluorescência/métodos
3.
Sci Rep ; 8(1): 6643, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29704004

RESUMO

Sporulation in Dictyostelium fruiting bodies evolved from amoebozoan encystation with both being induced by cAMP acting on PKA, but with downstream components still being unknown. Using tagged mutagenesis to find missing pathway components, we identified a sporeless mutant defective in a nuclear protein, SpaA. Expression of prespore genes was strongly reduced in spaA- cells, while expression of many spore stage genes was absent. Chromatin immunoprecipitation (ChIP) of a SpaA-YFP gene fusion showed that (pre)spore gene promoters bind directly to SpaA, identifying SpaA as a transcriptional regulator. SpaA dependent spore gene expression required PKA in vivo and was stimulated in vitro by the membrane-permeant PKA agonist 8Br-cAMP. The PKA agonist also promoted SpaA binding to (pre)spore promoters, placing SpaA downstream of PKA. Sequencing of SpaA-YFP ChIPed DNA fragments revealed that SpaA binds at least 117 (pre)spore promoters, including those of other transcription factors that activate some spore genes. These factors are not in turn required for spaA expression, identifying SpaA as the major trancriptional inducer of sporulation.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dictyostelium/crescimento & desenvolvimento , Esporos de Protozoários/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Imunoprecipitação da Cromatina , Análise Mutacional de DNA , DNA de Protozoário/metabolismo , Dictyostelium/enzimologia , Dictyostelium/genética , Dictyostelium/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Regiões Promotoras Genéticas , Ligação Proteica , Esporos de Protozoários/enzimologia , Esporos de Protozoários/genética , Esporos de Protozoários/metabolismo , Fatores de Transcrição/genética
4.
Microbiology (Reading) ; 164(5): 727-739, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29620506

RESUMO

Not long ago, protists were considered one of four eukaryote kingdoms, but recent gene-based phylogenies show that they contribute to all nine eukaryote subdomains. The former kingdoms of animals, plants and fungi are now relegated to lower ranks within subdomains. Most unicellular protists respond to adverse conditions by differentiating into dormant walled cysts. As cysts, they survive long periods of starvation, drought and other environmental threats, only to re-emerge when conditions improve. For protists pathogens, the resilience of their cysts can prevent successful treatment or eradication of the disease. In this context, effort has been directed towards understanding the molecular mechanisms that control encystation. We here firstly summarize the prevalence of encystation across protists and next focus on Amoebozoa, where most of the health-related issues occur. We review current data on processes and genes involved in encystation of the obligate parasite Entamoeba histolytica and the opportunistic pathogen Acanthamoeba. We show how the cAMP-mediated signalling pathway that controls spore and stalk cell encapsulation in Dictyostelium fruiting bodies could be retraced to a stress-induced pathway controlling encystation in solitary Amoebozoa. We highlight the conservation and prevalence of cAMP signalling genes in Amoebozoan genomes and the suprisingly large and varied repertoire of proteins for sensing and processing environmental signals in individual species.


Assuntos
Amebozoários/crescimento & desenvolvimento , AMP Cíclico/metabolismo , Eucariotos/crescimento & desenvolvimento , Encistamento de Parasitas , Transdução de Sinais , Amebozoários/classificação , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Encistamento de Parasitas/genética , Filogenia , Proteínas de Protozoários/metabolismo , Esporos de Protozoários/genética , Esporos de Protozoários/crescimento & desenvolvimento , Estresse Fisiológico
5.
Mol Biochem Parasitol ; 218: 23-27, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29037797

RESUMO

Entamoeba histolytica causes dysentery and liver abscess mostly in countries that lack proper sanitation. Infection is acquired by ingestion of the cyst form in contaminated food or water. E. histolytica does not encyst in vitro; thus, E. invadens, a reptilian parasite that encysts in vitro, has been used as a surrogate. Cysts are small and possess chitin-rich walls. These are characteristics that may be exploited by flow cytometry. We stained encysting E. invadens cells with a fluorescent chitin stain, and analyzed fluorescence and forward scatter by flow cytometry. We demonstrate that flow cytometry can be used to track differentiation, reveal unique cell populations, and evaluate encystation inhibitors.


Assuntos
Entamoeba/crescimento & desenvolvimento , Citometria de Fluxo/métodos , Parasitologia/métodos , Esporos de Protozoários/crescimento & desenvolvimento , Quitina/metabolismo , Corantes Fluorescentes/análise , Coloração e Rotulagem/métodos
6.
mBio ; 8(1)2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28074022

RESUMO

The protozoan intracellular parasite Toxoplasma gondii forms latent cysts in the central nervous system (CNS) and persists for the lifetime of the host. This cyst is cloaked with a glycosylated structure called the cyst wall. Previously, we demonstrated that a mucin-like glycoprotein, CST1, localizes to the cyst wall and confers structural rigidity on brain cysts in a mucin-like domain-dependent manner. The mucin-like domain of CST1 is composed of 20 units of threonine-rich tandem repeats that are O-GalNAc glycosylated. A family of enzymes termed polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts) initiates O-GalNAc glycosylation. To identify which isoforms of ppGalNAc-Ts are responsible for the glycosylation of the CST1 mucin-like domain and to evaluate the function of each ppGalNAc-T in the overall glycosylation of the cyst wall, all five ppGalNAc-T isoforms were deleted individually from the T. gondii genome. The ppGalNAc-T2 and -T3 deletion mutants produced various glycosylation defects on the cyst wall, implying that many cyst wall glycoproteins are glycosylated by T2 and T3. Both T2 and T3 glycosylate the CST1 mucin-like domain, and this glycosylation is necessary for CST1 to confer structural rigidity on the cyst wall. We established that T2 is required for the initial glycosylation of the mucin-like domain and that T3 is responsible for the sequential glycosylation on neighboring acceptor sites, demonstrating hierarchical glycosylation by two distinct initiating and filling-in ppGalNAc-Ts in an intact organism. IMPORTANCE: Toxoplasma gondii is an obligate intracellular parasite that infects a third of the world's population. It can cause severe congenital disease and devastating encephalitis in immunocompromised individuals. We identified two glycosyltransferases, ppGalNAc-T2 and -T3, which are responsible for glycosylating cyst wall proteins in a hierarchical fashion. This glycosylation confers structural rigidity on the brain cyst. Our studies provide new insights into the mechanisms of O-GalNAc glycosylation in T. gondii.


Assuntos
Glicoproteínas/metabolismo , Glicosilação , N-Acetilgalactosaminiltransferases/metabolismo , Proteínas de Protozoários/metabolismo , Esporos de Protozoários/química , Toxoplasma/enzimologia , Deleção de Genes , N-Acetilgalactosaminiltransferases/genética , Esporos de Protozoários/crescimento & desenvolvimento , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/metabolismo , Polipeptídeo N-Acetilgalactosaminiltransferase
7.
Proc Natl Acad Sci U S A ; 114(3): 516-521, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28057864

RESUMO

Coordination of cell movement with cell differentiation is a major feat of embryonic development. The Dictyostelium stalk always forms at the organizing tip, by a mechanism that is not understood. We previously reported that cyclic diguanylate (c-di-GMP), synthesized by diguanylate cyclase A (DgcA), induces stalk formation. Here we used transcriptional profiling of dgca- structures to identify target genes for c-di-GMP, and used these genes to investigate the c-di-GMP signal transduction pathway. We found that knockdown of cAMP-dependent protein kinase (PKA) activity in prestalk cells reduced stalk gene induction by c-di-GMP, whereas PKA activation bypassed the c-di-GMP requirement for stalk gene expression. c-di-GMP caused a persistent increase in cAMP, which still occurred in mutants lacking the adenylate cyclases ACG or ACR, or the cAMP phosphodiesterase RegA. However, both inhibition of adenylate cyclase A (ACA) with SQ22536 and incubation of a temperature-sensitive ACA mutant at the restrictive temperature prevented c-di-GMP-induced cAMP synthesis as well as c-di-GMP-induced stalk gene transcription. ACA produces the cAMP pulses that coordinate Dictyostelium morphogenetic cell movement and is highly expressed at the organizing tip. The stalk-less dgca- mutant regained its stalk by expression of a light-activated adenylate cyclase from the ACA promoter and exposure to light, indicating that cAMP is also the intermediate for c-di-GMP in vivo. Our data show that the more widely expressed DgcA activates tip-expressed ACA, which then acts on PKA to induce stalk genes. These results explain why stalk formation in Dictyostelia always initiates at the site of the morphogenetic organizer.


Assuntos
Adenilil Ciclases/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Dictyostelium/crescimento & desenvolvimento , Dictyostelium/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Dictyostelium/genética , Proteínas de Escherichia coli/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes de Protozoários , Mutação , Fósforo-Oxigênio Liases/metabolismo , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Esporos de Protozoários/genética , Esporos de Protozoários/crescimento & desenvolvimento , Esporos de Protozoários/metabolismo
8.
mBio ; 7(4)2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27555307

RESUMO

UNLABELLED: Encystation of the common intestinal parasite Giardia lamblia involves the production, trafficking, and secretion of cyst wall material (CWM). However, the molecular mechanism responsible for the regulation of these sequential processes remains elusive. Here, we examined the role of GlRac, Giardia's sole Rho family GTPase, in the regulation of endomembrane organization and cyst wall protein (CWP) trafficking. Localization studies indicated that GlRac is associated with the endoplasmic reticulum (ER) and the Golgi apparatus-like encystation-specific vesicles (ESVs). Constitutive GlRac signaling increased levels of the ER marker PDI2, induced ER swelling, reduced overall CWP1 production, and promoted the early maturation of ESVs. Quantitative analysis of cells expressing constitutively active hemagglutinin (HA)-tagged GlRac (HA-Rac(CA)) revealed fewer but larger ESVs than control cells. Consistent with the phenotype of premature maturation of ESVs in HA-Rac(CA)-expressing cells, constitutive GlRac signaling resulted in increased CWP1 secretion and, conversely, morpholino depletion of GlRac blocked CWP1 secretion. Wild-type cells unexpectedly secreted large quantities of CWP1 into the medium, and free CWP1 was used cooperatively during cyst formation. These results, in part, could account for the previously reported observation that G. lamblia encysts more efficiently at high cell densities. These studies of GlRac show that it regulates encystation at several levels, and our findings support its coordinating role as a regulator of CWP trafficking and secretion. The central role of GlRac in regulating membrane trafficking and the cytoskeleton, both of which are essential to Giardia parasitism, further suggests its potential as a novel target for drug development to treat giardiasis. IMPORTANCE: The encystation process is crucial for the transmission of giardiasis and the life cycle of many protists. Encystation for Giardia lamblia involves the assembly of a protective cyst wall via sequential production, trafficking, and secretion of cyst wall material. However, the regulatory pathways that coordinate cargo maturation and secretion remain unknown. Here, we asked whether the signaling activities of G. lamblia's single Rho family GTPase, GlRac, might have a regulatory role in the encystation process. We show that GlRac localizes to endomembranes and its signaling activities regulate the production of cyst wall protein 1 (CWP1), the maturation of encystation-specific vesicles (ESVs), and secretion of CWP1. We also show that secreted CWP1 is available for the development of cysts at the population level, a finding that in part could explain why Giardia encystation proceeds more efficiently at high cell densities.


Assuntos
Regulação da Expressão Gênica , Giardia lamblia/crescimento & desenvolvimento , Giardia lamblia/genética , Proteínas de Protozoários/metabolismo , Esporos de Protozoários/crescimento & desenvolvimento , Esporos de Protozoários/genética , Proteínas rac de Ligação ao GTP/metabolismo , Transporte Proteico
9.
Cell Host Microbe ; 18(6): 670-81, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26651943

RESUMO

Transmissible stages of Toxoplasma gondii store energy in the form of the carbohydrate amylopectin. Here, we show that the Ca(2+)-dependent protein kinase CDPK2 is a critical regulator of amylopectin metabolism. Increased synthesis and loss of degradation of amylopectin in CDPK2 deficient parasites results in the hyperaccumulation of this sugar polymer. A carbohydrate-binding module 20 (CBM20) targets CDPK2 to amylopectin stores, while the EF-hands regulate CDPK2 kinase activity in response to Ca(2+) to modulate amylopectin levels. We identify enzymes involved in amylopectin turnover whose phosphorylation is dependent on CDPK2 activity. Strikingly, accumulation of massive amylopectin granules in CDPK2-deficient bradyzoite stages leads to gross morphological defects and complete ablation of cyst formation in a mouse model. Together these data show that Ca(2+) signaling regulates carbohydrate metabolism in Toxoplasma and that the post-translational control of this pathway is required for normal cyst development.


Assuntos
Amilopectina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Esporos de Protozoários/crescimento & desenvolvimento , Esporos de Protozoários/metabolismo , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Sobrevivência Celular , Deleção de Genes , Camundongos , Proteínas Quinases/genética , Proteínas de Protozoários/genética , Toxoplasmose Animal , Virulência
10.
Microb Pathog ; 89: 18-26, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26318877

RESUMO

Calcium has an important role on signaling of different cellular processes, including growth and differentiation. Signaling by calcium also has an essential function in pathogenesis and differentiation of the protozoan parasites Entamoeba histolytica and Entamoeba invadens. However, the proteins of these parasites that regulate the cytoplasmic concentration of this ion are poorly studied. In eukaryotic cells, the calcium-ATPase of the SERCA type plays an important role in calcium homeostasis by catalyzing the active efflux of calcium from cytoplasm to endoplasmic reticulum. Here, we reported the identification of SERCA of E. invadens (EiSERCA). This protein contains a putative sequence for endoplasmic reticulum retention and all domains involved in calcium transport identified in mammalian SERCA. By immunofluorescence assays, an antibody against SERCA of E. histolytica detected EiSERCA in a vesicular network in the cytoplasm of E. invadens trophozoites, co-localizing with calreticulin. Interestingly, EiSERCA was redistributed close to plasma membrane during encystation, suggesting that this pump could participate in regulate the calcium concentration during this process. In addition, thapsigargin and cyclopiazonic acid, both specific inhibitors of SERCA, affected the number and structure of cysts, supporting the hypothesis that calcium flux mediated by SERCA has an important role in the life cycle of Entamoeba.


Assuntos
ATPases Transportadoras de Cálcio/antagonistas & inibidores , Entamoeba/efeitos dos fármacos , Entamoeba/crescimento & desenvolvimento , Proteínas de Protozoários/antagonistas & inibidores , Esporos de Protozoários/efeitos dos fármacos , Esporos de Protozoários/crescimento & desenvolvimento , ATPases Transportadoras de Cálcio/análise , ATPases Transportadoras de Cálcio/genética , Calreticulina/análise , Inibidores Enzimáticos/metabolismo , Indóis/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Proteínas de Protozoários/análise , Proteínas de Protozoários/genética , Tapsigargina/metabolismo , Vesículas Transportadoras/química
11.
Infect Immun ; 83(5): 2030-42, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25733521

RESUMO

Although encystation (or cyst formation) is an important step of the life cycle of Giardia, the cellular events that trigger encystation are poorly understood. Because membrane microdomains are involved in inducing growth and differentiation in many eukaryotes, we wondered if these raft-like domains are assembled by this parasite and participate in the encystation process. Since the GM1 ganglioside is a major constituent of mammalian lipid rafts (LRs) and known to react with cholera toxin B (CTXB), we used Alexa Fluor-conjugated CTXB and GM1 antibodies to detect giardial LRs. Raft-like structures in trophozoites are located in the plasma membranes and on the periphery of ventral discs. In cysts, however, they are localized in the membranes beneath the cyst wall. Nystatin and filipin III, two cholesterol-binding agents, and oseltamivir (Tamiflu), a viral neuraminidase inhibitor, disassembled the microdomains, as evidenced by reduced staining of trophozoites with CTXB and GM1 antibodies. GM1- and cholesterol-enriched LRs were isolated from Giardia by density gradient centrifugation and found to be sensitive to nystatin and oseltamivir. The involvement of LRs in encystation could be supported by the observation that raft inhibitors interrupted the biogenesis of encystation-specific vesicles and cyst production. Furthermore, culturing of trophozoites in dialyzed medium containing fetal bovine serum (which is low in cholesterol) reduced raft assembly and encystation, which could be rescued by adding cholesterol from the outside. Our results suggest that Giardia is able to form GM1- and cholesterol-enriched lipid rafts and these raft domains are important for encystation.


Assuntos
Colesterol/metabolismo , Gangliosídeo G(M1)/metabolismo , Giardia/crescimento & desenvolvimento , Giardia/metabolismo , Microdomínios da Membrana/metabolismo , Esporos de Protozoários/crescimento & desenvolvimento , Esporos de Protozoários/metabolismo
12.
Microb Pathog ; 81: 22-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25769819

RESUMO

Despite advances in antimicrobial chemotherapy and supportive care, the prognosis of Acanthamoeba infections remains poor, suggesting that new targets are needed that can affect parasite survival and host-pathogen interactions. G proteins and their coupled receptors are well known regulators of a variety of cellular functions. The overall aim of the present study was to study the role of G-protein coupled receptor, ß adrenergic receptor on the biology and pathogenesis of keratitis isolate of Acanthamoeba castellanii of the T4 genotype. Inhibition of ß adrenergic receptor using antagonist, propranolol had detrimental effects on the extracellular proteolytic activities A. castellanii as determined using zymographic assays. Conversely, ß adrenergic receptor agonist, isoprenaline showed increased proteases. Interestingly, ß adrenergic receptor inhibition affected A. castellanii growth (using amoebistatic assays), viability (using amoebicidal assays by measuring uptake of Trypan blue) and encystation as determined by trophozoite transformation into the cyst form. Pre-treatment of parasites with propranolol hampered A. castellanii-mediated human brain microvascular endothelial cell cytotoxicity, as measured by the lacatate dehydrogenase release. The aforementioned findings suggest that G-protein coupled receptor, ß adrenergic receptor-mediated signaling in A. castellanii biology and pathogenesis may offer new pharmacological targets.


Assuntos
Acanthamoeba castellanii/fisiologia , Receptores Adrenérgicos beta/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Acanthamoeba castellanii/classificação , Acanthamoeba castellanii/genética , Acanthamoeba castellanii/crescimento & desenvolvimento , Agonistas Adrenérgicos beta/metabolismo , Antagonistas Adrenérgicos beta/metabolismo , Sobrevivência Celular , Células Cultivadas , Células Endoteliais/parasitologia , Células Endoteliais/fisiologia , Genótipo , Humanos , Isoproterenol , Peptídeo Hidrolases/metabolismo , Propranolol/metabolismo , Proteólise , Esporos de Protozoários/crescimento & desenvolvimento
13.
Appl Environ Microbiol ; 81(2): 630-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25381242

RESUMO

Water conservation efforts have focused on gray water (GW) usage, especially for applications that do not require potable water quality. However, there is a need to better understand environmental pathogens and their free-living amoeba (FLA) hosts within GW, given their growth potential in stored gray water. Using synthetic gray water (sGW) we examined three strains of the water-based pathogen Legionella pneumophila and its FLA hosts Acanthamoeba polyphaga, A. castellanii, and Vermamoeba vermiformis. Exposure to sGW for 72 h resulted in significant inhibition (P < 0.0001) of amoebal encystation versus control-treated cells, with the following percentages of cysts in sGW versus controls: A. polyphaga (0.6 versus 6%), A. castellanii (2 versus 62%), and V. vermiformis (1 versus 92%), suggesting sGW induced maintenance of the actively feeding trophozoite form. During sGW exposure, L. pneumophila culturability decreased as early as 5 h (1.3 to 2.9 log10 CFU, P < 0.001) compared to controls (Δ0 to 0.1 log10 CFU) with flow cytometric analysis revealing immediate changes in membrane permeability. Furthermore, reverse transcription-quantitative PCR was performed on total RNA isolated from L. pneumophila cells at 0 to 48 h after sGW incubation, and genes associated with virulence (gacA, lirR, csrA, pla, and sidF), the type IV secretion system (lvrB and lvrE), and metabolism (ccmF and lolA) were all shown to be differentially expressed. These results suggest that conditions within GW may promote interactions between water-based pathogens and FLA hosts, through amoebal encystment inhibition and alteration of bacterial gene expression, thus warranting further exploration into FLA and L. pneumophila behavior in GW systems.


Assuntos
Acanthamoeba/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Legionella pneumophila/efeitos dos fármacos , Lobosea/efeitos dos fármacos , Esporos de Protozoários/efeitos dos fármacos , Fatores de Virulência/biossíntese , Acanthamoeba/fisiologia , Citometria de Fluxo , Legionella pneumophila/genética , Lobosea/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Esporos de Protozoários/crescimento & desenvolvimento , Fatores de Tempo , Microbiologia da Água
14.
J Virol ; 89(5): 2962-5, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25520511

RESUMO

Acanthamoeba is a genus of free-living amoebas distributed worldwide. Few studies have explored the interactions between these protozoa and their infecting giant virus, Acanthamoeba polyphaga mimivirus (APMV). Here we show that, once the amoebal encystment is triggered, trophozoites become significantly resistant to APMV. Otherwise, upon infection, APMV is able to interfere with the expression of a serine proteinase related to amoebal encystment and the encystment can no longer be triggered.


Assuntos
Acanthamoeba/enzimologia , Acanthamoeba/virologia , Interações Hospedeiro-Parasita , Mimiviridae/crescimento & desenvolvimento , Serina Proteases/biossíntese , Esporos de Protozoários/crescimento & desenvolvimento , Acanthamoeba/crescimento & desenvolvimento
15.
Protist ; 165(5): 569-79, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25113829

RESUMO

Amoebas and other freely moving protists differentiate into walled cysts when exposed to stress. As cysts, amoeba pathogens are resistant to biocides, preventing treatment and eradication. Lack of gene modification procedures has left the mechanisms of encystation largely unexplored. Genetically tractable Dictyostelium discoideum amoebas require cellulose synthase for formation of multicellular fructifications with cellulose-rich stalk and spore cells. Amoebas of its distant relative Polysphondylium pallidum (Ppal), can additionally encyst individually in response to stress. Ppal has two cellulose synthase genes, DcsA and DcsB, which we deleted individually and in combination. Dcsa- mutants formed fruiting bodies with normal stalks, but their spore and cyst walls lacked cellulose, which obliterated stress-resistance of spores and rendered cysts entirely non-viable. A dcsa-/dcsb- mutant made no walled spores, stalk cells or cysts, although simple fruiting structures were formed with a droplet of amoeboid cells resting on an sheathed column of decaying cells. DcsB is expressed in prestalk and stalk cells, while DcsA is additionally expressed in spores and cysts. We conclude that cellulose is essential for encystation and that cellulose synthase may be a suitable target for drugs to prevent encystation and render amoeba pathogens susceptible to conventional antibiotics.


Assuntos
Celulose/metabolismo , Dictyosteliida/enzimologia , Dictyosteliida/crescimento & desenvolvimento , Carpóforos/crescimento & desenvolvimento , Glucosiltransferases/metabolismo , Esporos de Protozoários/crescimento & desenvolvimento , Dictyosteliida/metabolismo , Dictyosteliida/fisiologia , Deleção de Genes , Glucosiltransferases/genética , Estresse Fisiológico
16.
Eukaryot Cell ; 13(7): 884-95, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24839124

RESUMO

Aminopeptidases N are metalloproteases of the M1 family that have been reported in numerous apicomplexan parasites, including Plasmodium, Toxoplasma, Cryptosporidium, and Eimeria. While investigating the potency of aminopeptidases as therapeutic targets against coccidiosis, one of the most important avian diseases caused by the genus Eimeria, we identified and characterized Eimeria tenella aminopeptidase N1 (EtAPN1). Its inhibition by bestatin and amastatin, as well as its reactivation by divalent ions, is typical of zinc-dependent metalloproteases. EtAPN1 shared a similar sequence, three-dimensional structure, and substrate specificity and similar kinetic parameters with A-M1 from Plasmodium falciparum (PfA-M1), a validated target in the treatment of malaria. EtAPN1 is synthesized as a 120-kDa precursor and cleaved into 96-, 68-, and 38-kDa forms during sporulation. Further, immunolocalization assays revealed that, similar to PfA-M1, EtAPN1 is present during the intracellular life cycle stages in both the parasite cytoplasm and the parasite nucleus. The present results support the hypothesis of a conserved role between the two aminopeptidases, and we suggest that EtAPN1 might be a valuable target for anticoccidiosis drugs.


Assuntos
Aminopeptidases/metabolismo , Eimeria tenella/enzimologia , Metaloproteases/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Aminopeptidases/química , Aminopeptidases/genética , Antiprotozoários/farmacologia , Eimeria tenella/efeitos dos fármacos , Eimeria tenella/crescimento & desenvolvimento , Leucina/análogos & derivados , Leucina/farmacologia , Metaloproteases/química , Metaloproteases/genética , Dados de Sequência Molecular , Peptídeos/farmacologia , Filogenia , Precursores de Proteínas/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Esporos de Protozoários/crescimento & desenvolvimento , Esporos de Protozoários/metabolismo , Especificidade por Substrato
17.
Microbiology (Reading) ; 160(Pt 2): 330-339, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24307664

RESUMO

Giardia trophozoites differentiate into infectious cysts (encystment) in response to physiological stimuli; encystment is crucial for Giardia's transmission, survival and pathogenesis. In vitro, Giardia encysts when bile sequesters lipids necessary for this lipid auxotroph, and in vivo they encyst to infect new hosts. In this study, we investigated, for the first time, commitment to encystment in Giardia using both molecular and cellular techniques. We show that after 3-6 h in inducing conditions, encysting trophozoites continue to encyst regardless of whether the inducing stimulus remains. We propose that a trophozoite's inability to revert to a growing or dividing trophozoite represents a commitment to encystment. The onset of commitment correlated with the appearance of encystment specific vesicles (ESVs) and encystment specific protein synthesis. These observations suggest the involvement of regulatory pathways with the ability to 'remember' a transient signal long after its removal; a property that enables encysting trophozoites to complete the encystment process should the unfavourable triggering condition(s) change. The ability to form cysts in response to transient signals or, as we have highlighted in this paper, the ability of a small percentage of the population to form cysts without an inducer is vital for the maintenance of infection within populations.


Assuntos
Giardia/citologia , Giardia/crescimento & desenvolvimento , Esporos de Protozoários/citologia , Esporos de Protozoários/crescimento & desenvolvimento , Proteínas de Protozoários/genética , Fatores de Tempo
18.
J Eukaryot Microbiol ; 61(1): 51-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24134620

RESUMO

In the encystment process of the ciliate protist Colpoda cucullus, we observed that the cell total protein abundance was reduced at 12 h-1 d after the onset of encystment induction subsequent to the reduction in mRNA abundance. We analyzed the alteration of the expression levels of water-insoluble proteins by two-dimensional polyacrylamide gel electrophoresis using polyoxyethylene (20) sorbitan monooleate (Tween-80), and we identified proteins whose expression levels were altered in the encystment process by a liquid chromatography tandem mass spectrometry analysis. The expression level of a 60-kDa protein (p60; heat shock protein 60) was temporarily enhanced and that of a 55-kDa protein (p55; actin) and a 49-kDa protein (p49; actin) was enhanced in the Colpoda encystment process. In mature cysts, the expression level of p55 and p49 tended to be reduced, whereas the expression level of a 50-kDa protein (p50d; α-tubulin), a 25-kDa protein (p25; α-tubulin) and a 52-kDa protein (p52c; ß-tubulin) was enhanced.


Assuntos
Cilióforos/química , Cilióforos/crescimento & desenvolvimento , Regulação da Expressão Gênica , Proteínas de Protozoários/análise , Proteínas de Protozoários/isolamento & purificação , Esporos de Protozoários/química , Esporos de Protozoários/crescimento & desenvolvimento , Actinas/análise , Actinas/química , Actinas/isolamento & purificação , Animais , Chaperonina 60/análise , Chaperonina 60/química , Chaperonina 60/isolamento & purificação , Cromatografia Líquida , Cilióforos/genética , Eletroforese em Gel Bidimensional , Peso Molecular , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/isolamento & purificação , Proteínas de Protozoários/química , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Esporos de Protozoários/genética , Espectrometria de Massas em Tandem
19.
PLoS One ; 8(8): e70040, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23967067

RESUMO

ATP-binding cassette (ABC) transporters can translocate a broad spectrum of molecules across the cell membrane including physiological cargo and toxins. ABC transporters are known for the role they play in resistance towards anticancer agents in chemotherapy of cancer patients. There are 68 ABC transporters annotated in the genome of the social amoeba Dictyostelium discoideum. We have characterized more than half of these ABC transporters through a systematic study of mutations in their genes. We have analyzed morphological and transcriptional phenotypes for these mutants during growth and development and found that most of the mutants exhibited rather subtle phenotypes. A few of the genes may share physiological functions, as reflected in their transcriptional phenotypes. Since most of the abc-transporter mutants showed subtle morphological phenotypes, we utilized these transcriptional phenotypes to identify genes that are important for development by looking for transcripts whose abundance was unperturbed in most of the mutants. We found a set of 668 genes that includes many validated D. discoideum developmental genes. We have also found that abcG6 and abcG18 may have potential roles in intercellular signaling during terminal differentiation of spores and stalks.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Dictyostelium/crescimento & desenvolvimento , Dictyostelium/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Diferenciação Celular/genética , Dictyostelium/citologia , Dictyostelium/genética , Mutação , Fenótipo , Esporos de Protozoários/citologia , Esporos de Protozoários/genética , Esporos de Protozoários/crescimento & desenvolvimento , Esporos de Protozoários/metabolismo , Transcrição Gênica
20.
Parasitol Res ; 112(3): 1221-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23271570

RESUMO

A key challenge in the successful treatment of Acanthamoeba infections is its ability to transform into a dormant cyst form that is resistant to physiological conditions and pharmacological therapies, resulting in recurrent infections. The carbohydrate linkage analysis of cyst walls of Acanthamoeba castellanii showed variously linked sugar residues, including xylofuranose/xylopyranose, glucopyranose, mannopyranose, and galactopyranose. Here, it is shown that exogenous xylose significantly reduced A. castellanii differentiation in encystation assays (P < 0.05 using paired t test, one-tailed distribution). Using small interfering RNA (siRNA) probes against xylose isomerase and cellulose synthase, as well as specific inhibitors, the findings revealed that xylose isomerase and cellulose synthase activities are crucial in the differentiation of A. castellanii. Inhibition of both enzymes using siRNA against xylose isomerase and cellulose synthase but not scrambled siRNA attenuated A. castellanii metamorphosis, as demonstrated by the arrest of encystation of A. castellanii. Neither inhibitor nor siRNA probes had any effect on the viability and extracellular proteolytic activities of A. castellanii.


Assuntos
Acanthamoeba castellanii/enzimologia , Acanthamoeba castellanii/crescimento & desenvolvimento , Aldose-Cetose Isomerases/antagonistas & inibidores , Glucosiltransferases/antagonistas & inibidores , RNA Interferente Pequeno/metabolismo , Esporos de Protozoários/enzimologia , Esporos de Protozoários/crescimento & desenvolvimento , Aldose-Cetose Isomerases/genética , Inativação Gênica , Glucosiltransferases/genética , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA