Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Struct Biol ; 212(3): 107627, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32950603

RESUMO

Biglycan (Bgn) and Fibromodulin (Fmod) are small leucine rich proteoglycans (SLRPs) which are abundant in the extra-cellular matrix (ECM) of mineralized tissues. We have previously generated a Bgn/Fmod double knock-out (DKO) mouse model and found it has a 3-fold increase in osteoclastogenesis compared with Wild type (WT) controls, resulting in a markedly low bone mass (LBM) phenotype. To try and rescue/repair the LBM phenotype of Bgn/Fmod DKO mice by suppressing osteoclast formation and activity, 3- and 26-week-old Bgn/Fmod DKO mice and age/gender matched WT controls were treated with OPG-Fc for 6 weeks after which bone parameters were evaluated using DEXA, micro-computed tomography (µCT) and serum biomarkers analyses. In the appendicular skeleton, OPG-Fc treatment improved some morphometric and geometric parameters in both the trabecular and cortical compartments in Bgn/Fmod DKO female and male mice, especially in the repair module. For many of the skeletal parameters analyzed, the Bgn/Fmod DKO mice were more responsive to the treatment than their WT controls. In addition, we found that OPG-Fc treatment was not able to prevent or ameliorate the formation of ectopic ossification, which are common lesions seen in aged joints and are one of the phenotypical hallmarks of our Bgn/Fmod DKO model. Analysis of skull bones, specifically the occipital bone, showed the treatment recovered some parameters of LBM phenotype in the craniofacial skeleton, more so in the younger rescue module. Using OPG-Fc as treatment alleviated, yet did not completely restore, the severe osteopenia and mineralized tissue structural abnormalities that Bgn/Fmod DKO mice suffer from.


Assuntos
Biglicano/deficiência , Osso e Ossos/efeitos dos fármacos , Fibromodulina/deficiência , Fragmentos Fc das Imunoglobulinas/farmacologia , Osteoprotegerina/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Esqueleto/efeitos dos fármacos , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Osso e Ossos/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Fenótipo , Esqueleto/metabolismo
2.
Nano Lett ; 19(5): 2985-2992, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30983358

RESUMO

As a newly noninvasive emerging modality, NIR-II fluorescence imaging (1000-1700 nm) has many advantages over conventional visible and NIR-I imaging (700-900 nm). Unfortunately, only a few NIR-II fluorophores are suitable for bone imaging. Here, we report an NIR-II fluorophore based on DSPE-mPEG encapsulated rare earth doped nanoparticles (RENPs@DSPE-mPEG), which shows inherent affinity to bone without linking any targeting ligands, and thus, it provides an alternative noninvasive and nonradiation strategy for skeletal system mapping and bone disease diagnoses. Interestingly, within the NIR-II window, imaging at a longer wavelength (1345 nm) provides a higher resolution and signal-to-noise ratio than imaging at 1064 nm, even though the quantum yield at 1064 nm is 2-fold higher than that at 1345 nm. Besides bone imaging, RENPs@DSPE-mPEG show an imaging application in blood vessels and lymph nodes. Importantly, RENPs@DSPE-mPEG can be internalized by circulating white blood cells. This finding may open a window to increase efficient nanoparticle delivery in the fields such as immunotherapy and improve the diagnostic and therapeutic efficacy of cancer-targeted nanoparticles in clinical applications.


Assuntos
Osso e Ossos/diagnóstico por imagem , Metais Terras Raras/química , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Vasos Sanguíneos/diagnóstico por imagem , Vasos Sanguíneos/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Linfonodos/diagnóstico por imagem , Linfonodos/efeitos dos fármacos , Metais Terras Raras/farmacologia , Nanopartículas/química , Neoplasias/patologia , Neoplasias/terapia , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/farmacologia , Esqueleto/efeitos dos fármacos , Trombose/diagnóstico por imagem , Trombose/patologia
3.
Curr Osteoporos Rep ; 17(2): 49-58, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30835038

RESUMO

PURPOSE OF REVIEW: We reviewed the current literature on the roles of the Wnt antagonists sclerostin (Sost) and sclerostin-containing domain protein 1 (Sostdc1) on bone homeostasis, the relationship of the hypoxia-inducible factor (Hif) and von Hippel-Lindau (Vhl) pathways on Sost expression, and how changes in bone induced by depletion of Sost, Sostdc1, and Vhl affect hematopoietic cells. RECENT FINDINGS: B cell development is adversely affected in Sost-knockout mice and is more severely affected in Vhl-knockout mice. Inflammation in the Sost-/- bone microenvironment could alter hematopoietic stem cell behavior. Sostdc1-/- mice display defects in natural killer cell development and cytotoxicity. Depletion of Sost and Sostdc1 have effects on immune cell function that warrant investigation in patients receiving Wnt antagonist-depleting therapies for treatment of bone diseases. Additional clinical applications for manipulation of Wnt antagonists include cancer immunotherapies, stem cell transplantation, and directed differentiation to immune lineages.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Osso e Ossos/metabolismo , Hematopoese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Osso e Ossos/efeitos dos fármacos , Hematopoese/fisiologia , Células-Tronco Hematopoéticas , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Sistema Imunitário/citologia , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/metabolismo , Camundongos , Esqueleto/citologia , Esqueleto/efeitos dos fármacos , Esqueleto/metabolismo
4.
Int Immunopharmacol ; 62: 277-286, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30036771

RESUMO

Two Epimedium-derived isomeric flavonoids, CIT and IT, had the therapeutic effect in osteopenic rats. However, it is difficult to expound their activity differences in anti-osteoporosis. This paper contrasted their anti-osteoporosis activity from the perspective of their affinity to OPG/RANKL protein targets. Molecular docking indicated that both of CIT and IT could interact with the hydrophobic pockets of OPG/RANKL, while CIT was easier and more stable to combine with RANKL. On the contrary, compared with CIT, IT was more inclined to combine with OPG and stay away from combining with RANKL. Subsequently, whether the interaction between isomeric flavonoids and OPG/RANKL targets promoted or suppressed bone resorption was undefined and which was validated by zebrafish embryo and ovariectomized rats in this paper. Compared with IT, the staining area and cumulative optical density of zebrafish skeleton were significantly increased after the treatment of CIT (0.1 µM, p < 0.05). Furthermore, CIT mainly reflected a more significant role in upregulating OPG (p < 0.05), downregulating RANKL (p < 0.05), reducing serum AKP and TRACP level (p < 0.05), enhancing bone biomechanical properties (p < 0.05), increasing bone mineral density (p < 0.05) and improving trabecular bone microarchitecture (p < 0.05) in osteoporotic rats. In conclusion, the combination of isomeric flavonoids (CIT/IT) and OPG/RANKL targets attenuated the excitation effects of OPG or RANKL on RANKL. Because CIT was more firmly combined with RANKL than IT, CIT had stronger anti-osteoporosis effect by inhibiting bone resorption.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Epimedium/química , Flavonoides/uso terapêutico , Osteoporose/tratamento farmacológico , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Animais , Densidade Óssea/efeitos dos fármacos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Feminino , Flavonoides/química , Flavonoides/isolamento & purificação , Simulação de Acoplamento Molecular , Osteoporose/metabolismo , Osteoprotegerina/genética , Ovariectomia , Ligação Proteica , Ligante RANK/genética , Ratos Sprague-Dawley , Esqueleto/efeitos dos fármacos , Esqueleto/metabolismo , Estereoisomerismo , Peixe-Zebra
5.
Ann Agric Environ Med ; 25(1): 60-65, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29575874

RESUMO

INTRODUCTION: Growth hormone deficiency (GHD) is one of the main indications for growth hormone therapy. One characteristic of this disease is bone age delay in relation to the chronological age. Pituitary dysfunction negatively affects the growth and development of the jaws and teeth of the child. The secretion of endocrine glands regulates growth, development, and gender differentiation. It also controls the growth of bones and teeth, regulates metabolism of calcium and phosphate, proteins, lipids and carbohydrates. The primary role in the endocrine system is played by the pituitary gland which is responsible for the production of somatotropin [1]. Dysfunction of the pituitary gland has a negative effect on the growth and development of long bones in the body, and may have an adverse effect on the development of maxilla, mandible and dentition of a child. There is some information in the literature that dental age is delayed in short stature children; the replacement of deciduous teeth by permanent teeth is also delayed, and newly erupted permanent teeth often require orthodontic treatment. Applying hormonal therapy positively affects the process of replacement of dentition [2, 3, 4, 5, 6]. OBJECTIVES: The aim of the study was to assess bone and dental age, as well as analyze the state of dentition in children diagnosed with GH deficiency treated with growth hormone, depending on the duration of treatment. MATERIAL AND METHODS: The study material consisted of 110 children (27 males, 83 females), hospitalized for somatotropin hypopituitarism in the Department of Paediatric Endocrinology and Diabetology at the Medical University of Lublin, Poland. The mean birth age was 13 years (156 months) with a standard deviation of 2 years and 6 months (30 months). 47 children (43%) started treatment with the growth hormone (group starting treatment) and 63 children (57%) whose treatment was started 2-3 years previously (group in the course of treatment). The control group consisted of 41 generally healthy children (15males, 25 females) with ENT problems, such as hypoacusis and a condition after nasal injury, hospitalized in the Department of Paediatric Otolaryngology at the Medical University of Lublin, Poland. The mean age was 11 years and 5 months (137 months) with standard deviation of 2 years and 5 months (29 months). Informed consent was obtained from the parents. The study was approved by the Bioethical Committee at the Medical University of Lublin (Resolution No. KE-0254 /216 /2012).


Assuntos
Hormônio do Crescimento Humano/uso terapêutico , Hipopituitarismo/tratamento farmacológico , Esqueleto/crescimento & desenvolvimento , Dente/crescimento & desenvolvimento , Adolescente , Criança , Feminino , Hormônio do Crescimento Humano/deficiência , Humanos , Masculino , Polônia , Esqueleto/efeitos dos fármacos , Dente/efeitos dos fármacos
6.
J Cell Physiol ; 233(4): 3540-3551, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29044507

RESUMO

TIEG knockout (KO) mice exhibit a female-specific osteopenic phenotype and altered expression of TIEG in humans is associated with osteoporosis. Gene expression profiling studies identified sclerostin as one of the most highly up-regulated transcripts in the long bones of TIEG KO mice relative to WT littermates suggesting that TIEG may regulate SOST expression. TIEG was shown to substantially suppress SOST promoter activity and the regulatory elements through which TIEG functions were identified using promoter deletion and chromatin immunoprecipitation assays. Knockdown of TIEG in IDG-SW3 osteocyte cells using shRNA and CRISPR-Cas9 technology resulted in increased SOST expression and delayed mineralization, mimicking the results obtained from TIEG KO mouse bones. Given that TIEG is an estrogen regulated gene, and as changes in the hormonal milieu affect SOST expression, we performed ovariectomy (OVX) and estrogen replacement therapy (ERT) studies in WT and TIEG KO mice followed by miRNA and mRNA sequencing of cortical and trabecular compartments of femurs. SOST expression levels were considerably higher in cortical bone compared to trabecular bone. In cortical bone, SOST expression was increased following OVX only in WT mice and was suppressed following ERT in both genotypes. In contrast, SOST expression in trabecular bone was decreased following OVX and significantly increased following ERT. Interestingly, a number of miRNAs that are predicted to target sclerostin exhibited inverse expression levels in response to OVX and ERT. These data implicate important roles for TIEG and estrogen-regulated miRNAs in modulating SOST expression in bone.


Assuntos
Proteínas de Ligação a DNA/deficiência , Estrogênios/farmacologia , Glicoproteínas/metabolismo , Osteócitos/efeitos dos fármacos , Esqueleto/metabolismo , Fatores de Transcrição/deficiência , Proteínas Adaptadoras de Transdução de Sinal , Animais , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/fisiologia , Proteínas Morfogenéticas Ósseas/metabolismo , Osso e Ossos/metabolismo , Feminino , Marcadores Genéticos/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos Knockout , Osteócitos/metabolismo , Ovariectomia/métodos , Esqueleto/efeitos dos fármacos
7.
An. acad. bras. ciênc ; 89(1,supl): 635-647, May. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-886672

RESUMO

ABSTRACT The development of DBA/2J mouse strain embryos is nearly 12 h - or 6 somite pairs - delayed as compared to the outbred NMRI mouse embryos of the same age on gestation days (GD) 8-12. To evaluate inter-strain differences in susceptibility to teratogens, dams were treated with methylnitrosourea (MNU, 5 mg/kg body weight i.p.) on defined gestation days (NMRI: GD 9, 91/2 or 10; DBA/2J: GD 10 or 101/2). Skeletal anomalies produced by MNU on both mouse strains varied with the GD of treatment. The pattern of anomalies produced by MNU on a given GD markedly differed between the two mouse strains, yet they were similar -with a few exceptions- when exposures at equivalent embryonic stages are compared. Findings from this study indicated that strain-dependent differences in the developmental stage of mouse embryos of the same gestational age occur, a possibility that has been often neglected when inter-strain differences in susceptibility to developmental toxicants are interpreted.


Assuntos
Animais , Feminino , Gravidez , Ratos , Esqueleto/anormalidades , Teratogênicos/toxicidade , Somitos/anormalidades , Desenvolvimento Embrionário/efeitos dos fármacos , Embrião de Mamíferos/anormalidades , Metilnitrosoureia/toxicidade , Esqueleto/efeitos dos fármacos , Esqueleto/embriologia , Somitos/efeitos dos fármacos , Somitos/embriologia , Embrião de Mamíferos/efeitos dos fármacos , Camundongos Endogâmicos DBA
8.
Toxicology ; 381: 1-9, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28214531

RESUMO

Chlormequat Chloride (CCC), a widely used plant growth regulator, could decrease body weight in animals; however, the mechanism has not been well studied. This study was designed to evaluate the skeletal development toxicity of CCC on pubertal male Sprague-Dawley (SD) rats and to investigate whether CCC impacts the development of chondrocyte, osteoblast and osteoclast through growth hormone (GH) and insulin like growth factor 1 (IGF-I). Rats from 23 to 70 on postnatal days were exposed to CCC daily by gavage at doses of 0, 75, 150, and 300mg/kg bw/d. The results showed that the size of femurs and tibias, bone mineral density and biomechanical parameters were significantly decreased in the 300mg/kg bw/d group compared with the control group. The concentration of osteocalcin (OCN) and C-terminal telopeptide of type I collagen (CTX-I) in blood in the 150mg/kg bw/d group was also changed. The mRNA expression ratio of the receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) in 150 and 300mg/kg bw/d group was increased. Histological analysis of proximal and distal epiphyseal plates of the right femurs showed that both the proliferative zone and hypertrophic zone narrowed in CCC-treated groups. The concentration of IGF-I in blood was reduced with an increase in exposure doses of CCC. The mRNA expression of growth hormone receptor (GHR) in tibia was decreased in the CCC-treated group. The results indicated that CCC might indirectly impact the formation and activation of chondrocytes, osteoblasts and osteoclasts because of the decline of GHR and IGF-I, leading to skeletal development damage.


Assuntos
Clormequat/toxicidade , Condrócitos/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Esqueleto/efeitos dos fármacos , Animais , Peso Corporal , Densidade Óssea/efeitos dos fármacos , Condrócitos/metabolismo , Colágeno Tipo I/sangue , Relação Dose-Resposta a Droga , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Hormônio do Crescimento/metabolismo , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , Osteoblastos/metabolismo , Osteocalcina/sangue , Osteoclastos/metabolismo , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Peptídeos/sangue , Ligante RANK/genética , Ligante RANK/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Esqueleto/crescimento & desenvolvimento , Tíbia/efeitos dos fármacos , Tíbia/metabolismo
9.
Biom J ; 58(1): 186-205, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26250444

RESUMO

In addition to getting a preliminary assessment of efficacy, phase II trials can also help to determine dose(s) that have an acceptable toxicity profile over repeated cycles as well as identify subgroups with particularly poor toxicity profiles. Correct modeling of the dose-toxicity relationship in patients receiving multiple cycles of the same dose in oncology trials is crucial. A major challenge lies in taking advantage of the conditional nature of data collection, that is each cycle is observed conditional on having no previous toxicities on earlier cycles. We develop a novel and parsimonious model for the probability of toxicity during a kth cycle of therapy, conditional on not seeing toxicity in any of the k-1 previous cycles using a Markov model, hereafter we refer to these probabilities as conditional probabilities of toxicity. Our model allows the conditional probability of toxicity to depend on randomized dose group, cumulative dose from prior cycles, a measure of how consistently a patient responds to the same dose exposure and individual risk factors influencing the ability to tolerate the treatment regimen. Simulations studying finite sample properties of the model are given. Finally, the approach is demonstrated in a phase II trial studying two dose levels of ifosfamide plus doxorubicin and granulocyte colony-stimulating factor in soft tissue sarcoma patients over four cycles. The Markov model provides correct estimates of the probabilities of toxicity in finite sample simulations. It also correctly models the data from the phase II clinical trial, and identifies particularly high cumulative toxicity in females.


Assuntos
Antineoplásicos/efeitos adversos , Biometria/métodos , Ensaios Clínicos Fase II como Assunto , Cadeias de Markov , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Calibragem , Doxorrubicina/efeitos adversos , Feminino , Fator Estimulador de Colônias de Granulócitos/efeitos adversos , Humanos , Ifosfamida/efeitos adversos , Masculino , Análise Multivariada , Sarcoma/tratamento farmacológico , Esqueleto/efeitos dos fármacos , Resultado do Tratamento
10.
Chem Res Toxicol ; 28(5): 1060-9, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25853276

RESUMO

Human and natural activities release many pollutants in the marine environment. The mixture of pollutants can affect many organisms concurrently. We used Paracentrotus lividus as a model to analyze the effects on signal transduction pathways and stress gene expression in embryos exposed continuously to double stress, i.e., cadmium (Cd) from fertilization and UVB at cleavage (Cd/UVB-embryos). By microscopical inspection, we evaluated embryonic morphology after 72 h of development. Tissue-specific markers were used to assess mesoderm differentiation by immunofluorescence. We analyzed p38MAPK, ERK1/2, and JNK activation by Western blot and mRNA profiles of Pl-MT, Pl-14-3-3epsilon, and Pl-jun genes by real-time quantitative polymerase chain reaction (qPCR) and the localization of their transcripts by whole mount in situ hybridization (WMISH). We found that the Cd/UVB combined exposure induced morphological malformations in 76% of pluteus embryos, mainly affecting the development of the skeleton, including the normal branching of skeletal roads. In Cd/UVB-embryos, p38MAPK was activated 1 h after UVB exposure and a remarkable overexpression of the Pl-MT, Pl-14.3.3epsilon, and Pl-jun genes 24 h after UVB exposure. Pl-MT and Pl-14.3.3epsilon mRNAs were misexpressed as they were localized in a position different from that observed in wild-type embryos, i.e., the intestine. On the contrary, Pl-jun mRNA has remained localized in the skeletogenic cells despite their displacement in exposed embryos. In conclusion, Cd/UVB exposure affected skeletal patterning producing alternative morphologies in which p38MAPK activation and Pl-MT, Pl-14.3.3epsilon, and Pl-jun gene overexpression seem linked to a protective role against the stress response induced by Cd/UVB.


Assuntos
Cádmio/toxicidade , Embrião não Mamífero/anormalidades , Embrião não Mamífero/efeitos da radiação , Paracentrotus/embriologia , Paracentrotus/efeitos da radiação , Animais , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/embriologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/efeitos da radiação , Paracentrotus/efeitos dos fármacos , Paracentrotus/genética , RNA Mensageiro/genética , Esqueleto/anormalidades , Esqueleto/efeitos dos fármacos , Esqueleto/embriologia , Esqueleto/efeitos da radiação , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-25737366

RESUMO

We previously demonstrated that monohydroxylated polycyclic aromatic hydrocarbons (OHPAHs), which are metabolites of polycyclic aromatic hydrocarbons (PAHs), act on calcified tissue and suppress osteoblastic and osteoclastic activity in the scales of teleost fish. The compounds may possibly influence other calcified tissues. Thus, the present study noted the calcified spicules in sea urchins and examined the effect of both PAHs and OHPAHs on spicule formation during the embryogenesis of sea urchins. After fertilization, benz[a]anthracene (BaA) and 4-hydroxybenz[a]anthracene (4-OHBaA) were added to seawater at concentrations of 10(-8) and 10(-7) M and kept at 18 °C. The influence of the compound was given at the time of the pluteus larva. At this stage, the length of the spicule was significantly suppressed by 4-OHBaA (10(-8) and 10(-7) M). BaA (10(-7) M) decreased the length of the spicule significantly, while the length did not change with BaA (10(-8) M). The expression of mRNAs (spicule matrix protein and transcription factors) in the 4-OHBaA (10(-7) M)-treated embryos was more strongly inhibited than were those in the BaA (10(-7) M)-treated embryos. This is the first study to demonstrate that OHPAHs suppress spicule formation in sea urchins.


Assuntos
Benzo(a)Antracenos/toxicidade , Calcificação Fisiológica/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hemicentrotus/efeitos dos fármacos , Esqueleto/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Hemicentrotus/embriologia , Hemicentrotus/crescimento & desenvolvimento , Hemicentrotus/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hidroxilação , Japão , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Concentração Osmolar , Oceano Pacífico , Proteína Proto-Oncogênica c-ets-1/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo , RNA Mensageiro/metabolismo , Esqueleto/embriologia , Esqueleto/crescimento & desenvolvimento , Esqueleto/metabolismo , Testes de Toxicidade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA