Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 269(Pt 1): 132034, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702006

RESUMO

Parthenium hysterophorus plant has a diverse chemical profile and immense bioactive potential. It exhibits excellent pharmacological properties such as anti-cancer, anti-inflammatory, anti-malarial, microbicidal, and anti-trypanosomal. The present study aims to evaluate the anti-leishmanial potential and toxicological safety of anhydroparthenin isolated from P. hysterophorus. Anydroparthenin was extracted from the leaves of P. hysterophorus and characterized through detailed analysis of 1H, 13C NMR, and HRMS. Dye-based in vitro and ex vivo assays confirmed that anhydroparthenin significantly inhibited both promastigote and amastigote forms of the Leishmania donovani parasites. Both the cytotoxicity experiment and hemolytic assay revealed its non-toxic nature and safety index in the range of 10 to 15. Further, various mechanistic assays suggested that anhydroparthenin led to the generation of oxidative stress, intracellular ATP depletion, alterations in morphology and mitochondrial membrane potential, formation of intracellular lipid bodies, and acidic vesicles, ultimately leading to parasite death. As a dual targeting approach, computational studies and sterol quantification assays confirmed that anhydroparthenin inhibits the Sterol C-24 methyl transferase and Sterol 14-α demethylase proteins involved in the ergosterol biosynthesis in Leishmania parasites. These results suggest that anhydroparthenin could be a promising anti-leishmanial molecule and can be developed as a novel therapeutic stratagem against leishmaniasis.


Assuntos
Leishmania donovani , Metiltransferases , Esterol 14-Desmetilase , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/enzimologia , Esterol 14-Desmetilase/metabolismo , Esterol 14-Desmetilase/química , Metiltransferases/metabolismo , Metiltransferases/antagonistas & inibidores , Antiprotozoários/farmacologia , Antiprotozoários/química , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Simulação por Computador , Animais , Humanos
2.
Molecules ; 29(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675696

RESUMO

The present study aimed to evaluate the leishmanicidal potential of the essential oil (EO) of Micromeria (M.) nervosa and to investigate its molecular mechanism of action by qPCR. Furthermore, in silicointeraction study of the major M. nervosa EO compounds with the enzyme cytochrome P450 sterol 14α-demethylase (CYP51) was also performed. M. nervosa EO was analyzed by gas chromatography-mass spectrometry (GC-MS). Results showed that α-pinene (26.44%), t-cadinol (26.27%), caryophyllene Oxide (7.73 ± 1.04%), and α-Cadinene (3.79 ± 0.12%) are the major compounds of M. nervosa EO. However, limited antioxidant activity was observed, as this EO was ineffective in neutralizing DPPH free radicals and in inhibiting ß-carotene bleaching. Interestingly, it displayed effective leishmanicidal potential against promastigote (IC50 of 6.79 and 5.25 µg/mL) and amastigote (IC50 of 8.04 and 7.32 µg/mL) forms of leishmania (L.) infantum and L. major, respectively. Molecular mechanism investigation showed that M. nervosa EO displayed potent inhibition on the thiol regulatory pathway. Furthermore, a docking study of the main components of the EO with cytochrome P450 sterol 14α-demethylase (CYP51) enzyme revealed that t-cadinol exhibited the best binding energy values (-7.5 kcal/mol), followed by α-cadinene (-7.3 kcal/mol) and caryophyllene oxide (-7 kcal/mol). These values were notably higher than that of the conventional drug fluconazole showing weaker binding energy (-6.9 kcal/mol). These results suggest that M. nervosa EO could serve as a potent and promising candidate for the development of alternative antileishmanial agent in the treatment of leishmaniasis.


Assuntos
Antiprotozoários , Simulação de Acoplamento Molecular , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antiprotozoários/farmacologia , Antiprotozoários/química , Antioxidantes/farmacologia , Antioxidantes/química , Cromatografia Gasosa-Espectrometria de Massas , Esterol 14-Desmetilase/metabolismo , Esterol 14-Desmetilase/química , Simulação por Computador , Leishmania/efeitos dos fármacos , Leishmania/enzimologia , Monoterpenos Bicíclicos/farmacologia , Monoterpenos Bicíclicos/química
3.
J Med Chem ; 67(9): 7443-7457, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38683753

RESUMO

Acanthamoeba are free-living pathogenic protozoa that cause blinding keratitis, disseminated infection, and granulomatous amebic encephalitis, which is generally fatal. The development of efficient and safe drugs is a critical unmet need. Acanthamoeba sterol 14α-demethylase (CYP51) is an essential enzyme of the sterol biosynthetic pathway. Repurposing antifungal azoles for amoebic infections has been reported, but their inhibitory effects on Acanthamoeba CYP51 enzymatic activity have not been studied. Here, we report catalytic properties, inhibition, and structural characterization of CYP51 from Acanthamoeba castellanii. The enzyme displays a 100-fold substrate preference for obtusifoliol over lanosterol, supporting the plant-like cycloartenol-based pathway in the pathogen. The strongest inhibition was observed with voriconazole (1 h IC50 0.45 µM), VT1598 (0.25 µM), and VT1161 (0.20 µM). The crystal structures of A. castellanii CYP51 with bound VT1161 (2.24 Å) and without an inhibitor (1.95 Å), presented here, can be used in the development of azole-based scaffolds to achieve optimal amoebicidal effectiveness.


Assuntos
Inibidores de 14-alfa Desmetilase , Esterol 14-Desmetilase , Esterol 14-Desmetilase/metabolismo , Esterol 14-Desmetilase/química , Inibidores de 14-alfa Desmetilase/farmacologia , Inibidores de 14-alfa Desmetilase/química , Inibidores de 14-alfa Desmetilase/síntese química , Relação Estrutura-Atividade , Acanthamoeba/enzimologia , Acanthamoeba/efeitos dos fármacos , Acanthamoeba castellanii/enzimologia , Acanthamoeba castellanii/efeitos dos fármacos , Cristalografia por Raios X , Antiprotozoários/farmacologia , Antiprotozoários/química , Antiprotozoários/síntese química , Modelos Moleculares , Estrutura Molecular
4.
Curr Drug Discov Technol ; 19(6): e150622206033, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35708080

RESUMO

BACKGROUND: Glucosinolates (ß-thioglucoside-N-hydroxysulfates) are a water-soluble organic anion with sulfur- and nitrogen-containing glycosides which are found in abundance in Cruciferous plants. Ergosterol (ERG13) lanosterol-14α-demethylase protein has been targeted for inhibition studies as a key regulator enzyme of fungal membrane biosynthesis. OBJECTIVES: To understand the molecular mechanism of inhibition of Ergosterol (ERG13) lanosterol- 14α-demethylase by various phytochemicals from brassicales, i.e., glucosinolates and their potential role as putative drug molecules. METHODS: In this study, in silico analyses were performed to predict the molecular basis of various glucosinolates as a potential inhibitor of lanosterol-14α-demethylase protein, which is a key regulator of fungal membrane biosynthesis and its pharmacodynamics and toxicity profile. 3d structures of various glucosinolates were retrieved from PubChem, and the target protein, lanosterol-14α-demethylase (Pdb ID- 4lxj), was retrieved from the RCSB protein data bank. Molecular docking and interactions were carried out using the PyRx software using the AutoDOCK toolbar with default parameters. Dru- LiTo, ORISIS web servers were used to predict various drug likeliness predictions and Lipinski's Rule of 5, whereas admetSAR was used for prediction of toxicity, and PASS Program was used to study the antifungal and antimicrobial properties of these compounds. RESULTS: This study shows that among the different compounds screened, gluconasturtiin, Glucotropaeolin, and Indolylmethyl-Glucosinolate showed the highest binding energies of -8.7 kcal/mol, -8.5 kcal/mol, and -8.3 kcal/mol with the lanosterol-14α-demethylase, respectively. Further all the compounds follow the Lipinski's rule as well as they are found to be non-carcinogenic and non-cytotoxic in nature. These compounds also show antifungal properties. CONCLUSION: This study thus reveals that various glucosinolates interact with the ERG13 enzyme at various amino acid positions, which behaves as a catalytic site, thus indicates the probable mechanism of inactivation, and subsequently, these can be used as potential drug molecules. In vitro studies can be taken to further examine the utility of these compounds as antifungal agents.


Assuntos
Inibidores de 14-alfa Desmetilase , Antifúngicos , Esterol 14-Desmetilase/química , Esterol 14-Desmetilase/metabolismo , Inibidores de 14-alfa Desmetilase/farmacologia , Inibidores de 14-alfa Desmetilase/química , Antifúngicos/farmacologia , Antifúngicos/química , Lanosterol , Glucosinolatos/farmacologia , Simulação de Acoplamento Molecular , Ergosterol
5.
J Clin Lab Anal ; 36(2): e24208, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34997991

RESUMO

INTRODUCTION: Resistance to azole drugs has been observed in candidiasis due to their long-term use and poor response to treatment. Resistance to azole drugs in Candida albicans isolates is controlled by several genes including ERG11, CDR1, CDR2, and MDR1. In this study, the expression of the mentioned genes was evaluated in C. albicans isolates susceptible and resistant to fluconazole. METHODS: After identifying the Candida isolates using morphological and molecular methods, the minimum inhibitory concentration (MIC) and drug susceptibility were determined using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) method. RNA was then extracted and cDNA was synthesized from 24 C. albicans isolates from patients with cancer. Then, the mean expressions of these genes were compared in two groups using real-time polymerase chain reaction (RT-PCR). RESULTS: A total of 74 Candida isolates were obtained from the oral cavity of 61 cancer patients with oral candidiasis. After 24 h, 21.6% of the isolates were fluconazole-resistant, 10.8% were identified as dose-dependent, and the rest of the isolates (67.6%) were fluconazole-sensitive. The mean expressions of the CDR1 and MDR1 genes were significantly higher in the resistant isolates than in the sensitive ones. However, the ERG11 and CDR2 genes were not significantly increased in the resistant isolates. CONCLUSION: The increased mean expressions of the CDR1 and MDR1 genes had a greater effect on fluconazole resistance among the drug-resistant strains of C. albicans in chemotherapy patients. It seemed that the accumulation of chemotherapeutic drugs in this organism stimulated some regulatory factors and increased the expression of these two genes and ultimately helped to further increase their expression and resistance to fluconazole.


Assuntos
Candida albicans/genética , Candidíase Bucal/metabolismo , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/isolamento & purificação , Candidíase Bucal/etiologia , Proteínas Fúngicas/metabolismo , Expressão Gênica , Humanos , Irã (Geográfico) , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Neoplasias/complicações , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esterol 14-Desmetilase/genética , Esterol 14-Desmetilase/metabolismo
6.
F1000Res ; 11: 1115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37151610

RESUMO

Mycoses or fungal infections are a general health problem that often occurs in healthy and immunocompromised people in the community. The development of resistant strains in Fungi and the incidence of azole antibiotic resistance in the Asia Pacific which reached 83% become a critical problem nowadays. To control fungal infections, substances and extracts isolated from natural resources, especially in the form of plants as the main sources of drug molecules today, are needed. Especially from Piperaceae, which have long been used in India, China, and Korea to treat human ailments in traditional medicine. The purpose of this review is to describe the antifungal mechanism action from Piper crocatum and its phytochemical profiling against lanosterol 14a demethylase CYP51. The methods used to search databases from Google Scholar to find the appropriate databases using Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) Flow Diagram as a clinical information retrieval method. From 1.150.000 results searched by database, there is 73 final results article to review. The review shows that P. crocatum contains flavonoids, tannins, terpenes, saponins, polyphenols, eugenol, alkaloids, quinones, chavibetol acetate, glycosides, triterpenoids or steroids, hydroxychavikol, phenolics, glucosides, isoprenoids, and non-protein amino acids. Its antifungal mechanisms in fungal cells occur due to ergosterol, especially lanosterol 14a demethylase (CYP51) inhibition, which is one of the main target sites for antifungal activity because it functions to maintain the integrity and function of cell membranes in Candida. P. crocatum has an antifungal activity through its phytochemical profiling against fungal by inhibiting the lanosterol 14a demethylase, make damaging cell membranes, fungal growth inhibition, and fungal cell lysis.


Assuntos
Antifúngicos , Piper , Humanos , Antifúngicos/farmacologia , Esterol 14-Desmetilase/química , Esterol 14-Desmetilase/metabolismo , Lanosterol/química , Piper/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Compostos Fitoquímicos/farmacologia
7.
Biochim Biophys Acta Gene Regul Mech ; 1865(1): 194785, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34971790

RESUMO

Omics has broadened our view of transcriptional and gene regulatory networks of multifactorial diseases, such as metabolism associated liver disease and its advanced stages including hepatocellular carcinoma. Identifying liver disease biomarkers and potential treatment targets makes use of experimental models, e.g. genetically engineered mice, which show molecular features of human pathologies but are experimentally tractable. We compared gene expression profiling data from human to our studies on transgenic mice with hepatocyte deletion of Cyp51 from cholesterol synthesis with the aim of identifying the human liver disease state best matched by the Cyp51 knockout model. Gene Expression Omnibus was used to identify relevant human datasets. We identified enriched and deregulated genes, pathways and transcription factors of mouse and human disease samples. Analysis showed a closer match of the Cyp51 knockout to the female patient samples. Importantly, CYP51 was depleted in both mouse and female human data. Among the enriched genes were the oxysterol-binding protein-related protein 3 (OSBPL3), which was enriched in all datasets, and the collagen gene COL1A2, which was enriched in both the mouse and one human dataset. KEGG and Reactome analyses revealed the most enriched pathway to be ECM-receptor interaction. Numerous transcription factors were differentially expressed in mice of both sexes and in the human female dataset, while depleted HNF4α and RXRα:PPARα-isoform1 were a hallmark in all cases. Our analysis exposed novel potential biomarkers, which may provide new avenues towards more personalized approaches and different targets in females and males. The analysis was only possible because of availability of open data resources and tools and broadly consistent annotation.


Assuntos
Hepatopatias , Animais , Feminino , Perfilação da Expressão Gênica , Genômica , Humanos , Masculino , Camundongos , Esterol 14-Desmetilase/genética , Esterol 14-Desmetilase/metabolismo , Fatores de Transcrição/genética
8.
Molecules ; 26(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924405

RESUMO

Widespread pathologies such as atherosclerosis, metabolic syndrome and cancer are associated with dysregulation of sterol biosynthesis and metabolism. Cholesterol modulates the signaling pathways of neoplastic transformation and tumor progression. Lanosterol 14-alpha demethylase (cytochrome P450(51), CYP51A1) catalyzes one of the key steps in cholesterol biosynthesis. The fairly low somatic mutation frequency of CYP51A1, its druggability, as well as the possibility of interfering with cholesterol metabolism in cancer cells collectively suggest the clinical importance of CYP51A1. Here, we show that the natural flavonoid, luteolin 7,3'-disulfate, inhibits CYP51A1 activity. We also screened baicalein and luteolin, known to have antitumor activities and low toxicity, for their ability to interact with CYP51A1. The Kd values were estimated using both a surface plasmon resonance optical biosensor and spectral titration assays. Unexpectedly, in the enzymatic activity assays, only the water-soluble form of luteolin-luteolin 7,3'-disulfate-showed the ability to potently inhibit CYP51A1. Based on molecular docking, luteolin 7,3'-disulfate binding suggests blocking of the substrate access channel. However, an alternative site on the proximal surface where the redox partner binds cannot be excluded. Overall, flavonoids have the potential to inhibit the activity of human CYP51A1 and should be further explored for their cholesterol-lowering and anti-cancer activity.


Assuntos
Flavonoides/química , Luteolina/química , Esterol 14-Desmetilase/metabolismo , Humanos , Síndrome Metabólica/metabolismo , Simulação de Acoplamento Molecular , Ressonância de Plasmônio de Superfície
9.
Eur J Med Chem ; 216: 113337, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33713977

RESUMO

A series of selenium-containing miconazole derivatives were identified as potent antifungal drugs in our previous study. Representative compound A03 (MIC = 0.01 µg/mL against C.alb. 5314) proved efficacious in inhibiting the growth of fungal pathogens. However, further study showed lead compound A03 exhibited potential hemolysis, significant cytotoxic effect and unfavorable metabolic stability and was therefore modified to overcome these drawbacks. In this article, the further optimization of selenium-containing miconazole derivatives resulted in the discovery of similarly potent compound B17 (MIC = 0.02 µg/mL against C.alb. 5314), exhibiting a superior pharmacological profile with decreased rate of metabolism, cytotoxic effect and hemolysis. Furthermore, compound B17 showed fungicidal activity against Candida albicans and significant effects on the treatment of resistant Candida albicans infections. Meanwhile, compound B17 not only could reduce the ergosterol biosynthesis pathway by inhibiting CYP51, but also inhibited biofilm formation. More importantly, compound B17 also shows promising in vivo efficacy after intraperitoneal injection and the PK study of compound B17 was evaluated. In addition, molecular docking studies provide a model for the interaction between the compound B17 and the CYP51 protein. Overall, we believe that these selenium-containing miconazole compounds can be further developed for the potential treatment of fungal infections.


Assuntos
Inibidores de 14-alfa Desmetilase/química , Antifúngicos/química , Miconazol/química , Selênio/química , Esterol 14-Desmetilase/química , Inibidores de 14-alfa Desmetilase/metabolismo , Inibidores de 14-alfa Desmetilase/farmacologia , Inibidores de 14-alfa Desmetilase/uso terapêutico , Animais , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Sítios de Ligação , Biofilmes/efeitos dos fármacos , Candida/efeitos dos fármacos , Candida/fisiologia , Candidíase/tratamento farmacológico , Candidíase/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Desenho de Fármacos , Meia-Vida , Humanos , Camundongos , Miconazol/metabolismo , Miconazol/farmacologia , Miconazol/uso terapêutico , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Esterol 14-Desmetilase/metabolismo , Relação Estrutura-Atividade
10.
Curr Top Med Chem ; 21(6): 462-506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33319673

RESUMO

1,2,3-Triazole, a five-membered heterocyclic nucleus, is widely recognized as a key chromophore of great value in medicinal chemistry for delivering compounds possessing innumerable biological activities, including antimicrobial, antitubercular, antidiabetic, antiviral, antitumor, antioxidants, and anti-inflammatory activities. Mainly, in the past years, diverse conjugates carrying this biologically valuable core have been reported due to their attractive fungicidal potential and potent effects on various infective targets. Hence, hybridization of 1,2,3-triazole with other antimicrobial pharmacophores appears to be a judicious strategy to develop new effective anti-fungal candidates to combat the emergence of drug-sensitive and drug-resistant infectious diseases. Thus, the current review highlights the recent advances of this promising category of 1,2,3-triazole-containing hybrids incorporating diverse varieties of bioactive heterocycles such as conozole, coumarin, imidazole, benzimidazole, pyrazole, indole, oxindole, chromene, pyrane, quinazoline, chalcone, isoflavone, carbohydrates, and amides. It underlies their inhibition behavior against a wide array of infectious fungal species during 2015-2020.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Esterol 14-Desmetilase/metabolismo , Triazóis/farmacologia , Inibidores de 14-alfa Desmetilase/síntese química , Inibidores de 14-alfa Desmetilase/química , Antifúngicos/síntese química , Antifúngicos/química , Candida/enzimologia , Testes de Sensibilidade Microbiana , Conformação Molecular , Triazóis/síntese química , Triazóis/química
11.
Nat Prod Res ; 34(23): 3423-3427, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30784314

RESUMO

Dermatophytosis is a dermic disease caused by fungi. The aim of this study was to search anti-dermatophyte bioactive compounds in Piper umbellatum leaves. Cytotoxicity evaluation was performed against MRC-5 and HepG2 as a selectivity parameter. Crude ethanol extract presented MIC value of 39.1 µg/mL against M. canis and no cytotoxicity to Hep G2 (human liver cancer) and MRC-5 (normal lung fibroblast). 4-nerolydilcatechol was isolated from P. umbellatum ethanolic extract. MIC values for 4-NC were 7.6µM to M. canisand 15.6µM to Trichophyton rubrum. 4-NC presented activity against M. canis14 times lower than to MRC-5 (non-tumoral human cell line), which suggest selective activity for this fungus. Molecular modeling suggests 4-NC could bind to CYP51, present in lanosterol synthesis, blocking fungi development. In conclusion, P. umbellatum crude ethanol extract and 4-NC demonstrated high and selective in vitro antifungal activity.[Formula: see text].


Assuntos
Antifúngicos/farmacologia , Arthrodermataceae/efeitos dos fármacos , Catecóis/farmacologia , Microsporum/efeitos dos fármacos , Piper/química , Antifúngicos/química , Antifúngicos/isolamento & purificação , Bioensaio , Domínio Catalítico , Catecóis/química , Catecóis/metabolismo , Dermatomicoses/microbiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Etanol/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Extratos Vegetais/química , Folhas de Planta/química , Esterol 14-Desmetilase/química , Esterol 14-Desmetilase/metabolismo
12.
Biochim Biophys Acta Proteins Proteom ; 1868(3): 140206, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30851431

RESUMO

The cytochrome P450 enzyme lanosterol 14α-demethylase (LDM) is the target of the azole antifungals used widely in medicine and agriculture as prophylaxis or treatments of infections or diseases caused by fungal pathogens. These drugs and agrochemicals contain an imidazole, triazole or tetrazole substituent, with one of the nitrogens in the azole ring coordinating as the sixth axial ligand to the LDM heme iron. Structural studies show that this membrane bound enzyme contains a relatively rigid ligand binding pocket comprised of a deeply buried heme-containing active site together with a substrate entry channel and putative product exit channel that reach to the membrane. Within the ligand binding pocket the azole antifungals have additional affinity determining interactions with hydrophobic side-chains, the polypeptide backbone and via water-mediated hydrogen bond networks. This review will describe the tools that can be used to identify and characterise the next generation of antifungals targeting LDM, with the goal of obtaining highly potent broad-spectrum fungicides that will be able to avoid target and drug efflux mediated antifungal resistance.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Antifúngicos/farmacologia , Esterol 14-Desmetilase/química , Inibidores de 14-alfa Desmetilase/química , Inibidores de 14-alfa Desmetilase/economia , Inibidores de 14-alfa Desmetilase/uso terapêutico , Agroquímicos/química , Animais , Antifúngicos/química , Antifúngicos/economia , Antifúngicos/uso terapêutico , Azóis/química , Azóis/economia , Azóis/farmacologia , Azóis/uso terapêutico , Descoberta de Drogas , Ecossistema , Abastecimento de Alimentos , Humanos , Camundongos , Micoses/tratamento farmacológico , Esterol 14-Desmetilase/metabolismo
13.
J Med Chem ; 62(22): 10391-10401, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31663733

RESUMO

Sterol 14α-demethylases (CYP51) are the cytochrome P450 enzymes required for biosynthesis of sterols in eukaryotes, the major targets for antifungal agents and prospective targets for treatment of protozoan infections. Human CYP51 could be and, for a while, was considered as a potential target for cholesterol-lowering drugs (the role that is now played by statins, which are also in clinical trials for cancer) but revealed high intrinsic resistance to inhibition. While microbial CYP51 enzymes are often inhibited stoichiometrically and functionally irreversibly, no strong inhibitors have been identified for human CYP51. In this study, we used comparative structure/functional analysis of CYP51 orthologs from different biological kingdoms and employed site-directed mutagenesis to elucidate the molecular basis for the resistance of the human enzyme to inhibition and also designed, synthesized, and characterized new compounds. Two of them inhibit human CYP51 functionally irreversibly with their potency approaching the potencies of azole drugs currently used to inhibit microbial CYP51.


Assuntos
Inibidores de 14-alfa Desmetilase/química , Inibidores de 14-alfa Desmetilase/farmacologia , Esterol 14-Desmetilase/química , Esterol 14-Desmetilase/genética , Inibidores de 14-alfa Desmetilase/síntese química , Animais , Domínio Catalítico , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Estrutura Molecular , Mutagênese Sítio-Dirigida , Proteínas de Protozoários/antagonistas & inibidores , Esterol 14-Desmetilase/metabolismo
14.
J Agric Food Chem ; 67(37): 10352-10360, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31503479

RESUMO

The potential for apple peels to mitigate the deleterious effects of a high-fat diet in mice was investigated here. Mice were fed a high-fat diet supplemented with apple powders from three apple varieties or a commercial apple polyphenol. Polyphenols were characterized using colorimetric assays and high-performance liquid chromatography. Mice were tested for standard metabolic parameters. There was a dose response to dietary apple peels, with the higher intake leading to reduced weight gain and adipose tissue mass relative to the lower intake, but none of the treatments were statistically different from the control. The gene expression of liver enzyme stearoyl-CoA desaturase (Scd-1) was correlated with adipose weight, and liver enzyme cytochrome P51 (Cyp51) was downregulated by the apple diets. The feces from a subset of mice were analyzed for polyphenols and for bacteria taxa by next-generation sequencing. The results revealed that the makeup of the fecal microbiota was related to the metabolism of dietary polyphenols.


Assuntos
Biflavonoides/análise , Catequina/análise , Fezes/química , Frutas/metabolismo , Microbioma Gastrointestinal , Malus/metabolismo , Obesidade/dietoterapia , Proantocianidinas/análise , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biflavonoides/metabolismo , Catequina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Frutas/química , Humanos , Masculino , Malus/química , Camundongos , Obesidade/genética , Obesidade/metabolismo , Obesidade/microbiologia , Polifenóis/análise , Polifenóis/metabolismo , Proantocianidinas/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Esterol 14-Desmetilase/genética , Esterol 14-Desmetilase/metabolismo
15.
Environ Toxicol Chem ; 38(7): 1455-1466, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30919521

RESUMO

Azole fungicides have entered the aquatic environment through agricultural and residential runoff. In the present study, we compared the off-target toxicity of tebuconazole, propiconazole, and myclobutanil using embryo-larval zebrafish as a model. The aim of the present study was to investigate the relative toxicity of tebuconazole, propiconazole, and myclobutanil using multiple-level endpoints such as behavioral endpoints and enzymatic and molecular biomarkers associated with their mode of action. Zebrafish embryos were exposed to azoles at environmentally relevant and high concentrations, 0.3, 1.0, and 1000 µg/L, starting at 5 h postfertilization (hpf) up to 48 hpf, as well as 5 d postfertilization (dpf). Relative mRNA expressions of cytochrome P450 family 51 lanosterol-14α-demethylase, glutathione S-transferase, caspase 9, phosphoprotein p53, and BCL2-associated X protein were measured to assess toxicity attributable to fungicides at the mRNA level, whereas caspase 3/7 (apoptosis) and 3,4-methylene​dioxy​amphetamine (lipid peroxidation) levels were measured at the enzymatic level. Furthermore, mitochondrial dysfunction was measure through the Mito Stress test using the Seahorse XFe24 at 48 hpf. In addition, light to dark movement behavior was monitored at 5 dpf using Danio Vision® to understand adverse effects at the organismal level. There was no significant difference in the light to dark behavior with exposure to azoles compared to controls. The molecular biomarkers indicated that propiconazole and myclobutanil induced lipid peroxidation, oxidative stress, and potentially apoptosis at environmentally relevant concentrations (0.3 and 1 µg/L). The results from the mitochondrial respiration assay indicated a slight decrease in spare respiratory capacity with an acute exposure (48 hpf) to all 3 azoles at 1000 µg/L. Based on the present results, propiconazole and myclobutanil are acutely toxic compared to tebuconazole in aquatic organisms at environmentally relevant concentrations. Environ Toxicol Chem 2019;38:1455-1466. © 2019 SETAC.


Assuntos
Apoptose/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Peixe-Zebra/metabolismo , Animais , Azóis/química , Expressão Gênica/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/metabolismo , Nitrilas/toxicidade , Esterol 14-Desmetilase/genética , Esterol 14-Desmetilase/metabolismo , Triazóis/toxicidade , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-29987152

RESUMO

Cryptococcal meningitis is a significant cause of morbidity and mortality in immunocompromised patients. VT-1129 is a novel fungus-specific Cyp51 inhibitor with potent in vitro activity against Cryptococcus species. Our objective was to evaluate the in vivo efficacy of VT-1129 against cryptococcal meningitis. Mice were inoculated intracranially with Cryptococcus neoformans Oral treatment with VT-1129, fluconazole, or placebo began 1 day later and continued for either 7 or 14 days, and brains and plasma were collected on day 8 or 15, 1 day after therapy ended, and the fungal burden was assessed. In the survival study, treatment continued until day 10 or day 28, after which mice were monitored off therapy until day 30 or day 60, respectively, to assess survival. The fungal burden was also assessed in the survival arm. VT-1129 plasma and brain concentrations were also measured. VT-1129 reached a significant maximal survival benefit (100%) at a dose of 20 mg/kg of body weight once daily. VT-1129 at doses of ≥0.3 mg/kg/day and each dose of fluconazole significantly reduced the brain tissue fungal burden compared to that in the control after both 7 and 14 days of dosing. The fungal burden was also undetectable in most mice treated with a dose of ≥3 mg/kg/day, even ≥20 days after dosing had stopped, in the survival arm. In contrast, rebounds in fungal burden were observed with fluconazole. These results are consistent with the VT-1129 concentrations, which remained elevated long after dosing had stopped. These data demonstrate the potential utility of VT-1129 to have a marked impact in the treatment of cryptococcal meningitis.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Meningite Criptocócica/tratamento farmacológico , Piridinas/farmacologia , Esterol 14-Desmetilase/metabolismo , Tetrazóis/farmacologia , Animais , Antifúngicos/farmacologia , Criptococose/tratamento farmacológico , Fluconazol/farmacologia , Camundongos , Testes de Sensibilidade Microbiana/métodos , Modelos Teóricos
17.
FEMS Yeast Res ; 18(7)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29931064

RESUMO

Candida albicans is a major fungal opportunistic pathogen for humans. In the treatment of C. albicans, azole drugs target the sterol 14α-demethylase (CYP51) encoded by ERG11 gene. Most studies have focused on the fact that the ERG11 mutant results in drug resistance, but its mechanism of action as a drug target has not been described yet. Our results showed that deletion of ERG11 reduced filamentous and invasive growth, and impaired hyphal elongation in sensing serum. Lack of ERG11 increased susceptibility to H2O2 and was defective in clearing reactive oxygen species. ERG11 may affect oxidative stress adaptation by specifically downregulating CAT1 expression. In addition, C. albicans cells lacking ERG11 were more efficiently killed by macrophages and became avirulent in vivo. This study is the first to indicate that ERG11 plays an essential role in hyphal elongation, oxidative stress adaptation and virulence in C. albicans. We speculated that azole drugs not only inhibit the growth of C. albicans, but also assist the host immune system in clearing the fungal organism. The new understanding of mechanisms of action of antifungal drugs should facilitate the development of treatment strategies for resistant fungal infections.


Assuntos
Candida albicans/fisiologia , Candida albicans/patogenicidade , Proteínas Fúngicas/metabolismo , Hifas/crescimento & desenvolvimento , Estresse Oxidativo , Esterol 14-Desmetilase/metabolismo , Animais , Candida albicans/enzimologia , Candida albicans/crescimento & desenvolvimento , Candidíase/microbiologia , Feminino , Proteínas Fúngicas/genética , Deleção de Genes , Peróxido de Hidrogênio/farmacologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana , Estresse Oxidativo/efeitos dos fármacos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esterol 14-Desmetilase/genética , Análise de Sobrevida , Virulência
18.
Curr Pharm Biotechnol ; 19(3): 250-257, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29766800

RESUMO

AIMS: Candida species is the common cause of opportunistic fungal infections all over the world with increased mortality and morbidity especially in immunosuppressed patients. Fluconazole is the first line therapy for candidiasis. The antifungal resistance pattern in high-risk patients is a major concern. The present study was aimed to assess the anticandidal activity of Punica granatum peel against fluconazole resistant Candida species isolated from HIV patients. MATERIALS & METHODS: Ethanol, chloroform, petroleum ether and aqueous extracts of the peel of P. granatum were evaluated against standard strains of Candida spp. and fluconazole resistant clinical isolates by agar diffusion and broth dilution techniques. The GC-MS analysis of the extracts was performed to identify the phytochemicals present in it. The predominant phytochemical was subjected to molecular docking study to determine its binding efficacy with lanosterol 14-alpha demethylase. RESULTS: P. granatum peel extracts showed excellent anticandidal activity with ethanol extract exhibiting the most inhibitory activity. C. albicans and C. krusei were the most inhibited and C. parapsilosis was the least inhibited species. The GC-MS analysis of the ethanol extract identified five predominant phytochemicals. On docking studies, the five phytochemicals showed a good binding to the lanosterol 14-alpha demethylase. CONCLUSION: The present study is the first report on the antifungal activity of various extracts of P. granatum against fluconazole resistant Candida isolates. Ethanol extract of P. granatum peel showed excellent anticandidal activity against fluconazole resistant Candida spp. Hence, it can be explored further to identify a potential drug candidate.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Fluconazol/farmacologia , Lythraceae , Extratos Vegetais/farmacologia , Antifúngicos/análise , Frutas , Cromatografia Gasosa-Espectrometria de Massas , Infecções por HIV/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/análise , Esterol 14-Desmetilase/metabolismo
19.
Metallomics ; 9(11): 1655-1665, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29072765

RESUMO

Cytochrome P450 enzymes (P450) play essential roles in redox metabolism in all domains of life including detoxification reactions and sterol biosynthesis. The activity of P450s is fuelled by two electron-transferring mechanisms, heme-independent P450 reductase (CPR) and the heme-dependent cytochrome b5 (CYB5)/cytochrome b5 reductase (CB5R) system. In this study, we characterised the role and regulation of the cytochrome b5 CybE in the fungal pathogen Aspergillus fumigatus. Deletion of the CybE encoding gene (cybE) caused a severe growth defect in two different A. fumigatus isolates, emphasising the importance of the CB5R system in this pathogen, while the non-essentiality of cybE indicates the partial redundancy of the CPR and CB5R systems. Interestingly, the growth defect caused by the cybE loss of function was even more drastic in A. fumigatus strain AfS77 compared to strain A1160P+ indicating a strain-dependent degree of compensation, which is supported by azole resistance studies. In agreement with CybE being important for the assistance of the ergosterol biosynthetic P450 Cyp51, deletion of cybE decreased resistance to the Cyp51-targeting antifungal voriconazole and caused accumulation of the ergosterol pathway intermediate eburicol. Northern analysis indicated that CybE deficiency leads to the compensatory transcriptional upregulation of Cyp51-encoding cyp51A and CPR-encoding cprA. Overexpression of cybE did not affect azole resistance suggesting that CybE activity is not rate limiting. Expression of cybE was found to be repressed during iron starvation by the iron-regulatory transcription factor HapX demonstrating iron dependence of CybE not only at the level of enzyme activity but also at the level of gene expression.


Assuntos
Aspergillus fumigatus/metabolismo , Citocromos b5/metabolismo , Farmacorresistência Fúngica/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Ferro/metabolismo , Voriconazol/farmacologia , Antifúngicos/farmacologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Citocromo-B(5) Redutase/metabolismo , Citocromos b5/genética , Farmacorresistência Fúngica/genética , Ergosterol/biossíntese , Proteínas Fúngicas/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Esterol 14-Desmetilase/metabolismo
20.
Biochem J ; 474(19): 3241-3252, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28830911

RESUMO

Nitric oxide (NO) is known to down-regulate drug-metabolizing cytochrome P450 enzymes in an enzyme-selective manner. Ubiquitin-proteasome-dependent and -independent pathways have been reported. Here, we studied the regulation of expression of human CYP51A1, the lanosterol 14α-demethylase required for synthesis of cholesterol and other sterols in mammals, which is found in every kingdom of life. In Huh7 human hepatoma cells, treatment with NO donors caused rapid post-translational down-regulation of CYP51A1 protein. Human NO synthase (NOS)-dependent down-regulation was also observed in cultured human hepatocytes treated with a cytokine mixture and in Huh7 cells expressing human NOS2 under control of a doxycycline-regulated promoter. This down-regulation was partially attenuated by proteasome inhibitors, but only trace levels of ubiquitination could be found. Further studies with inhibitors of other proteolytic pathways suggest a possible role for calpains, especially when the proteasome is inhibited. NO donors also down-regulated CYP51A1 mRNA in Huh7 cells, but to a lesser degree, than the down-regulation of the protein.


Assuntos
Sequência Conservada , Lanosterol/metabolismo , Óxido Nítrico/farmacologia , Proteólise/efeitos dos fármacos , Esterol 14-Desmetilase/metabolismo , Calpaína/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Doadores de Óxido Nítrico/farmacologia , Inibidores de Proteassoma/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esterol 14-Desmetilase/genética , Ubiquitinação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA