Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Methods Mol Biol ; 2835: 269-275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39105922

RESUMO

Three-dimensional (3D) scaffolds provide cell support while improving tissue regeneration through amplified cellular responses between implanted materials and native tissues. So far, highly conductive cardiac, nerve, and muscle tissues have been engineered by culturing stem cells on electrically inert scaffolds. These scaffolds, even though suitable, may not be very useful compared to the results shown by cells when cultured on conductive scaffolds. Noticing the mature phenotype the stem cells develop over time when cultured on conductive scaffolds, scientists have been trying to impart conductivity to traditionally nonconductive scaffolds. One way to achieve this goal is to blend conductive polymers (polyaniline, polypyrrole, PEDOT:PSS) with inert biomaterials and produce a 3D scaffold using various fabrication techniques. One such technique is projection micro-stereolithography, which is an additive manufacturing technique. It uses a photosensitive solution blended with conductive polymers and uses visible/UV light to crosslink the solution. 3D scaffolds with complex architectural features down to microscale resolution can be printed with this technique promptly. This chapter reports a protocol to fabricate electrically conductive scaffolds using projection micro-stereolithography.


Assuntos
Técnicas de Cultura de Células , Condutividade Elétrica , Polímeros , Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Polímeros/química , Técnicas de Cultura de Células/métodos , Pirróis/química , Animais , Humanos , Materiais Biocompatíveis/química , Células Cultivadas , Células-Tronco/citologia , Compostos de Anilina/química , Miócitos Cardíacos/citologia , Estereolitografia
2.
J Dent ; 148: 105226, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38971459

RESUMO

OBJECTIVES: The aim of this study was to assess the accuracy of surgical guides manufactured with four different 3D printers.. METHODS: Forty-eight surgical guides (BlueSky Plan, BlueSky Bio) were produced using four different 3D printers, with strict adherence to each manufacturer's instructions. The printers used were three digital light processing (DLP) printers (SolFlex170, VC; Nextdent5100, ND, and D30+Rapidshape, RS) and one stereolithographic (SLA) printer (Formlabs3B+, FL). The study evaluated the trueness and precision of the overall surface, the region of interest (RoI) (occlusal and guide zone), the repeatability in several batches, and the guide hole's diameter and xyz axes. The printed guides were digitized and compared with the CAD design control specimen (Control X, Geomagic). Descriptive statistics and Kruskal-Wallis tests with post-hoc Mann-Whitney tests were performed (α=0.05). RESULTS: Differences in trueness and precision were found between groups in the overall zone and RoI (p = 0.00). The ND group demonstrated the highest repeatability. Only the RS group exhibited a comparable guide hole diameter to the master specimen (5.27±2.12 mm; p = 0.104). No statistical differences were observed between groups in the x and z axes. However, in the y-axis, the VC group displayed statistically significant differences (p = 0.01). CONCLUSIONS: The results showed that the DLP groups had better overall accuracy, while the SLA group had the best results in the RoI. The manufacturer's workflows demonstrated a high reproducibility between batches in the RoI. The RS group had values most similar values to the guide hole diameter of the master specimen, with minimal deviations in guide hole orientation. CLINICAL SIGNIFICANCE: Implant position can be affected by the accuracy of the 3D printed surgical guide. Therefore, it is critical to analyze the final dimensions and the direction of the guide hole using available printing technologies.


Assuntos
Desenho Assistido por Computador , Impressão Tridimensional , Cirurgia Assistida por Computador , Humanos , Reprodutibilidade dos Testes , Cirurgia Assistida por Computador/instrumentação , Cirurgia Assistida por Computador/métodos , Estereolitografia , Imageamento Tridimensional , Modelos Dentários , Desenho de Equipamento
3.
Tissue Eng Regen Med ; 21(6): 943-957, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38937423

RESUMO

BACKGROUND: 3D-printing is widely used in regenerative medicine and is expected to achieve vaginal morphological restoration and true functional reconstruction. Mesenchymal stem cells-derived exosomes (MSCs-Exos) were applyed in the regeneration of various tissues. The current study aimed to explore the effctive of MSCs-Exos in vaginal reconstruction. METHODS: In this work, hydrogel was designed using decellularized extracellular matrix (dECM) and gelatin methacrylate (GelMA) and silk fibroin (SF). The biological scaffolds were constructed using desktop-stereolithography. The physicochemical properties of the hydrogels were evaluated; Some experiments have been conducted to evaluate exosomes' effect of promotion vaginal reconstruction and to explore the mechanism in this process. RESULTS: It was observed that the sustained release property of exosomes in the hydrogel both in vitro and in vitro.The results revealed that 3D scaffold encapsulating exosomes expressed significant effects on the vascularization and musule regeneration of the regenerative vagina tissue. Also, MSCs-Exos strongly promoted vascularization in the vaginal reconstruction of rats, which may through the PI3K/AKT signaling pathway. CONCLUSION: The use of exosome-hydrogel composites improved the epithelial regeneration of vaginal tissue, increased angiogenesis, and promoted smooth muscle tissue regeneration. 3D-printed, lumenal scaffold encapsulating exosomes might be used as a cell-free alternative treatment strategy for vaginal reconstruction.


Assuntos
Matriz Extracelular Descelularizada , Exossomos , Células-Tronco Mesenquimais , Impressão Tridimensional , Alicerces Teciduais , Vagina , Feminino , Exossomos/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Vagina/citologia , Alicerces Teciduais/química , Matriz Extracelular Descelularizada/química , Estereolitografia , Ratos , Hidrogéis/química , Ratos Sprague-Dawley , Regeneração , Procedimentos de Cirurgia Plástica/métodos , Gelatina/química , Humanos , Engenharia Tecidual/métodos , Matriz Extracelular/metabolismo
4.
Curr Eye Res ; 49(8): 843-852, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38762982

RESUMO

PURPOSE: A cataract is a cloudy area in the crystalline lens. Cataracts are the leading cause of blindness and the second cause of severe vision impairment worldwide. During cataract surgery, the clouded lens is extracted and replaced with an artificial intraocular lens, which restores the optical power. The fabrication of intraocular lenses using existing molding and lathing techniques is a complex and time-consuming process that limits the development of novel materials and designs. To overcome these limitations, we have developed a stereolithography-based process for producing models of clear lens designs without refractive function, serving as a proof of concept. This process has the potential to contribute toward new lens development, allowing for unlimited design iterations and an expanded range of materials for scientists to explore. METHODS: Lens-like 3D objects without refractive function were fabricated by using stereolithography. A photopolymerizable resin containing 2-phenoxyethyl acrylate, poly (ethylene glycol) dimethacrylate, and a suitable photoinitiator was developed for the production of lens-like 3D object prototypes. The morphology of the printed devices was characterized by scanning electron microscopy. The transparency and thermal properties were analyzed using spectrophotometry and differential scanning calorimetry, respectively. The biocompatibility of the devices was investigated in a cultured human lens cell line (FHL-124), using a standard lactate dehydrogenase assay, and the lenses were folded and implanted in the human capsular bag model. RESULTS: One-piece lens-like 3D objects without refractive function and with loop-haptic design were successfully fabricated using Stereolithography (SLA) technique. The resulting 3D objects were transparent, as determined by UV spectroscopy. The lactate dehydrogenase test demonstrated the tolerance of lens cells to the prototyping material, and apparent foldability and shape recovery was observed during direct injection into a human capsular bag model in vitro. CONCLUSIONS: This proof-of-principle study demonstrated the potential and significance of the rapid prototyping process for research and development of lens-like 3D object prototypes, such as intraocular lenses.


Assuntos
Lentes Intraoculares , Estudo de Prova de Conceito , Desenho de Prótese , Estereolitografia , Humanos , Refração Ocular/fisiologia , Impressão Tridimensional , Catarata
5.
J Dent ; 146: 105052, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38734298

RESUMO

PURPOSE: This in vitro study aimed to compare the accuracy of dental implant placement in partially edentulous maxillary models using a mixed reality-based dynamic navigation (MR-DN) system to conventional static computer-assisted implant surgery (s-CAIS) and a freehand (FH) method. METHODS: Forty-five partially edentulous models (with teeth missing in positions #15, #16 and #25) were assigned to three groups (15 per group). The same experienced operator performed the model surgeries using an MR-DN system (group 1), s-CAIS (group 2) and FH (group 3). In total, 135 dental implants were placed (45 per group). The primary outcomes were the linear coronal deviation (entry error; En), apical deviation (apex error; Ap), XY and Z deviations, and angular deviation (An) between the planned and actual (post-surgery) position of the implants in the models. These deviations were computed as the distances between the stereolithographic (STL) files for the planned implants and placed implants captured with an intraoral scanner. RESULTS: Across the three implant sites, the MR-DN system was significantly more accurate than the FH method (in XY, Z, En, Ap and An) and s-CAIS (in Z, Ap and An), respectively. However, S-CAIS was more accurate than MR-DN in XY, and no difference was found between MR-DN and s-CAIS in En. CONCLUSIONS: Within the limits of this study (in vitro design, only partially edentulous models), implant placement accuracy with MR-DN was superior to that of FH and similar to that of s-CAIS. STATEMENT OF CLINICAL RELEVANCE: In vitro, MR-DN showed greater accuracy in implant positioning than FH, and similar accuracy to s-CAIS: it could, therefore, represent a new option for the surgeon. However, clinical studies are needed to determine the feasibility of MR-DN.


Assuntos
Implantação Dentária Endóssea , Implantes Dentários , Arcada Parcialmente Edêntula , Maxila , Modelos Dentários , Cirurgia Assistida por Computador , Humanos , Cirurgia Assistida por Computador/métodos , Implantação Dentária Endóssea/métodos , Maxila/cirurgia , Arcada Parcialmente Edêntula/cirurgia , Imageamento Tridimensional/métodos , Estereolitografia , Planejamento de Assistência ao Paciente , Tomografia Computadorizada de Feixe Cônico , Técnicas In Vitro
6.
Sci Rep ; 13(1): 20341, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37990073

RESUMO

The anatomically complex and often spatially restricted conditions of anastomosis in the head and neck region cannot be adequately reproduced by training exercises on current ex vivo or small animal models. With the development of a Realistic Anatomical Condition Experience (RACE) model, complex spatial-anatomical surgical areas and the associated intraoperative complexities could be transferred into a realistic training situation in head and neck surgery. The RACE model is based on a stereolithography file generated by intraoperative use of a three-dimensional surface scanner after neck dissection and before microvascular anastomosis. Modelling of the acquired STL file using three-dimensional processing software led to the model's final design. As a result, we have successfully created an economical, sustainable and realistic model for microsurgical education and provide a step-by-step workflow that can be used in surgical and general medical education to replicate and establish comparable models. We provide an open source stereolithography file of the head-and-neck RACE model for printing for educational purposes. Once implemented in other fields of surgery and general medicine, RACE models could mark a shift in medical education as a whole, away from traditional teaching principles and towards the use of realistic and individualised simulators.


Assuntos
Educação Médica , Software , Cabeça/cirurgia , Pescoço/cirurgia , Estereolitografia , Impressão Tridimensional
7.
Epileptic Disord ; 25(6): 845-855, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37698298

RESUMO

OBJECTIVE: To describe the process of three-dimensional printing in epilepsy surgery using three different methods: low-force stereolithography (SLA), filament deposition modeling (FDM), and Polyjet Stratasys, while comparing them in terms of printing efficiency, cost, and clinical utility. MRI and CT images of patient anatomy have been limited to review in the two-dimensional plane, which provides only partial representation of intricate intracranial structures. There has been growing interest in 3D printing of physical models of this complex anatomy to be used as an educational tool and for surgical visualization. One specific application is in epilepsy surgery where there are challenges in visualizing complex intracranial anatomy in relation to implanted surgical tools. METHODS: MRI and CT data from patients with refractory epilepsy from a single center that underwent surgery are converted into 3D volumes, or stereolithography files. These were then printed using three popular 3D printing methods: SLA, FDM, and Polyjet. Faculty were surveyed on the impact of 3D modeling on the surgical planning process. RESULTS: All three methods generated physical models with an increasing degree of resolution, transparency, and clinical utility directly related to cost of production and accurate representation of anatomy. Polyjet models were the most transparent and clearly represented intricate implanted electrodes but had the highest associated cost. FDM produced relatively inexpensive models that, however, were nearly completely opaque, limiting clinical utility. SLA produced economical and highly transparent models but was limited by single material capacity. SIGNIFICANCE: Three-dimensional printing of patient-specific anatomy is feasible with a variety of printing methods. The clinical utility of lower-cost methods is limited by model transparency and lack of multi-material overlay respectively. Polyjet successfully generated transparent models with high resolution of internal structures but is cost-prohibitive. Further research needs to be done to explore cost-saving methods of modeling.


Assuntos
Epilepsia , Impressão Tridimensional , Humanos , Estudos de Viabilidade , Estereolitografia , Epilepsia/cirurgia
8.
Biomed Mater ; 18(5)2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37478841

RESUMO

The field of neural tissue engineering has undergone a revolution due to advancements in three-dimensional (3D) printing technology. This technology now enables the creation of intricate neural tissue constructs with precise geometries, topologies, and mechanical properties. Currently, there are various 3D printing techniques available, such as stereolithography and digital light processing, and a wide range of materials can be utilized, including hydrogels, biopolymers, and synthetic materials. Furthermore, the development of four-dimensional (4D) printing has gained traction, allowing for the fabrication of structures that can change shape over time using techniques such as shape-memory polymers. These innovations have the potential to facilitate neural regeneration, drug screening, disease modeling, and hold tremendous promise for personalized diagnostics, precise therapeutic strategies against brain cancers. This review paper provides a comprehensive overview of the current state-of-the-art techniques and materials for 3D printing in neural tissue engineering and brain cancer. It focuses on the exciting possibilities that lie ahead, including the emerging field of 4D printing. Additionally, the paper discusses the potential applications of five-dimensional and six-dimensional printing, which integrate time and biological functions into the printing process, in the fields of neuroscience.


Assuntos
Neoplasias Encefálicas , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Biopolímeros , Impressão Tridimensional , Estereolitografia , Neoplasias Encefálicas/terapia
9.
World Neurosurg ; 176: e651-e663, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37295464

RESUMO

OBJECTIVE: 3D printing is increasingly used to fabricate three-dimensional neurosurgical simulation models, making training more accessible and economical. 3D printing includes various technologies with different capabilities for reproducing human anatomy. This study evaluated different materials across a broad range of 3D printing technologies to identify the combination that most precisely represents the parietal region of the skull for burr hole simulation. METHODS: Eight different materials (polyethylene terephthalate glycol, Tough PLA, FibreTuff, White Resin, BoneSTN, SkullSTN, polymide [PA12], glass-filled polyamide [PA12-GF]) across 4 different 3D printing processes (fused filament fabrication, stereolithography, material jetting, selective laser sintering) were produced as skull samples that fit into a larger head model derived from computed tomography imaging. Five neurosurgeons conducted burr holes on each sample while blinded to the details of manufacturing method and cost. Qualities of mechanical drilling, visual appearance, skull exterior, and skull interior (i.e., diploë) and overall opinion were documented, and a final ranking activity was performed along with a semistructured interview. RESULTS: The study found that 3D printed polyethylene terephthalate glycol (using fused filament fabrication) and White Resin (using stereolithography) were the best models to replicate the skull, surpassing advanced multimaterial samples from a Stratasys J750 Digital Anatomy Printer. The interior (e.g., infill) and exterior structures strongly influenced the overall ranking of samples. All neurosurgeons agreed that practical simulation with 3D printed models can play a vital role in neurosurgical training. CONCLUSIONS: The study findings reveal that widely accessible desktop 3D printers and materials can play a valuable role in neurosurgical training.


Assuntos
Polietilenoglicóis , Impressão Tridimensional , Humanos , Crânio/anatomia & histologia , Estereolitografia , Modelos Anatômicos
10.
Methods Mol Biol ; 2679: 287-304, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37300624

RESUMO

Stereolithography based additive manufacturing ("3D printing") has become a useful tool for the development of novel microfluidic in vitro platforms. This method of manufacturing can reduce production time while allowing for rapid design iteration and complex monolithic structures. The platform described in this chapter has been designed for the capture and evaluation of cancer spheroids in perfusion. Spheroids are created in 3D Petri dishes, stained, and loaded into these 3D printed devices and imaged over time under flow conditions. This design allows for active perfusion into complex 3D cellular constructs resulting in longer viability while providing results which better mimic in vivo conditions compared to traditional monolayer static culture.


Assuntos
Técnicas de Cultura de Células , Neoplasias , Humanos , Técnicas de Cultura de Células/métodos , Impressão Tridimensional , Estereolitografia , Perfusão
11.
PLoS One ; 18(4): e0283305, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37027404

RESUMO

This study compared the accuracy of implant scan bodies printed using stereolithography (SLA) and digital light processing (DLP) technologies to the control (manufacturer's scan body) Scan bodies were printed using SLA (n = 10) and DLP (n = 10) methods. Ten manufacturer's scan bodies were used as control. The scan body was placed onto a simulated 3D printed cast with a single implant placed. An implant fixture mount was used as standard. The implant positions were scanned using a laboratory scanner with the fixture mounts, manufacturer's scan bodies, and the printed scan bodies. The scans of each scan body was then superimposed onto the referenced fixture mount. The 3D angulation and linear deviations were measured. The angulation and linear deviations were 1.24±0.22° and 0.20±0.05 mm; 2.63±0.82° and 0.34±0.11 mm; 1.79±0.19° and 0.32±0.03 mm; for the control, SLA, and DLP, respectively. There were statistical differences (ANOVA) among the three groups in the angular (p<0.01) or linear deviations (p<0.01). Box plotting, 95% confidence interval and F-test suggested the higher variations of precision in the SLA group compared to DLP and control groups. Scan bodies printed in-office have lower accuracy compared to the manufacturer's scan bodies. The current technology for 3D printing of implant scan bodies needs trueness and precision improvements.


Assuntos
Implantes Dentários , Cirurgia Assistida por Computador , Desenho Assistido por Computador , Impressão Tridimensional , Estereolitografia
12.
Artif Organs ; 46(10): 2085-2096, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35971860

RESUMO

BACKGROUND: The stimulation and recording performance of implanted neural interfaces are functions of the physical and electrical characteristics of the neural interface, its electrode material and structure. Therefore, rapid optimization of such characteristics is becoming critical in most clinical and research studies. This paper describes the development of an upgraded 3D printed cuff electrode shell design containing a novel intrinsically conductive polymer (ICP) for stimulation and recording of peripheral nerve fibers. METHODS: A 3D stereolithography (SLA) printer was used to print a scalable, custom designed, C-cuff electrode and I-beam closure for accurate, rapid implementation. A novel contact consisting of a percolated carbon graphite base electrodeposited with an intrinsically conductive polymer (ICP), poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) produced a PEDOT:PSS + carbon black (CB) matrix that was used to form the electrochemical interface on the structure. Prototype device performance was tested both in-vitro and in-vivo for electrical chemical capacity, electrochemical interfacial impedance, surgical handling, and implantability. The in-vivo work was performed on the sciatic nerve of 25 anesthetized Sprague Dawley rats to demonstrate recording and stimulating ability. RESULTS: Prototypes of different spatial geometries and number of contacts (bipolar, tripolar, and tetrapolar) were designed. The design was successfully printed with inner diameters down to 500 µm. Standard bipolar and tripolar cuffs, with a 1.3 mm inner diameter (ID), 0.5 mm contact width, 1.0 mm pitch, and a 1.5 mm end distance were used for the functional tests. This geometry was appropriate for placement on the rat sciatic nerve and enabled in-vivo testing in anesthetized rats. The contacts on the standard bipolar electrode had an area of 2.1 × 10-2  cm2 . Cyclic voltammetry on ICP coated and uncoated graphite contacts showed that the ICP increased the average charge storage capacity (CSC) by a factor of 30. The corresponding impedance at 1 Hz was slightly above 1 kΩ, a 99.99% decrease from 100 kΩ in the uncoated state. The statistical comparison of the pre- versus post-stimulation impedance measurements were not significantly different (p-value > 0.05). CONCLUSIONS: The new cuff electrode enables rapid development of cost-effective functional stimulation devices targeting nerve bundles less than 1.0 mm in diameter. This allows for recording and modulation of a low-frequency current targeted within the peripheral nervous system.


Assuntos
Carbono , Grafite , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/química , Eletrodos , Eletrodos Implantados , Polímeros/química , Ratos , Ratos Sprague-Dawley , Fuligem , Estereolitografia
13.
Rev. Círc. Argent. Odontol ; 80(231): 6-13, jul. 2022. ilus, tab, graf
Artigo em Espanhol | LILACS | ID: biblio-1391619

RESUMO

Este trabajo tuvo como objetivo conocer la fiabilidad de la impresora 3D (i3D) aditiva por Matriz de Proceso Digital de Luz (MDLP) Hellbot modelo Apolo®, a través de verificar la congruencia dimensional entre las mallas de modelos impresos (MMi) y su correspondiente archivo digital de origen (MMo), obtenido del software de planificación ortodontica Orchestrate 3D® (O3D). Para determinar su uso en odontología y sus posibilidades clínicas, fue comparada entre cinco i3D de manufactura aditiva, dos DLP, dos por estereolitografía (SLA) y una por Depósito de Material Fundido (FDM). La elección de las cinco i3D se fundamentó en su valor de mercado, intentando abarcar la mayor diversidad argentina disponible. Veinte modelos fueron impresos con cada i3D y escaneados con Escáner Intraoral (IOS) Carestream modelo 3600® (Cs3600). Las 120 MMi fueron importadas dentro del programa de ingeniería inversa Geomagic® Control X® (Cx) para su análisis 3D, consistiendo en la superposición de MMo con cada una de las MMi. Luego, una evaluación cualitativa de la desviación entre la MMi y MMo fue realizada. Un análisis estadístico cuidadoso fue realizado obteniendo como resultado comparaciones en 3d y 2d. Las coincidencias metrológicas en la superposición tridimensional permitieron un análisis exhaustivo y fácilmente reconocible a través de mapas colorimétricos. En el análisis bidimensional se plantearon planos referenciados dentariamente desde la MMo, para hacer coincidir las mediciones desde el mismo punto de partida dentaria. Los resultados fueron satisfactorios y muy alentadores. Las probabilidades de obtener rangos de variabilidad equivalentes a +/- 50µm fueron de un 40,35 % y de +/- 100µm un 71,04 %. Por lo tanto, te- niendo en cuenta las exigencias de congruencia dimensional clínicas de precisión y exactitud a las cuales es sometida nuestra profesión odontológica, se evitan problemas clínicos arrastrados por los errores dimensionales en la manufactura (Cam) (AU)


The objective of this study was to determine the reliability of the Hellbot Apollo® model additive 3D printer (i3D) by Matrix Digital Light Processing (MDLP) by verifying the dimensional congruence between the printed model meshes (MMi) and their corresponding digital source file (MMo), obtained from the Orchestrate 3D® (O3D) orthodontic planning software. A comparison was made between five i3D of additive manufacturing, two DLP, two by stereolithography (SLA), and one by Fused Material Deposition (FDM), to determine its use in dentistry and its clinical possibilities. The choice of the five i3D was based on their market value, trying to cover most of the Argentinean diversity available. Twenty models were printed with each i3D and scanned with Carestream Intraoral Scanner (IOS) model 3600® (Cs3600). The 120 MMi were imported into the reverse engineering program Geomagic® Control X® (Cx) for 3D analysis, consisting of overlaying MMo with each MMi. Then, a qualitative evaluation of the deviation between MMi and MMo. Also, a careful statistical analysis was performed, resulting in 3d and 2d comparisons. Metrological coincidences in three-dimensional overlay allowed a comprehensive and easily recognizable analysis through colorimetric maps. In the two-dimensional analysis, dentally referenced planes were proposed from the MMo, to match the measurements from the same dental starting point. The results were satisfactory and very encouraging. The probabilities of obtaining ranges of variability equivalent to +/- 50µm were 40.35 % and +/- 100µm 71.04 %. Therefore, considering the demands of clinical dimensional congruence, precision, and accuracy to which our dental profession it is subjected, clinical problems caused by dimensional errors in manufacturing (Cam) are avoided (AU)


Assuntos
Modelos Dentários , Impressão Tridimensional , Estereolitografia , Ortodontia/métodos , Técnicas In Vitro , Algoritmos , Software , Interpretação de Imagem Assistida por Computador/métodos , Interpretação Estatística de Dados , Estudos de Avaliação como Assunto
14.
Sci Rep ; 12(1): 7391, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513701

RESUMO

Extrusion-based printing enables simplified and economic manufacturing of surgical guides for oral implant placement. Therefore, the cytotoxicity of a biocopolyester (BE) and a polypropylene (PP), intended for the fused filament fabrication of surgical guides was evaluated. For comparison, a medically certified resin based on methacrylic esters (ME) was printed by stereolithography (n = 18 each group). Human gingival keratinocytes (HGK) were exposed to eluates of the tested materials and an impedance measurement and a tetrazolium assay (MTT) were performed. Modulations in gene expression were analyzed by quantitative PCR. One-way ANOVA with post-hoc Tukey tests were applied. None of the materials exceeded the threshold for cytotoxicity (< 70% viability in MTT) according to ISO 10993-5:2009. The impedance-based cell indices for PP and BE, reflecting cell proliferation, showed little deviations from the control, while ME caused a reduction of up to 45% after 72 h. PCR analysis after 72 h revealed only marginal modulations caused by BE while PP induced a down-regulation of genes encoding for inflammation and apoptosis (p < 0.05). In contrast, the 72 h ME eluate caused an up-regulation of these genes (p < 0.01). All evaluated materials can be considered biocompatible in vitro for short-term application. However, long-term contact to ME might induce (pro-)apoptotic/(pro-)inflammatory responses in HGK.


Assuntos
Polímeros , Estereolitografia , Gengiva , Humanos , Queratinócitos , Polipropilenos/toxicidade
15.
AAPS PharmSciTech ; 23(4): 92, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301602

RESUMO

The gemstone of 3-dimensional (3D) printing shines up from the pyramid of additive manufacturing. Three-dimensional bioprinting technology has been predicted to be a game-changing breakthrough in the pharmaceutical industry since the last decade. It is fast evolving and finds its seats in a variety of domains, including aviation, defense, automobiles, replacement components, architecture, movies, musical instruments, forensic, dentistry, audiology, prosthetics, surgery, food, and fashion industry. In recent years, this miraculous manufacturing technology has become increasingly relevant for pharmaceutical purposes. Computer-aided drug (CAD) model will be developed by computer software and fed into bioprinters. Based on material inputs, the printers will recognize and produce the model scaffold. Techniques including stereolithography, selective laser sintering, selective laser melting, material extrusion, material jetting, inkjet-based, fused deposition modelling, binder deposition, and bioprinting expedite the printing process. Distinct advantages are rapid prototyping, flexible design, print on demand, light and strong parts, fast and cost-effective, and environment friendly. The present review gives a brief description of the conceptional 3-dimensional printing, followed by various techniques involved. A short note was explained about the fabricating materials in the pharmaceutical sector. The beam of light is thrown on the various applications in the pharma and medical arena.


Assuntos
Impressão Tridimensional , Engenharia Tecidual , Sistemas de Liberação de Medicamentos/métodos , Estereolitografia , Engenharia Tecidual/métodos , Alicerces Teciduais
16.
J Dent ; 117: 103909, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34852291

RESUMO

OBJECTIVES: To evaluate the accuracy of two different surgical guides (small extent = single implant and large extent = full arch) fabricated by five additive manufacturing technologies (SLA=Stereolithography, DLP= Digital Light Processing, FDM=Fused Deposition Modeling, SLS=Selective Laser Sintering, Inkjet). METHODS: Overall, 72 guides (6 per type) were obtained with the different machines (SLA=Form2; DLP=Rapid Shape D40 and Cara Print 4.0; FDM=Raise 3D Pro2; SLS=Prodways P1000; Polyjet®=Stratasys J750). The guides were surface-scanned with an optical dental scanner, and the resulting files were compared with the initial design files using a surface matching software. Root Mean Square (RMS) and standard deviation were calculated, representing respectively trueness and precision. Kruskall-Wallis non-parametric test was used to compare trueness and precision between small-extent and large-extent guides and 3D printer by pairs. The threshold for significance was α=0.05, except for the comparison of printers by pairs where a Bonferroni-corrected level of 0.0033 was used. RESULTS: Significant differences were observed for trueness and precision between small-extent and large-extent guides, regardless the printer except for DLP (trueness and precision) and SLS (precision). SLA, DLP and Polyjet® technologies showed similar results in terms of trueness and precision for both small-extend and large-extend guides (P>0.05). CONCLUSIONS: The size affected the accuracy of CAD-CAM surgical guides. The different additive manufacturing technologies had a limited impact on the accuracy. CLINICAL SIGNIFICANCE: This study is of clinical interest as it shows that the 3D printing technology (SLA/DLP) has a limited impact on 3D printed surgical guides accuracy. However, the size of the guide can have a significant impact, as small-extent guides were more accurate than large-extent guides.


Assuntos
Modelos Dentários , Estereolitografia , Desenho Assistido por Computador , Impressão Tridimensional , Software
17.
J Prosthodont ; 31(4): 275-281, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34932246

RESUMO

Progress with additive 3D printing is revolutionizing biomaterial manufacturing, including clinical dentistry and prosthodontics. Among the several 3D additive printing technologies, stereolithography is very popular as it utilizes light-activated resin for precise resolution. A simplified digital technique was used to fabricate two designs of a surgical guide for crown lengthening. Two cases are presented that utilized digital imaging and communications in medicine (DICOM) files obtained with computed tomography (CT) imaging and processed using four CAD software (Blue Sky Plan, Exocad, Meshmixer and 3D Slicer). The final models were converted to standard tessellation (STL) files and the guides were 3D printed with an additive stereolithography (SLA) printer. The first case was fabricated with a bone model from cone beam computed tomography (CBCT) data, and the second case was generated with intraoral and wax-up scans alone. Both methods appear to be equally effective compared to using a conventional method of guide frabication. However, proximal bone reduction was a concern with both designs. Digitally fabricated 3D printed surgical guide for crown lengthening has merit and a practical design is needed for future clinical validation.


Assuntos
Desenho Assistido por Computador , Implantes Dentários , Aumento da Coroa Clínica , Humanos , Impressão Tridimensional , Estereolitografia
18.
Rev. bras. oftalmol ; 81: e0052, 2022.
Artigo em Português | LILACS | ID: biblio-1387965

RESUMO

RESUMO A manufatura aditiva, mais popularmente conhecida como impressão tridimensional, baseia-se no desenvolvimento de um objeto com a ajuda de um software de desenho assistido por computador seguido de sua impressão por meio da deposição de uma matéria-prima, camada por camada, para a construção do produto desejado. Existem vários tipos de técnicas de impressão tridimensional, e o tipo de processo de impressão escolhido depende da aplicação específica do objeto a ser desenvolvido, dos materiais a serem utilizados e da resolução necessária à impressão do produto final. A impressão tridimensional abriu perspectivas na pesquisa e revolucionou o campo das ciências da saúde, com a possibilidade de criação e de desenvolvimento de produtos personalizados de maneira rápida, econômica e de forma mais centralizada do que no processo de manufatura tradicional. As tecnologias de manufatura aditiva remodelaram os diagnósticos médicos; as medidas preventivas e pré-operatórias; o tratamento e a reabilitação, assim como os processos de engenharia de tecidos nos últimos anos. Na oftalmologia, as aplicações da impressão tridimensional são extensas. Modelos anatômicos para aplicação na área da educação e planejamentos cirúrgicos, desenvolvimento de implantes, lentes, equipamentos para diagnósticos, novas aplicações terapêuticas e desenvolvimento de tecidos oculares já estão em desenvolvimento. Por possuir um campo amplo e ser alvo de pesquisa constante, a área oftalmológica permite que a manufatura aditiva ainda seja amplamente utilizada a favor dos médicos e dos pacientes.


ABSTRACT Additive manufacturing, more popularly known as three-dimensional (3D) printing, is based on the development of an object with the help of computer-aided design software followed by its printing through the deposition of a material, layer by layer, to create the desired product. There are several types of 3D printing techniques and the type of printing process chosen depends on the specific application of the object to be developed, the materials to be used, and the resolution required to print the final product. 3D printing has brought new perspectives to research and revolutionized the field of health sciences, with the possibility of creating and developing customized products in a faster, more economical, and more centralized way than in the traditional manufacturing process. Additive manufacturing technologies have reformulated medical diagnostics, preventive, preoperative, treatment, and rehabilitation, as well as tissue engineering processes in recent years. In ophthalmology, the applications of 3D printing are extensive. Anatomical models for application in education and surgical planning, development of implants, lenses, diagnostic equipment, new therapeutic applications, and development of ocular tissues (3D bioprinting) are already under development. As it has a wide field and is the subject of constant research, the ophthalmic area allows additive manufacturing to still be widely used in favor of doctors and patients.


Assuntos
Humanos , Oftalmologia , Imageamento Tridimensional , Impressão Tridimensional , Polímeros , Próteses e Implantes , Técnicas Biossensoriais , Desenho Assistido por Computador , Reciclagem , Bioimpressão , Estereolitografia , Modelos Anatômicos
19.
Rev. Asoc. Odontol. Argent ; 109(3): 177-184, dic. 2021. ilus
Artigo em Espanhol | LILACS | ID: biblio-1372479

RESUMO

Objetivo: Describir en un caso clínico una nueva técni- ca para la localización y la remoción de agujas fracturadas du- rante la anestesia odontológica mediante planificación virtual. Caso clínico: Una paciente de género femenino de 52 años de edad concurre a la Cátedra de Cirugía y Traumatolo- gía Bucomaxilofacial I de la Facultad de Odontología de la Universidad de Buenos Aires y relata que dos meses atrás, durante la atención odontológica, se produjo la fractura de la aguja durante la anestesia troncular mandibular. Se realiza diagnóstico y planificación virtual para conocer la ubicación exacta de la aguja y se confecciona un modelo estereolito- gráfico y una guía quirúrgica individualizada para removerla. El uso de una guía quirúrgica individualizada y confeccio- nada mediante planificación virtual permitió ubicar la aguja tridimensionalmente y con mayor precisión en espacios pro- fundos y disminuir tiempos operatorios (AU)


Aim: To describe in a clinical case a new virtual plan- ning technique for locating and removing a fractured dental anesthetic needle. Clinical case: A 52-year-old patient visited the De- partment of Oral and Maxillofacial Surgery I (School of Dentistry, University of Buenos Aires) with a retained den- tal needle in the pterygomandibular space. The needle had fractured during inferior alveolar nerve block two months previously. Virtual diagnosis and planning were performed to locate the needle and a stereolithographic model and a customized surgical guide were prepared. The use of cus- tomized surgical guides prepared by virtual planning ena- bled precise location of the dental needle in deep spaces and reduced operating times (AU)


Assuntos
Humanos , Feminino , Pessoa de Meia-Idade , Corpos Estranhos/cirurgia , Anestesia Dentária/instrumentação , Mandíbula , Agulhas , Tomografia Computadorizada de Feixe Cônico , Corpos Estranhos/diagnóstico por imagem , Estereolitografia , Complicações Intraoperatórias/cirurgia , Mandíbula/cirurgia , Mandíbula/diagnóstico por imagem
20.
Biomaterials ; 279: 121207, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34741977

RESUMO

Cholangiocytes, biliary epithelial cells, are known to spontaneously self-organize into spherical cysts with a central lumen. In this work, we explore a promising biocompatible stereolithographic approach to encapsulate cholangiocytes into geometrically controlled 3D hydrogel structures to guide them towards the formation of branched tubular networks. We demonstrate that within the appropriate mix of hydrogels, normal rat cholangiocytes can proliferate, migrate, and organize into branched tubular structures with walls consisting of a cell monolayer, transport fluorescent dyes into the luminal space, and show markers of epithelial maturation such as primary cilia and continuous tight junctions. The resulting structures have dimensions typically found in the intralobular and intrahepatic biliary tree and are stable for weeks, without any requirement of bulk supporting material, thereby offering total access to the external side of these biliary epithelial constructs.


Assuntos
Sistema Biliar , Estereolitografia , Animais , Sistema Biliar/diagnóstico por imagem , Células Epiteliais , Hidrogéis , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA