Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Cell Commun Signal ; 22(1): 278, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762737

RESUMO

BACKGROUND: While de novo cholesterol biosynthesis plays a crucial role in chemotherapy resistance of colorectal cancer (CRC), the underlying molecular mechanism remains poorly understood. METHODS: We conducted cell proliferation assays on CRC cells with or without depletion of squalene epoxidase (SQLE), with or without 5-fluorouracil (5-FU) treatment. Additionally, a xenograft mouse model was utilized to explore the impact of SQLE on the chemosensitivity of CRC to 5-FU. RNA-sequencing analysis and immunoblotting analysis were performed to clarify the mechanism. We further explore the effect of SQLE depletion on the ubiquitin of NF-κB inhibitor alpha (IκBα) and (S)-2,3-epoxysqualene on the binding of IκBα to beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) by using immunoprecipitation assay. In addition, a cohort of 272 CRC patients were selected for our clinical analyses. RESULTS: Mechanistically, (S)-2,3-epoxysqualene promotes IκBα degradation and subsequent NF-κB activation by enhancing the interaction between BTRC and IκBα. Activated NF-κB upregulates the expression of baculoviral IAP repeat containing 3 (BIRC3), sustains tumor cell survival after 5-FU treatment and promotes 5-FU resistance of CRC in vivo. Notably, the treatment of terbinafine, an inhibitor of SQLE commonly used as antifungal drug in clinic, enhances the sensitivity of CRC to 5-FU in vivo. Additionally, the expression of SQLE is associated with the prognosis of human CRC patients with 5-FU-based chemotherapy. CONCLUSIONS: Thus, our finding not only demonstrates a new role of SQLE in chemoresistance of CRC, but also reveals a novel mechanism of (S)-2,3-epoxysqualene-dependent NF-κB activation, implicating the combined potential of terbinafine for 5-FU-based CRC treatment.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Fluoruracila , NF-kappa B , Esqualeno Mono-Oxigenase , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Humanos , Esqualeno Mono-Oxigenase/metabolismo , Esqualeno Mono-Oxigenase/genética , NF-kappa B/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Camundongos , Linhagem Celular Tumoral , Camundongos Nus , Camundongos Endogâmicos BALB C , Feminino , Masculino , Proliferação de Células/efeitos dos fármacos , Inibidor de NF-kappaB alfa/metabolismo , Inibidor de NF-kappaB alfa/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612682

RESUMO

Squalene epoxidase (SQLE) is a key enzyme in the mevalonate-cholesterol pathway that plays a critical role in cellular physiological processes. It converts squalene to 2,3-epoxysqualene and catalyzes the first oxygenation step in the pathway. Recently, intensive efforts have been made to extend the current knowledge of SQLE in cancers through functional and mechanistic studies. However, the underlying mechanisms and the role of SQLE in cancers have not been fully elucidated yet. In this review, we retrospected current knowledge of SQLE as a rate-limiting enzyme in the mevalonate-cholesterol pathway, while shedding light on its potential as a diagnostic and prognostic marker, and revealed its therapeutic values in cancers. We showed that SQLE is regulated at different levels and is involved in the crosstalk with iron-dependent cell death. Particularly, we systemically reviewed the research findings on the role of SQLE in different cancers. Finally, we discussed the therapeutic implications of SQLE inhibitors and summarized their potential clinical values. Overall, this review discussed the multifaceted mechanisms that involve SQLE to present a vivid panorama of SQLE in cancers.


Assuntos
Neoplasias , Esqualeno Mono-Oxigenase , Humanos , Morte Celular , Colesterol , Ácido Mevalônico , Neoplasias/genética , Esqualeno Mono-Oxigenase/genética
3.
Cell Rep ; 43(4): 114094, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38613784

RESUMO

The importance of trained immunity in antitumor immunity has been increasingly recognized, but the underlying metabolic regulation mechanisms remain incompletely understood. In this study, we find that squalene epoxidase (SQLE), a key enzyme in cholesterol synthesis, is required for ß-glucan-induced trained immunity in macrophages and ensuing antitumor activity. Unexpectedly, the shunt pathway, but not the classical cholesterol synthesis pathway, catalyzed by SQLE, is required for trained immunity induction. Specifically, 24(S),25-epoxycholesterol (24(S),25-EC), the shunt pathway metabolite, activates liver X receptor and increases chromatin accessibility to evoke innate immune memory. Meanwhile, SQLE-induced reactive oxygen species accumulation stabilizes hypoxia-inducible factor 1α protein for metabolic switching into glycolysis. Hence, our findings identify 24(S),25-EC as a key metabolite for trained immunity and provide important insights into how SQLE regulates trained-immunity-mediated antitumor activity.


Assuntos
Camundongos Endogâmicos C57BL , Esqualeno Mono-Oxigenase , Animais , Esqualeno Mono-Oxigenase/metabolismo , Camundongos , Colesterol/metabolismo , Colesterol/biossíntese , Colesterol/análogos & derivados , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Imunidade Inata/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral
4.
Clin Transl Med ; 14(2): e1586, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38372422

RESUMO

BACKGROUND: Osteosarcoma (OSA) presents a clinical challenge and has a low 5-year survival rate. Currently, the lack of advanced stratification models makes personalized therapy difficult. This study aims to identify novel biomarkers to stratify high-risk OSA patients and guide treatment. METHODS: We combined 10 machine-learning algorithms into 101 combinations, from which the optimal model was established for predicting overall survival based on transcriptomic profiles for 254 samples. Alterations in transcriptomic, genomic and epigenomic landscapes were assessed to elucidate mechanisms driving poor prognosis. Single-cell RNA sequencing (scRNA-seq) unveiled genes overexpressed in OSA cells as potential therapeutic targets, one of which was validated via tissue staining, knockdown and pharmacological inhibition. We characterized changes in multiple phenotypes, including proliferation, colony formation, migration, invasion, apoptosis, chemosensitivity and in vivo tumourigenicity. RNA-seq and Western blotting elucidated the impact of squalene epoxidase (SQLE) suppression on signalling pathways. RESULTS: The artificial intelligence-derived prognostic index (AIDPI), generated by our model, was an independent prognostic biomarker, outperforming clinicopathological factors and previously published signatures. Incorporating the AIDPI with clinical factors into a nomogram improved predictive accuracy. For user convenience, both the model and nomogram are accessible online. Patients in the high-AIDPI group exhibited chemoresistance, coupled with overexpression of MYC and SQLE, increased mTORC1 signalling, disrupted PI3K-Akt signalling, and diminished immune infiltration. ScRNA-seq revealed high expression of MYC and SQLE in OSA cells. Elevated SQLE expression correlated with chemoresistance and worse outcomes in OSA patients. Therapeutically, silencing SQLE suppressed OSA malignancy and enhanced chemosensitivity, mediated by cholesterol depletion and suppression of the FAK/PI3K/Akt/mTOR pathway. Furthermore, the SQLE-specific inhibitor FR194738 demonstrated anti-OSA effects in vivo and exhibited synergistic effects with chemotherapeutic agents. CONCLUSIONS: AIDPI is a robust biomarker for identifying the high-risk subset of OSA patients. The SQLE protein emerges as a metabolic vulnerability in these patients, providing a target with translational potential.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Esqualeno Mono-Oxigenase , Humanos , Inteligência Artificial , Biomarcadores , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Fosfatidilinositol 3-Quinases , Prognóstico , Proteínas Proto-Oncogênicas c-akt , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo
5.
Medicine (Baltimore) ; 103(6): e37030, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335381

RESUMO

Squalene epoxidase (SQLE) is an essential enzyme involved in cholesterol biosynthesis. However, its role in sarcoma and its correlation with immune infiltration remains unclear. All original data were downloaded from The Cancer Genome Atlas (TCGA). SQLE expression was explored using the TCGA database, and correlations between SQLE and cancer immune characteristics were analyzed via the TISIDB databases. Generally, SQLE is predominantly overexpressed and has diagnostic and prognostic value in sarcoma. Upregulated SQLE was associated with poorer overall survival, poorer disease-specific survival, and tumor multifocality in sarcoma. Mechanistically, we identified a hub gene that included a total of 82 SQLE-related genes, which were tightly associated with histone modification pathways in sarcoma patients. SQLE expression was negatively correlated with infiltrating levels of dendritic cells and plasmacytoid dendritic cells and positively correlated with Th2 cells. SQLE expression was negatively correlated with the expression of chemokines (CCL19 and CX3CL1) and chemokine receptors (CCR2 and CCR7) in sarcoma. In conclusion, SQLE may be used as a prognostic biomarker for determining prognosis and immune infiltration in sarcoma.


Assuntos
Sarcoma , Esqualeno Mono-Oxigenase , Humanos , Prognóstico , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Biomarcadores Tumorais/genética , Sarcoma/genética
6.
Biochim Biophys Acta Mol Cell Res ; 1871(3): 119681, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280406

RESUMO

Bladder cancer (BC) is one of the most common cancers worldwide. Although the treatment and survival rate of BC are being improved, the risk factors and the underlying mechanisms causing BC are incompletely understood. Squalene monooxygenase (SQLE) has been associated with the occurrence and development of multiple cancers but whether it contributes to BC development is unclear. In this study, we performed bioinformatics analysis on paired BC and adjacent non-cancerous tissues and found that SQLE expression is significantly upregulated in BC samples. Knockdown of SQLE impairs viability, induces apoptosis, and inhibits the migration and invasion of BC cells. RNA-seq data reveals that SQLE deficiency leads to dysregulated expression of genes regulating proliferation, migration, and apoptosis. Mass spectrometry-directed interactome screening identifies proliferating cell nuclear antigen (PCNA) as an SQLE-interacting protein and overexpression of PCNA partially rescues the impaired viability, migration, and invasion of BC cells caused by SQLE knockdown. In addition, we performed xenograft assays and confirmed that SQLE deficiency inhibits BC growth in vivo. In conclusion, these data suggest that SQLE promotes BC development and SQLE inhibition may be therapeutically useful in BC treatment.


Assuntos
Esqualeno Mono-Oxigenase , Neoplasias da Bexiga Urinária , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Esqualeno Mono-Oxigenase/genética , Neoplasias da Bexiga Urinária/genética , Apoptose/genética , Biologia Computacional
7.
Cell Signal ; 114: 110983, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37993027

RESUMO

Cholesterol biosynthesis and metabolism are critical aspects that shape the process of tumor development and associated microenvironmental conditions owing to the ability of cholesterol to drive tumor growth and invasion. Squalene Epoxidase (SQLE) is the second rate-limiting enzyme involved in the synthesis of cholesterol. The functional role of SQLE within the tumor microenvironment, however, has yet to be established. Here we show that SQLE is distinctively expressed across most types of cancer, and the expression level is highly correlated with tumor mutation burden and microsatellite instability. Accordingly, SQLE was identified as a prognostic risk factor in cancer patients. In addition, we observed a negative correlation between SQLE expression and immune cell infiltration across multiple cancers, and murine xenograft model further confirmed that SQLE knockdown was associated with enhanced intratumoral CD8+ T cell infiltration. Using next-generation sequencing, we identified 410 genes distinctively expressed in tumors exhibiting SQLE inhibition. KEGG and GO analysis further verified that SQLE altered the immune response in the tumor microenvironment. Furthermore, we found that the metabolism and translation of proteins is the main binding factor with SQLE. Our findings ascertain that SQLE is a potential target in multiple cancers and suppressing SQLE establishes an essential mechanism for shaping tumor microenvironment.


Assuntos
Linfócitos T CD8-Positivos , Esqualeno Mono-Oxigenase , Microambiente Tumoral , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Colesterol , Neoplasias/genética , Neoplasias/metabolismo , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo
8.
Indian J Pathol Microbiol ; 66(4): 799-803, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38084535

RESUMO

Context: Squalene epoxidase (SQLE) is overexpressed in a variety of tumors, which may play an important role in their tumorigenesis, development, and prognosis. Aims: The aim of this study is to investigate the expression of SQLE and explore its clinicopathological significance in gastric cancer. Settings and Design: The correlation between its positive expression and the pathological characteristics of patients (such as sex, age, tumor size, survival, tumor differentiation, TNM staging, and lymph node metastasis) was analyzed. Materials and Methods: Immunohistochemical method was used to detect its expression in 107 cases of gastric carcinoma and 34 cases of tumor-adjacent tissues. Statistical Analysis Used: Counting data were analyzed by Chi-square test. Its overall survival was analyzed by Kaplan-Meier method and log-rank test. Its hazard factors were analyzed by Cox multivariate analysis. Results: The positive rate of SQLE in gastric cancer is 67.3%, which is higher than that in tumor-adjacent tissues (17.6%), <0.001. Expression of SQLE is closely related to tumor differentiation, TNM staging and lymph node metastasis (P = 0.030, P = 0.009, and P = 0.011, respectively). Furthermore, compared with those low expression of SQLE, the patients of overexpression had worse overall survival by Kaplan-Meier analysis (P = 0.025). Cox multivariate analysis shows that lymph node metastasis, tumor differentiation, SQLE, and TNM staging are independent factors for prognosis of gastric cancer (P = 0.003, 0.020, 0.018, and P = 0.001 respectively). Conclusions: SQLE is overexpressed in gastric cancer. It could be used for the diagnosis and prognosis of the gastric cancer patients.


Assuntos
Esqualeno Mono-Oxigenase , Neoplasias Gástricas , Humanos , Relevância Clínica , Metástase Linfática , Estadiamento de Neoplasias , Prognóstico , Neoplasias Gástricas/genética
9.
Int J Biol Sci ; 19(15): 4831-4832, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781510

RESUMO

The transcription factors p53 and MYC are often considered non-druggable targets, but their dysregulation can generate new dependencies and treatment opportunities in cancer cells. The p53 and MYC-regulated squalene epoxidase (SQLE) has been identified as a potential Achilles heel in colorectal cancer. This is of great interest because the FDA-approved anti-fungal SQLE inhibitor Terbinafine could be repurposed to treat colorectal cancer patients.


Assuntos
Neoplasias Colorretais , Esqualeno Mono-Oxigenase , Humanos , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Proteína Supressora de Tumor p53/genética , Terbinafina , Mutação , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
10.
Int J Biol Sci ; 19(13): 4103-4122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705742

RESUMO

Elevated expression of c-MYC and inactivation of p53 represent two of the most common alterations in colorectal cancer (CRC). However, c-MYC and defective p53 are difficult to target therapeutically. Therefore, effectors downstream of both c-MYC and p53 may represent attractive, alternative targets for cancer treatment. In a bioinformatics screen we identified Squalene epoxidase/SQLE as a candidate therapeutic target that appeared to be especially relevant for cell survival in CRCs, which display elevated c-MYC expression and loss of p53 function. SQLE is a rate-limiting enzyme in the cholesterol synthesis. Here, we show that p53 supresses SQLE expression, cholesterol levels, and cell viability via the induction of miR-205, which directly targets SQLE. Furthermore, c-MYC induced SQLE expression directly and via its target gene AP4. The transcription factor AP4/TFAP4 directly induced SQLE expression and cholesterol levels, whereas inactivation of AP4 resulted in decreased SQLE expression and caused resistance to Terbinafine, an inhibitor of SQLE. Inhibition of SQLE decreased viability of CRC cells. This effect was enhanced in CRCs cells with p53 inactivation and/or enhanced c-MYC/AP4 expression. Altogether, our results demonstrate that SQLE represents a vulnerability for CRCs with p53 inactivation and elevated c-MYC activity.


Assuntos
Neoplasias Colorretais , Esqualeno Mono-Oxigenase , Humanos , Esqualeno Mono-Oxigenase/genética , Proteína Supressora de Tumor p53/genética , Mutação , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Colesterol
11.
Biosci Biotechnol Biochem ; 87(10): 1129-1138, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37528065

RESUMO

Squalene is a triterpenoid compound and widely used in various industries such as medicine and cosmetics due to its strong antioxidant and anticancer properties. The purpose of this study is to increase the accumulation of squalene in filamentous fungi using exogeneous butenafine hydrochloride, which is an inhibitor for squalene epoxidase. The detailed settings achieved that the filamentous fungi, Trichoderma virens PS1-7, produced squalene up to 429.93 ± 51.60 mg/L after culturing for 7 days in the medium consisting of potato infusion with glucose at pH 4.0, in the presence of 200 µm butenafine. On the other hand, no squalene accumulation was observed without butenafine. This result indicated that squalene was biosynthesized in the filamentous fungi PS1-7, which can be used as a novel source of squalene. In addition, we successfully obtained highly 13C-enriched squalene by using [U-13C6]-glucose as a carbon source replacing normal glucose.


Assuntos
Hypocrea , Trichoderma , Esqualeno Mono-Oxigenase , Isótopos de Carbono , Esqualeno , Fungos , Glucose
12.
Cell Death Dis ; 14(8): 497, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542052

RESUMO

Pancreatic cancer (PC), a highly lethal malignancy, commonly exhibits metabolic reprogramming that results in therapeutic vulnerabilities. Nevertheless, the mechanisms underlying the impacts of aberrant cholesterol metabolism on PC development and progression remain elusive. In this study, we found that squalene epoxidase (SQLE) is a crucial mediator of cholesterol metabolism in PC growth. We observed a profound upregulation of SQLE in PC tissues, and its high expression was correlated with poor patient outcomes. Our functional experiments demonstrated that SQLE facilitated cell proliferation, induced cell cycle progression, and inhibited apoptosis in vitro, while promoting tumor growth in vivo. Mechanistically, SQLE was found to have a dual role. First, its inhibition led to squalene accumulation-induced endoplasmic reticulum (ER) stress and subsequent apoptosis. Second, it enhanced de novo cholesterol biosynthesis and maintained lipid raft stability, thereby activating the Src/PI3K/Akt signaling pathway. Significantly, employing SQLE inhibitors effectively suppressed PC cell proliferation and xenograft tumor growth. In summary, this study reveals SQLE as a novel oncogene that promotes PC growth by mitigating ER stress and activating lipid raft-regulated Src/PI3K/Akt signaling pathway, highlighting the potential of SQLE as a therapeutic target for PC.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-akt , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Colesterol , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Esqualeno Mono-Oxigenase/metabolismo , Quinases da Família src
13.
Adv Sci (Weinh) ; 10(27): e2206878, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37490552

RESUMO

Cisplatin resistance poses a substantial hurdle in effectively treating head and neck squamous cell carcinoma (HNSCC). Utilizing multiple tumor models and examining an internal HNSCC cohort, squalene epoxidase (SQLE) is pinpointed as a key driver of chemoresistance and tumorigenesis, operating through a cholesterol-dependent pathway. Comprehensive transcriptomic analysis reveals that SQLE is essential for maintaining c-Myc transcriptional activity by stabilizing the c-Myc protein and averting its ubiquitin-mediated degradation. Mechanistic investigation demonstrates that SQLE inhibition diminishes Akt's binding affinity to lipid rafts via a cholesterol-dependent process, subsequently deactivating lipid raft-localized Akt, reducing GSK-3ß phosphorylation at S9, and increasing c-Myc phosphorylation at T58, ultimately leading to c-Myc destabilization. Importantly, employing an Sqle conditional knockout mouse model, SQLE's critical role in HNSCC initiation and progression is established. The preclinical findings demonstrate the potent synergistic effects of combining terbinafine and cisplatin in arresting tumor growth. These discoveries not only provide novel insights into the underlying mechanisms of SQLE-mediated cisplatin resistance and tumorigenesis in HNSCC but also propose a promising therapeutic avenue for HNSCC patients unresponsive to conventional cisplatin-based chemotherapy.


Assuntos
Neoplasias de Cabeça e Pescoço , Esqualeno Mono-Oxigenase , Animais , Camundongos , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Resistencia a Medicamentos Antineoplásicos , Glicogênio Sintase Quinase 3 beta , Transformação Celular Neoplásica , Carcinogênese , Colesterol , Neoplasias de Cabeça e Pescoço/tratamento farmacológico
14.
Cancer Sci ; 114(9): 3595-3607, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37438885

RESUMO

Endometrial cancer (EC) is a common malignant tumor that lacks any therapeutic target and, in many cases, recurrence is the leading ca use of morbidity and mortality in women. Widely known EC has a strongly positive correlation with abnormal lipid metabolism. Squalene epoxidase (SQLE), a crucial enzyme in the cholesterol synthesis pathway regulating lipid metabolic processes has been found to be associated with various cancers in recent years. Here, we focused on studying the role of SQLE in EC. Our study revealed that SQLE expression level was upregulated significantly in EC tissues. In vitro experiments showed that SQLE overexpression significantly promoted the proliferation, and inhibited cell apoptosis of EC cells, whereas SQLE knockdown or use of terbinafine showed the opposite results. Furthermore, we found out that the promotional effect of SQLE on the proliferation of EC cells might be achieved by activating the PI3K/AKT pathway. In vivo, studies confirmed that the knockdown of SQLE or terbinafine can observably inhibit tumor growth in nude mice. These results indicate that SQLE may promote the progression of EC by activating the PI3K/AKT pathway. Moreover, SQLE is a potential target for EC treatment and its inhibitor, terbinafine, has the potential to become a targeted drug for EC treatment.


Assuntos
Neoplasias do Endométrio , Proteínas Proto-Oncogênicas c-akt , Humanos , Animais , Camundongos , Feminino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Terbinafina/farmacologia , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Nus , Transdução de Sinais , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Proliferação de Células , Linhagem Celular Tumoral
15.
Plant Physiol Biochem ; 199: 107726, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37167758

RESUMO

Triterpenoids, known for their anti-inflammatory, anticancer, and hypoglycemic properties, are the major bioactive components in Cyclocarya paliurus (Batal.) Iljinskaja. Selecting elite individuals with high triterpenoids content is the basis of C. paliurus industry for medicinal use. In this study, seasonal variation patterns of total triterpenoids and five triterpene monomers accumulation for three groups with different total triterpenoid contents (TTC; H: 59.74-64.03 mg g-1; M: 47.66-57.08 mg g-1, and L: 35.26-42.22 mg g-1) were surveyed. Seasonal expression dynamics of 6 key genes relevant to triterpenoids biosynthesis, including HMGR, DXR, SQS, SE, LUS, and ß-AS, were described by quantitative real-time PCR (qRT-PCR) for three groups. The expression levels of HMGR, SE, LUS, and ß-AS genes in group H were higher than in groups M and L. In addition, Pearson correlation analysis showed that they were significantly positively correlated with triterpene accumulation, and the expression level of SE gene not only was significantly correlated with downstream genes, but also exhibited a linear relationship with TTC, especially in September. These results suggest that SE gene could serve as an effective make for screening elite individuals with high TTC from the germplasm of C. paliurus for medicinal use. Further testing on randomly selected individuals in next September proved the feasibility and reliability of SE gene in assisted selection. Also, we successfully cloned the full-length cDNA of SE. Thus, our work provides an efficient way to attain superior genotypes to develop medicinal industry of C. paliurus in practice.


Assuntos
Juglandaceae , Plantas Medicinais , Triterpenos , Plantas Medicinais/genética , Esqualeno Mono-Oxigenase , Reprodutibilidade dos Testes , Juglandaceae/genética , Genótipo , Folhas de Planta
16.
Plant Cell Rep ; 42(5): 909-919, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36894686

RESUMO

KEYMESSAGE: CbSE overexpression increased stigmasterol levels and altered plant morphology. The genes upstream and downstream of CbSE were found to be upregulated, which confirms its regulatory role in the saponin biosynthetic pathway. Chlorophytum borivilianum is a high-value medicinal plant with many promising preclinical applications that include saponins as a major active ingredient. Squalene epoxidase (SE) is one of the major rate-limiting enzymes of the saponin biosynthetic pathway. Here, we functionally characterized C. borivilianum SE (CbSE) by over-expressing heterologously in Nicotiana tabacum. The heterologous expression of CbSE resulted in stunted pant growth with altered leaf and flower morphology. Next, RT-qPCR analysis of transgenic plants overexpressing CbSE revealed increased expression levels of Cycloartenol synthase (CAS), Beta amyrin synthase (ßAS), and cytochrome P450 monooxygenase 51 (CYP51) (Cytochrome P450), which encode key enzymes for triterpenoid and phytosterol biosynthesis in C. borivilianum. Further, Methyl Jasmonate (MeJa) treatment upregulated Squalene synthase (SQS), SE, and Oxidosqualene cyclases (OSCs) to a significant level. GC-MS analysis of the leaf and hairy roots of the transformants showed an increased stigmasterol content (0.5-1.0 fold) compared to wild type (WT) plants. These results indicate that CbSE is a rate-limiting gene, which encodes an efficient enzyme responsible for phytosterol and triterpenoid production in C. borivilianum.


Assuntos
Fitosteróis , Saponinas , Triterpenos , Nicotiana/genética , Nicotiana/metabolismo , Estigmasterol , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Triterpenos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas
17.
J Obstet Gynaecol Res ; 49(5): 1383-1392, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36843235

RESUMO

BACKGROUND: The mortality of cervical cancer (CC) is quite high and advanced CC is hard to cure. Accordingly, to find the mechanism of CC progression at molecular level is imminent. METHODS: The mRNA expression data were acquired from The Cancer Genome Atlas database, and squalene epoxidase (SQLE) level in the tumor and adjuvant tissues of CC was analyzed. The pathway enrichment analysis of target mRNAs was performed based on the GSEA database. The cancerous tissues and para-cancerous tissues of CC patients were collected for immunohistochemistry. SQLE and p53 mRNA expression was ensured by qRT-polymerase chain reaction. SQLE and p53 protein levels were determined by western blot. Cell functional assays focused on evaluating the malignant behaviors of cancer cells in each treatment group. Nude mouse xenograft models were constructed for tumorigenicity analysis. RESULTS: Bioinformatics analysis revealed that SQLE expression was high in CC tissues, which was linked to the poor prognosis. SQLE could affect the p53 signaling pathway. Cell functional assays demonstrated that SQLE expression was promoted in CC cell lines, and overexpressing SQLE facilitated the malignant phenotypes of CC cells, whereas silencing SQLE suppressed CC progression in vitro and in vivo. Besides, the repressed p53 signaling pathway could reverse the effect caused by silenced SQLE. CONCLUSION: SQLE could promote CC progression by modulating the p53 signaling pathway.


Assuntos
Neoplasias do Colo do Útero , Animais , Feminino , Camundongos , Humanos , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Proteína Supressora de Tumor p53 , Transdução de Sinais , Proteínas de Neoplasias/metabolismo , RNA Mensageiro , Linhagem Celular Tumoral , Proliferação de Células/genética
18.
Elife ; 122023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36655986

RESUMO

Cholesterol synthesis is both energy- and oxygen-intensive, yet relatively little is known of the regulatory effects of hypoxia on pathway enzymes. We previously showed that the rate-limiting and first oxygen-dependent enzyme of the committed cholesterol synthesis pathway, squalene monooxygenase (SM), can undergo partial proteasomal degradation that renders it constitutively active. Here, we show hypoxia is a physiological trigger for this truncation, which occurs through a two-part mechanism: (1) increased targeting of SM to the proteasome via stabilization of the E3 ubiquitin ligase MARCHF6 and (2) accumulation of the SM substrate, squalene, which impedes the complete degradation of SM and liberates its truncated form. This preserves SM activity and downstream pathway flux during hypoxia. These results uncover a feedforward mechanism that allows SM to accommodate fluctuating substrate levels and may contribute to its widely reported oncogenic properties.


Cells need cholesterol to work properly but too much cholesterol is harmful and can contribute to atherosclerosis (narrowing of blood vessels), cancer and other diseases. Cells therefore carefully control the activity of the enzymes that are involved in making cholesterol, including an enzyme known as squalene monooxygenase. When the level of cholesterol in a cell rises, a protein called MARCHF6 adds molecules of ubiquitin to squalene monooxygenase. These molecules act as tags that direct the enzyme to be destroyed by a machine inside cells, known as the proteasome, thereby preventing further (unnecessary) production of cholesterol. Previous studies found that squalene monooxygenase is sometimes only partially broken down to make a shorter (truncated) form of the enzyme that is permanently active, even when the level of cholesterol in the cell is high. However, it was unclear what triggers this partial breakdown. The process of making cholesterol uses a lot of oxygen, yet many cancer cells thrive in tumours with low levels of oxygen. Here, Coates et al. used biochemical and cell biology approaches to study the effect of low oxygen levels on the activity of squalene monooxygenase in human cells. The experiments revealed that low oxygen levels trigger squalene monooxygenase to be partially degraded to make the truncated form of the enzyme. Firstly, MARCHF6 accumulates and adds ubiquitin to the enzyme to accelerate its delivery to the proteasome. Secondly, as the proteasome starts to degrade the enzyme, a build-up of squalene molecules impedes further breakdown of the enzyme. This mechanism preserves squalene monooxygenase activity when oxygen levels drop in cells, which may compensate for temporary oxygen shortfalls and allow cells to continue to make cholesterol. Squalene monooxygenase is overactive in individuals with a wide variety of diseases including fatty liver and prostate cancer. Drugs that block squalene monooxygenase activity have been shown to stop cancer cells from growing, but unfortunately these drugs are also toxic to mammals. These findings suggest that reducing the activity of squalene monooxygenase in more subtle ways, such as stopping it from being partially degraded, may be a more viable treatment strategy for cancer and other diseases associated with high levels of cholesterol.


Assuntos
Colesterol , Esqualeno Mono-Oxigenase , Humanos , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/química , Esqualeno Mono-Oxigenase/metabolismo , Colesterol/metabolismo , Esqualeno , Hipóxia , Oxigênio
19.
Br J Pharmacol ; 180(12): 1562-1581, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36581319

RESUMO

BACKGROUND AND PURPOSE: Squalene epoxidase (SQLE) is a key enzyme involved in cholesterol biosynthesis, but growing evidence also reveals that SQLE is abnormally expressed in some types of malignant tumours, even though the underlying mechanism remains poorly understood. EXPERIMENTAL APPROACH: Bioinformatics analysis and RNA sequencing were applied to detect differentially expressed genes in clinical hepatocellular carcinoma (HCC). MTT, colony formation, AnnexinV-FITC/PI, EdU, wound healing, transwell, western blot, qRT-PCR, IHC, F-actin, RNA-sequencing, dual-luciferase reporters, and H&E staining were used to investigate the pharmacological effects and possible mechanisms of SQLE. KEY RESULTS: SQLE expression was specifically elevated in HCC, correlating with poor clinical outcomes. SQLE significantly promoted HCC growth, epithelial-mesenchymal transition, and metastasis both in vitro and in vivo. RNA sequencing and functional experiments revealed that the protumourigenic effect of SQLE on HCC was closely related to the activation of TGF-ß/SMAD signalling, but the stimulatory effect of SQLE on TGF-ß/SMAD signalling and HCC development is critically dependent on STRAP. SQLE expression is well correlated with STRAP in HCC, and further, to amplify TGF-ß/SMAD signalling, SQLE even transcriptionally increased STRAP gene expression mediated by AP-2α. Finally, as a chemical inhibitor of SQLE, NB-598 markedly inhibited HCC cell growth and tumour development. CONCLUSIONS AND IMPLICATIONS: Taken together, SQLE serves as a novel oncogene in HCC development by activating TGF-ß/SMAD signalling. Targeting SQLE could be useful in drug development and therapy for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Linhagem Celular , Proliferação de Células/genética , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
20.
CNS Neurosci Ther ; 28(12): 2104-2115, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962621

RESUMO

Chemoresistance in patients with glioblastoma multiforme (GBM) is a common reason hindering the success of treatment. Recently, ferroptosis has been reported to be associated with chemoresistance in different types of cancer, while the role of ferroptosis-related genes in GBM have not been fully elucidated. This study aimed to demonstrate the roles and mechanism of ferroptosis-related genes in chemoresistance and metastasis of GBM. First, two candidate genes, squalene epoxidase (SQLE) and FANCD2, were identified to be associated with ferroptosis-related chemoresistance in GBM from three temozolomide (TMZ) therapeutic datasets and one ferroptosis-related gene dataset. Then, comprehensive bio-informatics data from different databases testified that SQLE was significantly downregulated both in GBM tissue and cells and displayed a better prognosis in GBM. Clinical data identified lower expression of SQLE was significantly associated with WHO grade and 1p/19q codeletion. Moreover, through in vitro experiments, SQLE was confirmed to suppress ERK-mediated TMZ chemoresistance and metastasis of GBM cells. The KEGG analysis of SQLE-associated co-expressed genes indicated SQLE was potentially involved in the cell cycle. Furthermore, SQLE was found to have the most significant correlations with tumor-infiltrating lymphocytes and immunomodulators. These findings highlighted that SQLE could be a potential target and a biomarker for therapy and prognosis of patients with GBM.


Assuntos
Neoplasias Encefálicas , Ferroptose , Glioblastoma , Esqualeno Mono-Oxigenase , Humanos , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Temozolomida/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA