RESUMO
As a traceless, bioreversible modification, the esterification of carboxyl groups in peptides and proteins has the potential to increase their clinical utility. An impediment is the lack of strategies to quantify esterase-catalyzed hydrolysis rates for esters in esterified biologics. We have developed a continuous Förster resonance energy transfer (FRET) assay for esterase activity based on a peptidic substrate and a protease, Glu-C, that cleaves a glutamyl peptide bond only if the glutamyl side chain is a free acid. Using pig liver esterase (PLE) and human carboxylesterases, we validated the assay with substrates containing simple esters (e.g., ethyl) and esters designed to be released by self-immolation upon quinone methide elimination. We found that simple esters were not cleaved by esterases, likely for steric reasons. To account for the relatively low rate of quinone methide elimination, we extended the mathematics of the traditional Michaelis-Menten model to conclude with a first-order intermediate decay step. By exploring two regimes of our substrate â intermediate â product (SIP) model, we evaluated the rate constants for the PLE-catalyzed cleavage of an ester on a glutamyl side chain (kcat/KM = 1.63 × 103 M-1 s-1) and subsequent spontaneous quinone methide elimination to regenerate the unmodified peptide (kI = 0.00325 s-1; t1/2 = 3.55 min). The detection of esterase activity was also feasible in the human intestinal S9 fraction. Our assay and SIP model increase the understanding of the release kinetics of esterified biologics and facilitate the rational design of efficacious peptide prodrugs.
Assuntos
Esterases , Peptídeos , Pró-Fármacos , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Humanos , Animais , Peptídeos/química , Peptídeos/metabolismo , Suínos , Esterases/metabolismo , Esterases/química , Transferência Ressonante de Energia de Fluorescência , Fígado/enzimologia , Cinética , Hidrólise , Especificidade por Substrato , Ésteres/química , Ésteres/metabolismoRESUMO
Dysregulated fatty acid metabolism is an attractive therapeutic target for colorectal cancer (CRC). We previously reported that fatty acid synthase (FASN), a key enzyme of de novo synthesis, promotes the initiation and progression of CRC. However, the mechanisms of how upregulation of FASN promotes the initiation and progression of CRC are not completely understood. Here, using Apc/VillinCre and ApcMin mouse models, we show that upregulation of FASN is associated with an increase in activity of ß-catenin and expression of multiple stem cell markers, including Notum. Genetic and pharmacological downregulation of FASN in mouse adenoma organoids decreases the activation of ß-catenin and expression of Notum and significantly inhibits organoid formation and growth. Consistently, we demonstrate that NOTUM is highly expressed in human CRC and its expression positively correlates with the expression of FASN in tumor tissues. Utilizing overexpression and shRNA-mediated knockdown of FASN, we demonstrate that upregulation of FASN increases ß-catenin transcriptional activity, NOTUM expression and secretion, and enhances stem-like properties of human CRC cells. Pharmacological inhibition of NOTUM decreases adenoma organoids growth and proliferation of cancer cells. In summary, upregulation of FASN enhances ß-catenin signaling, increases NOTUM expression and stem-like properties of CRC cells, thus suggesting that targeting FASN upstream of the ß-catenin/NOTUM axis may be an effective preventative therapeutic strategy for CRC.
Assuntos
Neoplasias Colorretais , Células-Tronco Neoplásicas , Regulação para Cima , beta Catenina , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , beta Catenina/metabolismo , Humanos , Animais , Camundongos , Regulação para Cima/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Regulação Neoplásica da Expressão Gênica , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintases/genética , Linhagem Celular Tumoral , Organoides/metabolismo , Proliferação de Células , Adenoma/patologia , Adenoma/metabolismo , Adenoma/genética , EsterasesRESUMO
The release of active agents in tumors rather than normal tissues, limits systemic exposure and toxicities. Targeting over-expressed esterase enzyme in the tumor microenvironment can selectively release immune-active agents like Programmed Death-1 (PD-1) and PD-1 ligand inhibitors from ester-sensitive lipid nanocarriers, offering a novel approach compared with conventional therapies. PD-1 and PD-L1 association cause T-cell inactivation, whereas blocking their association improves their cytotoxic mechanism. The patent application US2022/0080051-A1 discloses a novel immune-active agent conjugated with lipid to form a nanocarrier for esterase-sensitive release. These nanocarriers selectively enter leaky vasculature of tumors through enhanced permeability and retention effect, undergo ester cleavage to release agents, and are reported to increase bioavailability by 24 times. Further, with other agents or alone it achieves targeted synergistic cancer therapy. Also, the current patent spotlight delves into the crucial formulation considerations necessary for obtaining successful approval of lipidic nano products from relevant regulatory authorities.
[Box: see text].
Assuntos
Antineoplásicos , Portadores de Fármacos , Esterases , Lipídeos , Nanopartículas , Humanos , Nanopartículas/química , Nanopartículas/administração & dosagem , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Antineoplásicos/farmacologia , Portadores de Fármacos/química , Lipídeos/química , Lipídeos/administração & dosagem , Esterases/metabolismo , Animais , Patentes como Assunto , Neoplasias/tratamento farmacológico , Liberação Controlada de FármacosRESUMO
Floxuridine is a potential clinical anticancer drug for the treatment of various cancers. However, floxuridine typically causes unfavorable side effects due to its very poor tumor selectivity, and, hence, there is a high demand for the development of novel approaches that permit the targeted delivery of floxuridine into cancerous cells. Herein, the design and synthesis of an esterase-responsive multifunctional nanoformulation for the targeted delivery of floxuridine in esterase-overexpressed cancer cells is reported. Photopolymerization of floxuridine-tethered lipoic acid results in the formation of amphiphilic floxuridine-tethered poly(disulfide). Self-assembly of the amphiphilic polymer results in the formation of nanoparticles with floxuridine decorated on the surfaces of the particles. Integration of aptamer DNA for nucleolin onto the surface of the nanoparticle is demonstrated by exploring the base-pairing interaction of floxuridine with adenine. Targeted internalization of the aptamer-decorated nanoparticle into nucleolin-expressed cancer cells is demonstrated. Esterase triggered cleavage of the ester bond connecting floxuridine with the polymer backbone, and the subsequent targeted delivery of floxuridine into cancer cells is also shown. Excellent therapeutic efficacy is observed both in vitro and also in the 3D tumor spheroid model. This noncovalent strategy provides a simple yet effective strategy for the targeted delivery of floxuridine into cancer cells in a less laborious fashion.
Assuntos
Antineoplásicos , Esterases , Floxuridina , Nanopartículas , Humanos , Esterases/metabolismo , Nanopartículas/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Floxuridina/química , Floxuridina/farmacologia , Floxuridina/administração & dosagem , Tamanho da Partícula , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Sobrevivência Celular/efeitos dos fármacos , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Linhagem Celular TumoralRESUMO
In addition to the conventional chemotherapeutic drugs, potent inhibitors of key enzymes that are differentially overexpressed in cancer cells and associated with its progression are often considered as the drugs of choice for treating cancer. Aldose reductase (AR), which is primarily associated with complications of diabetes, is known to be closely related to the development of cancer and drug resistance. Epalrestat (EPA), an FDA-approved drug, is a potent inhibitor of AR and exhibits anticancer activity. However, its poor pharmacokinetic properties limit its bioavailability and therapeutic benefits. We report herein the first examples of esterase-responsive turn-on fluorogenic prodrugs for the sustained release of EPA to cancer cells with a turn-on fluorescence readout. Carboxylesterases are known to be overexpressed in several organ-specific cancer cells and help in selective uncaging of drug from the prodrugs. The prodrugs were synthesized using a multistep organic synthesis and successfully characterized. Absorption and emission spectroscopic studies indicated successful activation of the prodrugs in the presence of porcine liver esterase (PLE) under physiological condition. HPLC studies revealed a simultaneous release of both the drug and the fluorophore from the prodrugs over time with mechanistic insights. While the inhibitory potential of EPA released from the prodrugs toward the enzyme AR was validated in the aqueous medium, the anticancer activity of the prodrugs was studied in a representative cervical cancer cell line. Interestingly, our results revealed that the development of the prodrugs can significantly enhance the anticancer potential of EPA. Finally, the drug uncaging process from the prodrugs by the intracellular esterases was studied in the cellular medium by measuring the turn-on fluorescence using fluorescence microscopy. Therefore, the present study highlights the rational development of the fluorogenic prodrugs of EPA, which will help enhance its anticancer potential with better therapeutic potential.
Assuntos
Aldeído Redutase , Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos , Esterases , Corantes Fluorescentes , Pró-Fármacos , Rodanina , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/síntese química , Aldeído Redutase/antagonistas & inibidores , Aldeído Redutase/metabolismo , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Rodanina/química , Rodanina/farmacologia , Rodanina/síntese química , Rodanina/análogos & derivados , Esterases/metabolismo , Esterases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Corantes Fluorescentes/síntese química , Animais , Estrutura Molecular , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Teste de Materiais , Tiazolidinas/química , Tiazolidinas/farmacologia , Tiazolidinas/síntese química , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , SuínosRESUMO
Global agricultural production is significantly hampered by insect pests, and the demand for natural pragmatic pesticides with environmental concern remains unfulfilled. Ageratina adenophora (Spreng.) also known as Crofton weed, is an invasive perennial herbaceous plant that is known to possess multiple bioactive compounds. In our study, two isomers of ageraphorone metabolites i.e, 10â¯Hα-9-oxo-ageraphorone (10HA) and 10â¯Hß-9-oxo-ageraphorone (10HB), were identified from Crofton weed, exhibiting potent antifeedant and larvicidal activities against Plutella xylostella. For antifeedant activity, the median effective concentration (EC50) values for 10HA and 10HB in the choice method were 2279â¯mg/L and 3233â¯mg/L, respectively, and for the no choice method, EC50 values were 1721â¯mg/L and 2394â¯mg/L, respectively. For larvicidal activity, lethal concentration (LC50) values for 10HA and 10HB were 2421â¯mg/L and 4109â¯mg/L at 48â¯h and 2101â¯mg/L and 3550â¯mg/L at 72â¯h. Furthermore, both in- vivo and in-vitro studies revealed that the isomers 10HA and 10HB exhibited potent detoxifying enzymes inhibition activity such as carboxylesterase and glutathione S-transferases. Molecular docking and MD simulation analysis provide insight into the possible interaction between isomers of ageraphorone metabolites and Carboxylic Ester Hydrolase protein (Gene: pxCCE016b) of P. xylostella, which led to a finding that CarEH protein plays a significant role in the detoxification of the two compounds in P. xylostella. Finally, our findings show that the primary enzymes undergoing inhibition by isomers of ageraphorone metabolites, causing toxicity in insects, are Carboxylesterase and glutathione S-transferase.
Assuntos
Ageratina , Mariposas , Sesquiterpenos , Ageratina/química , Mariposas/efeitos dos fármacos , Animais , Inseticidas/química , Inseticidas/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Larva/efeitos dos fármacos , Simulação de Acoplamento Molecular , Sítios de Ligação , Conformação Molecular , Isomerismo , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Esterases/química , Esterases/metabolismo , Glutationa Transferase/química , Glutationa Transferase/metabolismo , Comportamento Alimentar/efeitos dos fármacosRESUMO
DJ-1, a causative gene for hereditary recessive Parkinsonism, is evolutionarily conserved across eukaryotes and prokaryotes. Structural analyses of DJ-1 and its homologs suggested the 106th Cys is a nucleophilic cysteine functioning as the catalytic center of hydratase or hydrolase activity. Indeed, DJ-1 and its homologs can convert highly electrophilic α-oxoaldehydes such as methylglyoxal into α-hydroxy acids as hydratase in vitro, and oxidation-dependent ester hydrolase (esterase) activity has also been reported for DJ-1. The mechanism underlying such plural activities, however, has not been fully characterized. To address this knowledge gap, we conducted a series of biochemical assays assessing the enzymatic activity of DJ-1 and its homologs. We found no evidence for esterase activity in any of the Escherichia coli DJ-1 homologs. Furthermore, contrary to previous reports, we found that oxidation inactivated rather than facilitated DJ-1 esterase activity. The E. coli DJ-1 homolog HchA possesses phenylglyoxalase and methylglyoxalase activities but lacks esterase activity. Since evolutionary trace analysis identified the 186th H as a candidate residue involved in functional differentiation between HchA and DJ-1, we focused on H186 of HchA and found that an esterase activity was acquired by H186A mutation. Introduction of reverse mutations into the equivalent position in DJ-1 (A107H) selectively eliminated its esterase activity without compromising α-oxoaldehyde hydratase activity. The obtained results suggest that differences in the amino acid sequences near the active site contributed to acquisition of esterase activity in vitro and provide an important clue to the origin and significance of DJ-1 esterase activity.
Assuntos
Escherichia coli , Doença de Parkinson , Proteína Desglicase DJ-1 , Proteína Desglicase DJ-1/metabolismo , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/química , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Esterases/metabolismo , Esterases/genética , Esterases/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Evolução Molecular , OxirreduçãoRESUMO
In this study of the alterations of Glypicans 1 to 6 (GPCs) and Notum in plasma, bone marrow mesenchymal stromal cells (BM-MSCs) and osteoblasts in Osteoarthritis (OA), the levels of GPCs and Notum in the plasma of 25 patients and 24 healthy subjects were measured. In addition, BM-MSCs from eight OA patients and eight healthy donors were cultured over a period of 21 days using both a culture medium and an osteogenic medium. Protein and gene expression levels of GPCs and Notum were determined using ELISA and qPCR at 0, 7, 14 and 21 days. GPC5 and Notum levels decreased in the plasma of OA patients, while the BM-MSCs of OA patients showed downexpression of GPC6 and upregulation of Notum. A decrease in GPC5 and Notum proteins and an increase in GPC3 were found. During osteogenic differentiation, elevated GPCs 2, 4, 5, 6 and Notum mRNA levels and decreased GPC3 were observed in patients with OA. Furthermore, the protein levels of GPC2, GPC5 and Notum decreased, while the levels of GPC3 increased. Glypicans and Notum were altered in BM-MSCs and during osteogenic differentiation from patients with OA. The alterations found point to GPC5 and Notum as new candidate biomarkers of OA pathology.
Assuntos
Esterases , Glipicanas , Células-Tronco Mesenquimais , Osteoartrite , Osteoblastos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células da Medula Óssea/metabolismo , Estudos de Casos e Controles , Diferenciação Celular , Células Cultivadas , Glipicanas/metabolismo , Glipicanas/sangue , Glipicanas/genética , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/sangue , Osteoartrite/patologia , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteogênese/genética , Esterases/sangue , Esterases/metabolismoRESUMO
Catalytic peptides are gaining attention as alternatives to enzymes, especially in industrial applications. Recent advances in peptide design have improved their catalytic efficiency with approaches such as self-assembly and metal ion complexation. However, the fundamental principles governing peptide catalysis at the sequence level are still being explored. Ester hydrolysis, a well-studied reaction, serves as a widely employed method to evaluate the catalytic potential of peptides. The standard colorimetric reaction involving para-nitrophenyl acetate hydrolysis acts as a benchmark assay, providing a straightforward and efficient screening method for rapidly identifying potential catalysts. However, maintaining standardized conditions is crucial for reproducible results, given that factors such as pH, temperature, and substrate concentration can introduce unwanted variability. This necessity becomes particularly pronounced when working with peptides, which often exhibit slower reaction rates compared to enzymes, making even minor variations significantly influential on the final outcome. In this context, we present a refined protocol for assessing the catalytic activity of peptides and peptide assemblies, addressing critical considerations for reproducibility and accuracy.
Assuntos
Esterases , Peptídeos , Peptídeos/química , Peptídeos/metabolismo , Esterases/química , Esterases/metabolismo , Hidrólise , Ensaios Enzimáticos/métodos , Colorimetria/métodos , Nitrofenóis/química , Nitrofenóis/metabolismo , Biocatálise , Concentração de Íons de HidrogênioRESUMO
Bees are simultaneously exposed to a variety of pesticides, which are often applied in mixtures and can cause lethal and sublethal effects. The combined effects of pesticides, however, are not measured in the current risk assessment schemes. Additionally, the sublethal effects of pesticides on a variety of physiological processes are poorly recognized in bees, especially in non-Apis solitary bees. In this study, we used a full-factorial design to examine the main and interactive effects of three insecticide formulations with different modes of action (Mospilan 20 SP, Sherpa 100 EC, and Dursban 480 EC) on bee biochemical processes. We measured acetylcholinesterase (AChE), glutathione S-transferase (GST) and esterase (EST) activities, as well as a nonenzymatic biomarker associated with energy metabolism, i.e., ATP level. All studied endpoints were affected by Sherpa 100 EC, and the activities of AChE and EST as well as ATP levels were affected by Dursban 480 EC. Moreover, complex interactions between all three insecticides affected ATP levels, showing outcomes that cannot be predicted when testing each insecticide separately. The results indicate that even if interactive effects are sometimes difficult to interpret, there is a need to study such interactions if laboratory-generated toxicity data are to be extrapolated to field conditions.
Assuntos
Acetilcolinesterase , Glutationa Transferase , Inseticidas , Animais , Inseticidas/toxicidade , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Acetilcolinesterase/metabolismo , Glutationa Transferase/metabolismo , Esterases/metabolismo , Trifosfato de Adenosina/metabolismoRESUMO
Amblyomma sculptum is a species of tick in the family Ixodidae, with equids and capybaras among its preferred hosts. In this study, the acaricidal activity of the essential oil (EO) from Piper aduncum and its main component, Dillapiole, were evaluated against larvae of A. sculptum to establish lethal concentration values and assess the effects of these compounds on tick enzymes. Dillapiole exhibited slightly greater activity (LC50 = 3.38 mg/mL; 95% CI = 3.24 to 3.54) than P. aduncum EO (LC50 = 3.49 mg/mL; 95% CI = 3.36 to 3.62) against ticks. The activities of α-esterase (α-EST), ß-esterase (ß-EST), and glutathione-S-transferase (GST) enzymes in A. sculptum larvae treated with Dillapiole showed a significant increase compared to the control at all concentrations (LC5, LC25, LC50 and LC75), similar results were obtained with P. aduncum EO, except for α-EST, which did not differ from the control at the highest concentration (LC75). The results of the acetylcholinesterase (AChE) activity show an increase in enzyme activity at the two lower concentrations (LC5 and LC25) and a reduction in activity at the two higher, lethal concentrations (LC50 and LC75) compared to the control. These results suggest potential mechanisms of action for these natural acaricides and can provide guidance for the future development of potential plant-derived formulations.
Assuntos
Acaricidas , Acetilcolinesterase , Amblyomma , Óleos Voláteis , Piper , Animais , Acaricidas/farmacologia , Acetilcolinesterase/metabolismo , Compostos Alílicos , Amblyomma/efeitos dos fármacos , Amblyomma/crescimento & desenvolvimento , Benzodioxóis/farmacologia , Inibidores da Colinesterase/farmacologia , Dioxóis , Esterases/metabolismo , Glutationa Transferase/metabolismo , Inativação Metabólica , Larva/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Piper/químicaRESUMO
Resin-based three-dimensional (3D) printing finds extensive application in the field of dentistry. Although studies of cytotoxicity, mechanical and physical properties have been conducted for newly released 3D printing resins such as Crowntec (Saremco), Temporary Crown Resin (Formlabs) and Crown & Bridge (Nextdent), the resistance of these materials to esterases in saliva has not been demonstrated at the molecular level. Therefore, in this study, the binding affinities and stability of these new 3D printing resins to the catalytic sites of esterases were investigated using molecular docking and molecular mechanics with Poisson-Bolzmann and surface area solvation (MM/PBSA) methods after active pocket screening. Toxicity predictions of the materials were also performed using ProTox-II and Toxtree servers. The materials were analyzed for mutagenicity, cytotoxicity, and carcinogenicity, and LD50 values were predicted from their molecular structures. The results indicated that out of the three novel 3D printing materials, Nexdent exhibited reduced binding affinity to esterases, indicating enhanced resistance to enzymatic degradation and possessing a superior toxicity profile.
Assuntos
Simulação de Acoplamento Molecular , Impressão Tridimensional , Humanos , Esterases/metabolismo , Esterases/química , Animais , Teste de Materiais , Materiais Dentários/químicaRESUMO
Curcumin is a polyphenolic natural product from the roots of turmeric (Curcuma longa). It has been a popular coloring and flavoring agent in food industries with known health benefits. The conventional phenylpropanoid pathway is known to proceed from phenylalanine via p-coumaroyl-CoA intermediate. Although hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (HCT) plays a key catalysis in the biosynthesis of phenylpropanoid products at the downstream of p-coumaric acid, a recent discovery of caffeoyl-shikimate esterase (CSE) showed that an alternative pathway exists. Here, the biosynthetic efficiency of the conventional and the alternative pathway in producing feruloyl-CoA was examined using curcumin production in yeast. A novel modular multiplex genome-edit (MMG)-CRISPR platform was developed to facilitate rapid integrations of up to eight genes into the yeast genome in two steps. Using this MMG-CRISPR platform and metabolic engineering strategies, the alternative CSE phenylpropanoid pathway consistently showed higher titers (2-19 folds) of curcumin production than the conventional pathway in engineered yeast strains. In shake flask cultures using a synthetic minimal medium without phenylalanine, the curcumin production titer reached up to 1.5 mg/L, which is three orders of magnitude (â¼4800-fold) improvement over non-engineered base strain. This is the first demonstration of de novo curcumin biosynthesis in yeast. Our work shows the critical role of CSE in improving the metabolic flux in yeast towards the phenylpropanoid biosynthetic pathway. In addition, we showcased the convenience and reliability of modular multiplex CRISPR/Cas9 genome editing in constructing complex synthetic pathways in yeast.
Assuntos
Curcumina , Saccharomyces cerevisiae , Ácido Chiquímico/análogos & derivados , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esterases/metabolismo , Curcumina/metabolismo , Ácido Chiquímico/metabolismo , Reprodutibilidade dos Testes , FenilalaninaRESUMO
The polyphagous pest, Spodoptera littoralis (Boisduval), poses a significant global economic threat by gregariously feeding on over a hundred plant species, causing substantial agricultural losses. Addressing this challenge requires ongoing research to identify environmentally safe control agents. This study aimed to elucidate the insecticidal activity of the metabolite (ES2) from a promising endophytic actinobacterium strain, Streptomyces sp. ES2 EMCC2291. We assessed the activity of ES2 against the eggs and fourth-instar larvae of S. littoralis through spectrophotometric measurements of total soluble protein, α- and ß-esterases, polyphenol oxidase (PPO), and catalase enzyme (CAT). The assessments were compared to commercial Biosad® 22.8% SC. Untargeted metabolomics using LC-QTOF-MS/MS identified 83 metabolic compounds as chemical constituents of ES2. The median lethal concentration (LC50) of ES2 (165 mg/mL) for treated Spodoptera littoralis eggs showed significant differences in polyphenol oxidase and catalase enzymatic activities, while the LC50 of ES2 (695 mg/mL) for treated S. littoralis fourth instar larvae showed lower significance in α- and ß-esterase activities. Molecular docking of ES2 identified seven potent biocidal compounds, showing strong affinity to PPO and catalase CAT proteins in S. littoralis eggs while displaying limited binding to alpha and beta esterase proteins in the larvae. The results contribute to the understanding of ES2 as a promising alternative biopesticide, providing insights for future research and innovative applications in sustainable pest management strategies.
Assuntos
Inseticidas , Animais , Inseticidas/farmacologia , Spodoptera , Catalase/farmacologia , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Catecol Oxidase , Esterases , LarvaRESUMO
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is an important DNA repair enzyme and one of the causes of tumor resistance to topoisomerase 1 inhibitors such as topotecan. Inhibitors of this Tdp1 in combination with topotecan may improve the effectiveness of therapy. In this work, we synthesized usnic acid derivatives, which are hybrids of its known derivatives: tumor sensitizers to topotecan. New compounds inhibit Tdp1 in the micromolar and submicromolar concentration range; some of them enhance the effect of topotecan on the metabolic activity of cells of various lines according to the MTT test. One of the new compounds (compound 7) not only sensitizes Krebs-2 and Lewis carcinomas of mice to the action of topotecan, but also normalizes the state of the peripheral blood of mice, which is disturbed in the presence of a tumor. Thus, the synthesized substances may be the prototype of a new class of additional therapy for cancer.
Assuntos
Benzofuranos , Carcinoma , Topotecan , Animais , Camundongos , Topotecan/farmacologia , Topotecan/uso terapêutico , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , EsterasesRESUMO
Knowledge of factors associated with semen quality may help in investigations of the aetiology and pathophysiology. We investigated the correlation between biomarkers for testicular cell function (anti-müllerian hormone, AMH, Inhibin B, testosterone, free androgen-index (testosterone/sex-hormone binding globulin), insulin like peptide 3, INSL-3), alkaline phosphate (ALP), canine prostate-specific esterase (CPSE), and heterophilic antibodies with dog variables, semen quality, and fertility. Blood and semen were collected from 65 Bernese Mountain Dogs. We evaluated total sperm count, motility and morphological parameters. The semen quality ranged from poor to excellent, with an average total sperm count of 1.1 × 109 and 50% morphologically normal spermatozoa (MNS). Age and abnormal testicular consistency correlated with decreased motility and MNS. Higher ALP correlated with higher total sperm count. AMH could not be detected in seminal plasma. AMH in blood correlated with head defects and high AMH concentration correlated with a severe decline in several semen parameters. Testosterone was negatively and CPSE positively correlated with age. No correlations were found for INSL-3, inhibin B, or heterophilic antibodies. Our findings contribute to the understanding of factors associated with semen quality in dogs, particularly related to Sertoli cell function.
Assuntos
Líquidos Corporais , Hormônios Peptídicos , Masculino , Cães , Animais , Análise do Sêmen/veterinária , Sêmen , Hormônio Antimülleriano , Testosterona , Anticorpos Heterófilos , EsterasesRESUMO
During initial stages of microbial invasion, the extracellular space (apoplast) of plant cells is a vital battleground between plants and pathogens. The oomycete plant pathogens secrete an array of apoplastic carbohydrate active enzymes, which are central molecules for understanding the complex plant-oomycete interactions. Among them, pectin acetylesterase (PAE) plays a critical role in the pathogenesis of plant pathogens including bacteria, fungi, and oomycetes. Here, we demonstrated that Peronophythora litchii (syn. Phytophthora litchii) PlPAE5 suppresses litchi (Litchi chinensis) plant immunity by interacting with litchi lipid transfer protein 1 (LcLTP1). The LcLTP1-binding activity and virulence function of PlPAE5 depend on its PAE domain but not on its PAE activity. The high expression of LcLTP1 enhances plant resistance to oomycete and fungal pathogens, and this disease resistance depends on BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 (BAK1) and Suppressor of BIR1 (SOBIR1) in Nicotiana benthamiana. LcLTP1 activates the plant salicylic acid (SA) signaling pathway, while PlPAE5 subverts the LcLTP1-mediated SA signaling pathway by destabilizing LcLTP1. Conclusively, this study reports a virulence mechanism of oomycete PAE suppressing plant LTP-mediated SA immune signaling and will be instrumental for boosting plant resistance breeding.
Assuntos
Proteínas de Transporte , Esterases , Litchi , Phytophthora , Melhoramento Vegetal , Transdução de SinaisRESUMO
PURPOSE: Glucuronoyl esterases (GE, family CE15) catalyse the cleavage of ester linkages in lignin-carbohydrate complexes (LCCs), and this study demonstrate how transesterification reactions with a fungal GE from Cerrena unicolor (CuGE) can reveal the enzyme's preference for the alcohol-part of the ester-bond. METHODS: This alcohol-preference relates to where the ester-LCCs are located on the lignin molecule, and has consequences for how the enzymes potentially interact with lignin. It is unknown exactly what the enzymes prefer; either the α-benzyl or the γ-benzyl position. By providing the enzyme with a donor substrate (the methyl ester of either glucuronate or 4-O-methyl-glucuronate) and either one of two acceptor molecules (benzyl alcohol or 3-phenyl-1-propanol) we demonstrate that the enzyme can perform transesterification and it serves as a method for assessing the enzyme's alcohol preferences. CONCLUSION: CuGE preferentially forms the γ-ester from the methyl ester of 4-O-methyl-glucuronate and 3-phenyl-1-propanol and the enzyme's substrate preferences are primarily dictated by the presence of the 4-O-methylation on the glucuronoyl donor, and secondly on the type of alcohol.
Assuntos
Esterases , Lignina , Polyporales , Propanóis , Esterases/química , Carboidratos , Ésteres , Glucuronatos , Especificidade por SubstratoRESUMO
BACKGROUND: GDSL esterase/lipases (GELPs) play important roles in plant growth, development, and response to biotic and abiotic stresses. Presently, an extensive and in-depth analysis of GELP family genes in cotton is still not clear enough, which greatly limits the further understanding of cotton GELP function and regulatory mechanism. RESULTS: A total of 389 GELP family genes were identified in three cotton species of Gossypium hirsutum (193), G. arboreum (97), and G. raimondii (99). These GELPs could be classified into three groups and eight subgroups, with the GELPs in same group to have similar gene structures and conserved motifs. Evolutionary event analysis showed that the GELP family genes tend to be diversified at the spatial dimension and certain conservative at the time dimension, with a trend of potential continuous expansion in the future. The orthologous or paralogous GELPs among different genomes/subgenomes indicated the inheritance from genome-wide duplication during polyploidization, and the paralogous GELPs were derived from chromosomal segment duplication or tandem replication. GELP genes in the A/D subgenome underwent at least three large-scale replication events in the evolutionary process during the period of 0.6-3.2 MYA, with two large-scale evolutionary events between 0.6-1.8 MYA that were associated with tetraploidization, and the large-scale duplication between 2.6-9.1 MYA that occurred during diploidization. The cotton GELPs indicated diverse expression patterns in tissue development, ovule and fiber growth, and in response to biotic and abiotic stresses, combining the existing cis-elements in the promoter regions, suggesting the GELPs involvements of functions to be diversification and of the mechanisms to be a hormone-mediated manner. CONCLUSIONS: Our results provide a systematic and comprehensive understanding the function and regulatory mechanism of cotton GELP family, and offer an effective reference for in-depth genetic improvement utilization of cotton GELPs.
Assuntos
Esterases , Lipase , Esterases/genética , Esterases/metabolismo , Lipase/genética , Lipase/metabolismo , Gossypium/metabolismo , Genoma de Planta , Duplicação Gênica , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Esterases are hydrolases that catalyze the hydrolysis of esters into the corresponding acids and alcohols. The development of fluorescent probes for detecting esterases is of great importance due to their wide spectrum of biological and industrial applications. These probes can provide a rapid and sensitive method for detecting the presence and activity of esterases in various samples, including biological fluids, food products, and environmental samples. Fluorescent probes can also be used for monitoring the effects of drugs and environmental toxins on esterase activity, as well as to study the functions and mechanisms of these enzymes in several biological systems. Additionally, fluorescent probes can be designed to selectively target specific types of esterases, such as those found in pathogenic bacteria or cancer cells. In this review, we summarize the recent fluorescent probes described for the visualization of cell viability and some applications for in vivo imaging. On the other hand, positron emission tomography (PET) is a nuclear-based molecular imaging modality of great value for studying the activity of enzymes in vivo. We provide some examples of PET probes for imaging acetylcholinesterases and butyrylcholinesterases in the brain, which are valuable tools for diagnosing dementia and monitoring the effects of anticholinergic drugs on the central nervous system.