Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 399
Filtrar
1.
Nature ; 629(8014): 1082-1090, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750354

RESUMO

Cell types with specialized functions fundamentally regulate animal behaviour, and yet the genetic mechanisms that underlie the emergence of novel cell types and their consequences for behaviour are not well understood1. Here we show that the monogamous oldfield mouse (Peromyscus polionotus) has recently evolved a novel cell type in the adrenal gland that expresses the enzyme AKR1C18, which converts progesterone into 20α-hydroxyprogesterone. We then demonstrate that 20α-hydroxyprogesterone is more abundant in oldfield mice, where it induces monogamous-typical parental behaviours, than in the closely related promiscuous deer mice (Peromyscus maniculatus). Using quantitative trait locus mapping in a cross between these species, we ultimately find interspecific genetic variation that drives expression of the nuclear protein GADD45A and the glycoprotein tenascin N, which contribute to the emergence and function of this cell type in oldfield mice. Our results provide an example by which the recent evolution of a new cell type in a gland outside the brain contributes to the evolution of social behaviour.


Assuntos
Glândulas Suprarrenais , Evolução Biológica , Comportamento Paterno , Peromyscus , Animais , Feminino , Masculino , 20-alfa-Di-Hidroprogesterona/metabolismo , Glândulas Suprarrenais/citologia , Glândulas Suprarrenais/enzimologia , Glândulas Suprarrenais/metabolismo , Estradiol Desidrogenases/genética , Estradiol Desidrogenases/metabolismo , Proteínas GADD45/genética , Variação Genética , Hibridização Genética , Peromyscus/classificação , Peromyscus/genética , Peromyscus/fisiologia , Progesterona/metabolismo , Locos de Características Quantitativas , Comportamento Social , Tenascina/genética
2.
Cancer Lett ; 566: 216244, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37244445

RESUMO

Castration-resistant prostate cancer (CRPC) responds poorly to existing therapy and appears as the lethal consequence of prostate cancer (PCa) progression. The tumour microenvironment (TME) has been thought to play a crucial role in CRPC progression. Here, we conducted single-cell RNA sequencing analysis on two CRPC and two hormone-sensitive prostate cancer (HSPC) samples to reveal potential leading roles in castration resistance. We described the single-cell transcriptional landscape of PCa. Higher cancer heterogeneity was explored in CRPC, with stronger cell cycling status and heavier copy number variant burden of luminal cells. Cancer-associated fibroblasts (CAFs), which are one of the most critical components of TME, demonstrated unique expression and cell-cell communication features in CRPC. A CAFs subtype with high expression of HSD17B2 in CRPC was identified with inflammatory features. HSD17B2 catalyses the conversion of testosterone and dihydrotestosterone to their less active forms, which was associated with steroid hormone metabolism in PCa tumour cells. However, the characteristics of HSD17B2 in PCa fibroblasts remained unknown. We found that HSD17B2 knockdown in CRPC-CAFs could inhibit migration, invasion, and castration resistance of PCa cells in vitro. Further study showed that HSD17B2 could regulate CAFs functions and promote PCa migration through the AR/ITGBL1 axis. Overall, our study revealed the important role of CAFs in the formation of CRPC. HSD17B2 in CAFs regulated AR activation and subsequent ITGBL1 secretion to promote the malignant behaviour of PCa cells. HSD17B2 in CAFs could serve as a promising therapeutic target for CRPC.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Análise de Sequência de RNA , Hormônios/metabolismo , Linhagem Celular Tumoral , Receptores Androgênicos/metabolismo , Microambiente Tumoral , Estradiol Desidrogenases , Integrina beta1/metabolismo
3.
J Transl Med ; 21(1): 204, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932403

RESUMO

BACKGROUND: Endometrial cancer (EC) is one of the most common gynecological malignancies globally, and the development of innovative, effective drugs against EC remains a key issue. Phytoestrogen kaempferol exhibits anti-cancer effects, but the action mechanisms are still unclear. METHOD: MTT assays, colony-forming assays, flow cytometry, scratch healing, and transwell assays were used to evaluate the proliferation, apoptosis, cell cycle, migration, and invasion of both ER-subtype EC cells. Xenograft experiments were used to assess the effects of kaempferol inhibition on tumor growth. Next-generation RNA sequencing was used to compare the gene expression levels in vehicle-treated versus kaempferol-treated Ishikawa and HEC-1-A cells. A network pharmacology and molecular docking technique were applied to identify the anti-cancer mechanism of kaempferol, including the building of target-pathway network. GO analysis and KEGG pathway enrichment analysis were used to identify cancer-related targets. Finally, the study validated the mRNA and protein expression using real-time quantitative PCR, western blotting, and immunohistochemical analysis. RESULTS: Kaempferol was found to suppress the proliferation, promote apoptosis, and limit the tumor-forming, scratch healing, invasion, and migration capacities of EC cells. Kaempferol inhibited tumor growth and promotes apoptosis in a human endometrial cancer xenograft mouse model. No significant toxicity of kaempferol was found in human monocytes and normal cell lines at non-cytotoxic concentrations. No adverse effects or significant changes in body weight or organ coefficients were observed in 3-7 weeks' kaempferol-treated animals. The RNA sequencing, network pharmacology, and molecular docking approaches identified the overall survival-related differentially expressed gene HSD17B1. Interestingly, kaempferol upregulated HSD17B1 expression and sensitivity in ER-negative EC cells. Kaempferol differentially regulated PPARG expression in EC cells of different ER subtypes, independent of its effect on ESR1. HSD17B1 and HSD17B1-associated genes, such as ESR1, ESRRA, PPARG, AKT1, and AKR1C1\2\3, were involved in several estrogen metabolism pathways, such as steroid binding, 17-beta-hydroxysteroid dehydrogenase (NADP+) activity, steroid hormone biosynthesis, and regulation of hormone levels. The molecular basis of the effects of kaempferol treatment was evaluated. CONCLUSIONS: Kaempferol is a novel therapeutic candidate for EC via HSD17B1-related estrogen metabolism pathways. These results provide new insights into the efficiency of the medical translation of phytoestrogens.


Assuntos
Neoplasias do Endométrio , Estradiol Desidrogenases , Quempferóis , Farmacologia em Rede , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Estrogênios/metabolismo , Quempferóis/farmacologia , Simulação de Acoplamento Molecular , PPAR gama/metabolismo , Esteroides/metabolismo , Estradiol Desidrogenases/metabolismo
4.
J Steroid Biochem Mol Biol ; 222: 106136, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35691460

RESUMO

Endometriosis is a gynecological disorder affecting about 10% of women and can lead to invalidating painful symptoms and infertility. Since there is no current definitive cure for this disease, new therapeutic options are necessary. 17ß-Hydroxysteroid dehydrogenase type 1 (17ß-HSD1) is involved in the production of estradiol (E2), the most potent estrogen in women, and of 5-androstene-3ß,17ß-diol (5-diol), a weaker estrogen than E2, but whose importance increases after menopause. 17ß-HSD1 is therefore a pharmacological target of choice for the treatment of estrogen-dependent diseases such as endometriosis. We developed a targeted-covalent (irreversible) and non-estrogenic inhibitor of 17ß-HSD1, a molecule named PBRM, and herein evaluated its efficiency for the treatment of endometriosis. In a cell-free assay containing estrone (E1), the natural substrate of 17ß-HSD1, PBRM was able to block the formation of E2 in a collection of 50 human endometriosis lesions from a different clinical feature type, location, and phase. When given orally by gavage at 15 mg/kg to baboons, the resulting plasmatic concentration of PBRM was found to be sufficiently high (up to 125 ng/mL) for an efficacy study in a non-human primate (baboon) endometriosis model. After 2 months of treatment, the number of lesions/adhesions decreased in 60% of animals (3/5) in the PBRM-treated group, compared to the placebo group which showed an increase in the number of lesion/adhesions in 60% (3/5) of animals. Indeed, the total number of lesions/adhesions decreased in treated group (-6.5 or -19% when excluding one animal) while it increased in the control group receiving a placebo (+11%). Analysis of specific endometriotic lesions revealed that PBRM decreased the number of red lesions (-67%; 8/12) and white lesions (-35%; 11/31), but not of blue-black lesions. Similarly, PBRM decreased the surface area of dense adhesions and filmy adhesions, as compared to placebo. Also, PBRM treatment did not significantly affect the number of menstrual days. Finally, this targeted covalent inhibitor showed no adverse effects and no apparent toxicity for the duration of the treatment. These data indicate that 17ß-HSD1 inhibitor PBRM is a promising candidate for therapy targeting endometriosis and supports the need of additional efforts toward clinical trials.


Assuntos
Endometriose , Estradiol , 17-Hidroxiesteroide Desidrogenases , Animais , Endometriose/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Estradiol/química , Estradiol/farmacologia , Estradiol Desidrogenases , Estrogênios , Feminino , Humanos , Primatas
5.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35563206

RESUMO

Hydroxysteroid (17beta) dehydrogenase type 1 (HSD17B1) is an enzyme that converts estrone to estradiol, while adenomyosis is an estrogen-dependent disease with poorly understood pathophysiology. In the present study, we show that mice universally over-expressing human estrogen biosynthetic enzyme HSD17B1 (HSD17B1TG mice) present with adenomyosis phenotype, characterized by histological and molecular evaluation. The first adenomyotic changes with endometrial glands partially or fully infiltrated into the myometrium appeared at the age of 5.5 months in HSD17B1TG females and became more prominent with increasing age. Preceding the phenotype, increased myometrial smooth muscle actin positivity and increased amount of glandular myofibroblast cells were observed in HSD17B1TG uteri. This was accompanied by transcriptomic upregulation of inflammatory and estrogen signaling pathways. Further, the genes upregulated in the HSD17B1TG uterus were enriched with genes previously observed to be induced in the human adenomyotic uterus, including several genes of the NFKB pathway. A 6-week-long HSD17B1 inhibitor treatment reduced the occurrence of the adenomyotic changes by 5-fold, whereas no effect was observed in the vehicle-treated HSD17B1TG mice, suggesting that estrogen is the main upstream regulator of adenomyosis-induced uterine signaling pathways. HSD17B1 is considered as a promising drug target to inhibit estrogen-dependent growth of endometrial disorders. The present data indicate that HSD17B1 over-expression in TG mice results in adenomyotic changes reversed by HSD17B1 inhibitor treatment and HSD17B1 is, thus, a potential novel drug target for adenomyosis.


Assuntos
Adenomiose , Adenomiose/genética , Adenomiose/patologia , Animais , Estradiol Desidrogenases/genética , Estradiol Desidrogenases/metabolismo , Estrogênios/metabolismo , Feminino , Humanos , Hidroxiesteroides , Camundongos , Camundongos Transgênicos , Fenótipo
6.
Biosci Rep ; 42(5)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35510872

RESUMO

Vitamin D (VD) exerts a wide variety of actions via gene regulation mediated by the nuclear vitamin D receptor (VDR) under physiological and pathological settings. However, the known target genes of VDR appear unlikely to account for all VD actions. We used in silico and transcriptomic approaches in human cell lines to search for non-coding RNAs transcriptionally regulated by VD directly. Four long non-coding RNAs (lncRNAs), but no microRNAs (miRNAs), were found, supported by the presence of consensus VDR-binding motifs in the coding regions. One of these lncRNAs (AS-HSD17ß2) is transcribed from the antisense strand of the HSD17ß2 locus, which is also a direct VD target. AS-HSD17ß2 attenuated HSD17ß2 expression. Thus, AS-HSD17ß2 represents a direct lncRNA target of VD.


Assuntos
MicroRNAs , RNA Longo não Codificante , Estradiol Desidrogenases , Humanos , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Vitamina D/genética , Vitamina D/farmacologia , Vitaminas
7.
Biol Reprod ; 106(1): 95-107, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34672344

RESUMO

Key biomolecular processes, which regulate primordial ovarian follicle dormancy and early folliculogenesis in mammalian ovaries, are not fully understood. The domestic cat is a useful model to study ovarian folliculogenesis and is the most relevant for developing in vitro growth methods to be implemented in wild felid conservation breeding programs. Previously, RNA-sequencing of primordial (PrF), primary (PF), and secondary follicle (SF) samples from domestic cat implicated ovarian steroidogenesis and steroid reception during follicle development. Here, we aimed to identify which sex steroid biosynthesis and metabolism enzymes, gonadotropin receptors, and sex steroid receptors are present and may be potential regulators. Differential gene expression, functional annotation, and enrichment analyses were employed and protein localization was studied too. Gene transcripts for PGR, PGRMC1, AR (steroid receptors), CYP11A1, CYP17A1, HSD17B1 and HSD17B17 (steroidogenic enzymes), and STS (steroid metabolizing enzyme) were significantly differentially expressed (Q values of ≤0.05). Differential gene expression increased in all transcripts during follicle transitions apart from AR which decreased by the secondary stage. Immunohistochemistry localized FSHR and LHCGR to oocytes at each stage. PGRMC1 immunostaining was strongest in granulosa cells, whereas AR was strongest in oocytes throughout each stage. Protein signals for steroidogenic enzymes were only detectable in SFs. Products of these significantly differentially expressed genes may regulate domestic cat preantral folliculogenesis. In vitro growth could be optimized as all early follicles express gonadotropin and steroid receptors meaning hormone interaction and response may be possible. Protein expression analyses of early SFs supported its potential for producing sex steroids.


Assuntos
Gatos/fisiologia , Hormônios Esteroides Gonadais/metabolismo , Gonadotropinas/metabolismo , Folículo Ovariano/fisiologia , Transdução de Sinais/fisiologia , 17-Hidroxiesteroide Desidrogenases/análise , 17-Hidroxiesteroide Desidrogenases/genética , Animais , Sistema Enzimático do Citocromo P-450/análise , Sistema Enzimático do Citocromo P-450/genética , Estradiol Desidrogenases , Feminino , Regulação da Expressão Gênica , Hormônios Esteroides Gonadais/biossíntese , Folículo Ovariano/enzimologia , Receptores da Gonadotropina/análise , Receptores da Gonadotropina/genética , Receptores da Gonadotropina/fisiologia , Receptores de Esteroides/análise , Receptores de Esteroides/genética , Receptores de Esteroides/fisiologia , Análise de Sequência de RNA
8.
Reprod Biol Endocrinol ; 19(1): 74, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001150

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disorder with various manifestations and complex etiology. Follicular fluid (FF) serves as the complex microenvironment for follicular development. However, the correlation between the concentration of steroid in FF and the pathogenesis of PCOS is still unclear. METHODS: Twenty steroid levels in FF from ten patients with PCOS and ten women with male-factor infertility undergoing in vitro fertilization were tested by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in order to explore their possibly correlation with PCOS. Meanwhile, the mRNA levels of core enzymes in steroid synthesis pathway from exosomes of FF were also detected by qPCR. RESULTS: The estriol (p < 0.01), estradiol (p < 0.05) and prenenolone (p < 0.01) levels in FF of PCOS group were significantly increased, compared to the normal group, and the progesterone levels (p < 0.05) were decreased in PCOS group. Increased mRNA levels of CYP11A, CYP19A and HSD17B2 of exosomes were accompanied by the hormonal changes in FF. Correlation analysis showed that mRNA levels of CYP11A and HSD17B2 were negatively correlated with percent of top-quality embryos and rate of embryos develop to blastocyst. CONCLUSION: Our results suggest that increased levels of estrogen and pregnenolone in follicular fluid may affect follicle development in PCOS patients, and the mechanism is partially related to HSD17B1, CYP19A1 and CYP11A1 expression change in FF exosomes.


Assuntos
Exossomos/metabolismo , Líquido Folicular/química , Indução da Ovulação , Síndrome do Ovário Policístico/metabolismo , Esteroides/análise , Adulto , Aromatase/biossíntese , Aromatase/genética , Blastocisto/citologia , Enzima de Clivagem da Cadeia Lateral do Colesterol/biossíntese , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Cromatografia Líquida , Desenvolvimento Embrionário , Estradiol/análise , Estradiol Desidrogenases/biossíntese , Estradiol Desidrogenases/genética , Estriol/análise , Exossomos/ultraestrutura , Feminino , Humanos , Nanopartículas , Recuperação de Oócitos , Indução da Ovulação/métodos , Pregnenolona/análise , Progesterona/análise , RNA Mensageiro/biossíntese , Espectrometria de Massas em Tandem
9.
Cancer Lett ; 508: 18-29, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-33762202

RESUMO

Endometrial cancer (EC) is the most common gynaecological tumor in developed countries and its incidence is increasing. Approximately 80% of newly diagnosed EC cases are estrogen-dependent. Type 1 17ß-hydroxysteroid dehydrogenase (17ß-HSD-1) is the enzyme that catalyzes the final step in estrogen biosynthesis by reducing the weak estrogen estrone (E1) to the potent estrogen 17ß-estradiol (E2), and previous studies showed that this enzyme is implicated in the intratumoral E2 generation in EC. In the present study we employed a recently developed orthotopic and estrogen-dependent xenograft mouse model of EC to show that pharmacological inhibition of the 17ß-HSD-1 enzyme inhibits disease development. Tumors were induced in one uterine horn of athymic nude mice by intrauterine injection of the well-differentiated human endometrial adenocarcinoma Ishikawa cell line, modified to express human 17ß-HSD-1 in levels comparable to EC, and the luciferase and green fluorescent protein reporter genes. Controlled estrogen exposure in ovariectomized mice was achieved using subcutaneous MedRod implants that released either the low active estrone (E1) precursor or vehicle. A subgroup of E1 supplemented mice received daily oral gavage of FP4643, a well-characterized 17ß-HSD-1 inhibitor. Bioluminescence imaging (BLI) was used to measure tumor growth non-invasively. At sacrifice, mice receiving E1 and treated with the FP4643 inhibitor showed a significant reduction in tumor growth by approximately 65% compared to mice receiving E1. Tumors exhibited metastatic spread to the peritoneum, to the lymphovascular space (LVI), and to the thoracic cavity. Metastatic spread and LVI invasion were both significantly reduced in the inhibitor-treated group. Transcriptional profiling of tumors indicated that FP4643 treatment reduced the oncogenic potential at the mRNA level. In conclusion, we show that 17ß-HSD-1 inhibition represents a promising novel endocrine treatment for EC.


Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias do Endométrio/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Estradiol Desidrogenases/antagonistas & inibidores , Animais , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias do Endométrio/enzimologia , Estrona/análogos & derivados , Estrona/farmacologia , Feminino , Humanos , Camundongos Nus , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Reprod Immunol ; 142: 103191, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32937223

RESUMO

OBJECTIVE: Follicular development can be disturbed due to many factors, including having polycystic ovaries. Aberrant expression of genes involved in steroidogenesis pathway could lead to aberrant oocyte development. In this study, the gene expression levels of a number of genes that is functioning in steroidogenesis pathway were investigated. MATERIALS AND METHODS: The spare oocytes were collected from NEU Hospital IVF Center following controlled ovarian stimulation cycle. RNA was extracted using RNA/DNA Purification Kit (Norgen, Canada) and reverse transcription was performed using TruScript First Strand cDNA Synthesis Kit (Norgen, Canada). Real time PCR was conducted using LightCycler® 480 SYBR Green I Master (Roche, UK). RESULTS AND CONCLUSION: The expression levels of CYP11, CYP17, CYP19, HSD17B1, HSD3B2 and ACTB were detected in human MII stage oocytes obtained from oocyte donors aged between 18-30 years. The number of follicles and oocytes collected from the patients with polycystic ovaries were slightly higher compared to the control group. The expression level of CYP11A1 was shown to be statistically different in the oocytes obtained from the patients who do not have polycystic ovaries (p < 0.05), whereas statistically significant expression levels were observed for CYP17 in the oocytes obtained from patients with polycystic ovaries (p < 0.05). The expression level of HSD17B1 was also shown to be statistically different in the oocytes (p < 0.05). The extrapolation of the results indicates that the genes involved in steroidogenesis pathway are altered in cases of polycystic ovaries. Thus, it may have a role in the development of polycystic ovaries.


Assuntos
Androgênios/biossíntese , Hiperandrogenismo/patologia , Oócitos/enzimologia , Síndrome do Ovário Policístico/complicações , Adolescente , Adulto , Estudos de Casos e Controles , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Estradiol Desidrogenases/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Humanos , Oócitos/crescimento & desenvolvimento , Oócitos/patologia , Oogênese , Folículo Ovariano/patologia , Síndrome do Ovário Policístico/patologia , Esteroide 17-alfa-Hidroxilase/metabolismo , Adulto Jovem
11.
Mol Nutr Food Res ; 64(16): e2000289, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32640069

RESUMO

SCOPE: Urolithin A and B are gut metabolites of ellagic acid and ellagitannins associated with many beneficial effects. Evidence in vitro pointed to their potential as estrogenic modulators. However, both molecular mechanisms and biological targets involved in such activity are still poorly characterized, preventing a comprehensive understanding of their bioactivity in living organisms. This study aimed at rationally identifying novel biological targets underlying the estrogenic-modulatory activity of urolithins. METHODS AND RESULTS: The work relies on an in silico/in vitro target fishing study coupling molecular modeling with biochemical and cell-based assays. Estrogen sulfotransferase and 17ß-hydroxysteroid dehydrogenase are identified as potentially subject to inhibition by the investigated urolithins. The inhibition of the latter undergoes experimental confirmation either in a cell-free or cell-based assay, validating computational outcomes. CONCLUSIONS: The work describes target fishing as an effective tool to identify unexpected targets of food bioactives detailing the interaction at a molecular level. Specifically, it described, for the first time, 17ß-hydroxysteroid dehydrogenase as a target of urolithins and highlighted the need of further investigations to widen the understanding of urolithins as estrogen modulators in living organisms.


Assuntos
Cumarínicos/farmacologia , Inibidores Enzimáticos/farmacologia , Estradiol Desidrogenases/antagonistas & inibidores , Proteínas/metabolismo , 17-Hidroxiesteroide Desidrogenases/química , 17-Hidroxiesteroide Desidrogenases/metabolismo , Sistema Livre de Células , Simulação por Computador , Cumarínicos/química , Cumarínicos/metabolismo , Humanos , Ligantes , Células MCF-7 , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas/química , Sulfotransferases/química , Sulfotransferases/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-32547495

RESUMO

Traumatic brain injury (TBI) is responsible for various neuronal and cognitive deficits as well as psychosocial dysfunction. Characterized by damage inducing neuroinflammation, this response can cause an acute secondary injury that leads to widespread neurodegeneration and loss of neurological function. Estrogens decrease injury induced neuroinflammation and increase cell survival and neuroprotection and thus are a potential target for use following TBI. While much is known about the role of estrogens as a neuroprotective agent following TBI, less is known regarding their formation and inactivation following damage to the brain. Specifically, very little is known surrounding the majority of enzymes responsible for the production of estrogens. These estrogen metabolizing enzymes (EME) include aromatase, steroid sulfatase (STS), estrogen sulfotransferase (EST/SULT1E1), and some forms of 17ß-hydroxysteroid dehydrogenase (HSD17B) and are involved in both the initial conversion and interconversion of estrogens from precursors. This article will review and offer new prospective and ideas on the expression of EMEs following TBI.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/prevenção & controle , Estrogênios/metabolismo , Estrogênios/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Aromatase/metabolismo , Lesões Encefálicas Traumáticas/complicações , Encefalite/etiologia , Encefalite/prevenção & controle , Estradiol Desidrogenases/metabolismo , Humanos , Esteril-Sulfatase/metabolismo , Sulfotransferases/metabolismo
13.
Int J Oncol ; 56(6): 1352-1372, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32236582

RESUMO

Numerous studies have reported that oestrogens may contribute to the development of non­small cell lung cancer (NSCLC). Although different steroidogenic enzymes have been detected in the lung, the precise mechanism leading to an exaggerated accumulation of active oestrogens in NSCLC remains unexplained. 17­ß­Hydroxysteroid dehydrogenase type 2 (HSD17B2) is an enzyme involved in oestrogen and androgen inactivation by converting 17­ß­oestradiol into oestrone, and testosterone into 4­androstenedione. Therefore, the enzyme serves an important role in regulation of the intracellular availability of active sex steroids. This study aimed to determine the expression levels of HSD17B2 in lung cancer (LC) and adjacent histopathologically unchanged tissues obtained from 161 patients with NSCLC, and to analyse the association of HSD17B2 with clinicopathological features. For that purpose, reverse transcription­quantitative PCR, western blotting and immunohistochemistry were conducted. The results revealed that the mRNA and protein expression levels of HSD17B2 were significantly decreased in LC tissues compared with matched controls (P<10­6). Conversely, strong cytoplasmic staining of HSD17B2 was detected in the unchanged respiratory epithelium and in glandular cells. Notably, a strong association was detected between reduced HSD17B2 expression and advanced tumour stage, grade and size. Furthermore, it was revealed that HSD17B2 may have potential prognostic significance in NSCLC. A log­rank test revealed the benefit of high HSD17B2 protein expression for the overall survival (OS) of patients (P=0.0017), and multivariate analysis confirmed this finding (hazard ratio=0.21; 95% confidence interval=0.07­0.63; P=0.0043). Stratified analysis in the Kaplan­Meier Plotter database indicated that patients with higher HSD17B2 expression presented better OS and post­progression survival. This beneficial effect was particularly evident in patients with adenocarcinoma and during the early stages of NSCLC. Decreased expression of HSD17B2 appears to be a frequent feature in NSCLC. Retrospective analysis suggests that the HSD17B2 mRNA and protein status might be independent prognostic factors in NSCLC and should be further investigated.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Estradiol Desidrogenases/genética , Estradiol Desidrogenases/metabolismo , Neoplasias Pulmonares/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Citoplasma/genética , Citoplasma/metabolismo , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos , Análise de Sobrevida
14.
Toxicol Mech Methods ; 30(5): 336-349, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32166990

RESUMO

In cosmetics and food products, parabens are widely used as antimicrobial agents. Reports have suggested that parabens may be linked to infertility, owing to their effects on basal steroidogenesis properties or their capacity to inflict mitochondrial damage. Despite growing concerns about parabens as endocrine disruptors, it is unclear whether they affect any of these actions in humans, particularly at environmentally relevant concentrations. In this work, an in vitro primary culture of human granulosa cells was used to evaluate steroidogenesis, based on the assessment of progesterone production and regulation of critical steroidogenic genes: CYP11A1, HSD3B1, CYP19A1, and HSD17B1. The effects of two commercially relevant parabens, methylparaben (MPB) and butylparaben (BPB), were screened. Cells were exposed to multiple concentrations ranging from relatively low (typical environmental exposure) to relatively high. The effect was assessed by the parabens' ability to modify steroidogenic genes, progesterone or estradiol production, and on mitochondrial health, by evaluating mitochondrial activity as well as mtDNA content. Neither MPB nor BPB showed any effect over progesterone production or the expression of genes controlling steroid production. Only BPB affected the mitochondria, decreasing mtDNA content at supraphysiological concentrations (1000 nM). Prolonged exposure to these compounds produced no effects in neither of these parameters. In conclusion, neither MPB nor BPB significantly affected basal steroidogenesis in granulosa cells. Although evidence supporting paraben toxicity is prevalent, here we put forth evidence that suggests that parabens do not affect basal steroidogenesis in human granulosa cells.


Assuntos
Disruptores Endócrinos/toxicidade , Células da Granulosa/efeitos dos fármacos , Parabenos/toxicidade , Progesterona/biossíntese , Adulto , Aromatase/genética , Líquidos Corporais/química , Células Cultivadas , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , DNA Mitocondrial/metabolismo , Relação Dose-Resposta a Droga , Disruptores Endócrinos/administração & dosagem , Disruptores Endócrinos/análise , Estradiol Desidrogenases/genética , Feminino , Células da Granulosa/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Complexos Multienzimáticos/genética , Parabenos/administração & dosagem , Parabenos/análise , Cultura Primária de Células , Progesterona Redutase/genética , Esteroide Isomerases/genética
15.
Eur Arch Otorhinolaryngol ; 277(4): 1121-1127, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31989268

RESUMO

OBJECTIVES: Puberphonia or mutational falsetto (MF) is seen more in males, and hormonal changes are considered to be among the aetiological causes. Therefore, the aim of this study was to investigate the molecules [G protein-coupled oestrogen receptor 1 (GPER-1), aromatase, 17-beta-hydroxysteroid dehydrogenase (17ß-HSD), cyclic adenosine monophosphate (cAMP) levels] related to receptors and pathways in patients with MF. METHODS: The study included 30 MF patients and a control group of 30 healthy individuals. Voice recordings were made of the MF patients and acoustic analyses were applied. The serum GPER-1, aromatase, 17ß-HSD, cAMP levels and TSH, estradiol, prolactin, progesterone, and testosterone levels were evaluated in venous blood samples. RESULTS: In the MF patients, the GPER-1 level determined of mean 3.68 (1.95-4.26) pg/ml, 17 beta dehydrogenase of 5.25 (2.73-6.77) ng/ml, and cAMP of 24.62 (11.62-30.35) ng/ml were statistically signficantly higher than those of the control group (p = 0.008, p = 0.002, p = 0.003, respectively). The aromatase level in the MF patients was found to be 3.48 (2.01-4.91) and the difference between the two groups was not statistically significant (p = 0.067). CONCLUSION: The GPER-1, 17ß-HSD, and cAMP levels were found to be higher in the MF patients than in the control group, suggesting that they could be of importance in the diagnosis and treatment of MF.


Assuntos
Aromatase , AMP Cíclico , Estradiol Desidrogenases/genética , Receptor alfa de Estrogênio , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Distúrbios da Voz/genética , Aromatase/metabolismo , Estradiol , Estrogênios , Proteínas de Ligação ao GTP , Humanos , Masculino , Mutação
16.
Int J Mol Sci ; 22(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383933

RESUMO

As the outermost barrier of the body, skin is a major target of oxidative stress. In the brain, estrogen has been reported synthesized locally and protects neurons from oxidative stress. Here, we explored whether estrogen is also locally synthesized in the skin to protect from oxidative stress and whether aberrant local estrogen synthesis is involved in skin disorders. Enzymes and estrogen receptor expression in skin cells were examined first by quantitative real-time PCR and Western blot analyses. Interestingly, the estrogen synthesis enzyme was mainly localized in epidermal keratinocytes and estrogen receptors were mainly expressed in melanocytes among 13 kinds of cultured human skin cells. The most abundant estrogen synthesis enzyme expressed in the epidermis was 17ß-hydroxysteroid dehydrogenase 1 (HSD17ß1) localized in keratinocytes, and the most dominant estrogen receptor expressed in the epidermis was G protein-coupled estrogen receptor 1 (GPER1) in melanocytes. To investigate whether keratinocyte-derived estradiol could protect melanocytes from oxidative stress, cultured human primary epidermal melanocytes (HEMn-MPs) were treated with H2O2 in the presence or absence of 17ß estradiol or co-cultured with HSD17ß1 siRNA-transfected keratinocytes. Keratinocyte-derived estradiol exhibited protective effects against H2O2-induced cell death. Further, reduced expression of HSD17ß1 in the epidermis of skin from vitiligo patients was observed compared to the skin from healthy donors or in the normal portions of the skin in vitiligo patients. Our results suggest a possible new target for interventions that may be used in combination with current therapies for patients with vitiligo.


Assuntos
Suscetibilidade a Doenças , Epiderme/metabolismo , Estrogênios/metabolismo , Melanócitos/metabolismo , Estresse Oxidativo , Vitiligo/etiologia , Vitiligo/metabolismo , Contagem de Células , Morte Celular , Células Epidérmicas/metabolismo , Estradiol Desidrogenases/genética , Estradiol Desidrogenases/metabolismo , Expressão Gênica , Humanos , Queratinócitos/metabolismo , Melaninas/biossíntese , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
17.
J Hazard Mater ; 385: 121616, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31780289

RESUMO

The efficient bioremediation of estrogen contamination in complex environments is of great concern. Here the strain Stenotrophomonas maltophilia SJTH1 was found with great and stable estrogen-degradation efficiency even under stress environments. The strain could utilize 17ß-estradiol (E2) as a carbon source and degrade 90% of 10 mg/L E2 in a week; estrone (E1) was the first degrading intermediate of E2. Notably, diverse pH conditions (3.0-11.0) and supplements of 4% salinity, 6.25 mg/L of heavy metal (Cd2+ or Cu2+), or 1 CMC of surfactant (Tween 80/ Triton X-100) had little effect on its cell growth and estrogen degradation. The addition of low concentrations of copper and Tween 80 even promoted its E2 degradation. Bioaugmentation of strain SJTH1 into solid clay soil achieved over 80% removal of E2 contamination (10 mg/kg) within two weeks. Further, the whole genome sequence of S. maltophilia SJTH1 was obtained, and a series of potential genes participating in stress-tolerance and estrogen-degradation were predicted. Four dehydrogenases similar to 17ß-hydroxysteroid dehydrogenases (17ß-HSDs) were found to be induced by E2, and the four heterogenous-expressed enzymes could oxidize E2 into E1 efficiently. This work could promote bioremediation appliance potential with microorganisms and biodegradation mechanism study of estrogens in complex real environments.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Estradiol Desidrogenases/isolamento & purificação , Estradiol/metabolismo , Stenotrophomonas maltophilia/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biodegradação Ambiental , Estradiol Desidrogenases/química , Estradiol Desidrogenases/genética , Cinética , Octoxinol/farmacologia , Oxirredução , Polissorbatos/farmacologia , Alinhamento de Sequência , Stenotrophomonas maltophilia/efeitos dos fármacos , Stenotrophomonas maltophilia/enzimologia , Stenotrophomonas maltophilia/genética , Tensoativos/farmacologia
19.
Breast ; 49: 48-54, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31678641

RESUMO

BACKGROUND: Arthralgia is a common and debilitating toxicity of aromatase inhibitors (AI) that leads to premature drug discontinuation. We sought to evaluate the clinical and genetic risk factors associated with AI-associated arthralgia (AIAA). METHODS: We performed a cross-sectional study among postmenopausal women with stage 0-III breast cancer who were prescribed a third-generation AI for adjuvant therapy. The primary outcome was patient-reported AIAA occurrence. We extracted and assayed germline DNA for single nucleotide polymorphisms (SNPs) of genes implicated in estrogen and inflammation pathways. Multivariable logistic regression models examined the association between demographic, clinical, and genetic factors and AIAA. Analyses were restricted to White participants. RESULTS: Among 1049 White participants, 543 (52%) reported AIAA. In multivariable analyses, women who had a college education [Adjusted Odds Ratio (AOR) 1.49, 95% Confidence Interval (CI) 1.00-2.20], had a more recent transition into menopause (<10 years) (5-10 years AOR 1.55, 95% CI 1.09-2.22; <5 years AOR 1.78, 95% CI 1.18-2.67), were within one year of starting AIs (AOR 1.61, 95% CI 1.08-2.40), and those who received chemotherapy (AOR 1.38, 95% CI 1.02-1.88) were significantly more likely to report AIAA. Additionally, SNP rs11648233 (HSD17B2) was significantly associated with higher odds of AIAA (AOR 2.21, 95% CI 1.55-3.16). CONCLUSIONS: Time since menopause and start of AIs, prior chemotherapy, and SNP rs11648233 within the HSD17B2 gene in the estrogen pathway were significantly associated with patient-reported AIAA. These findings suggest that clinical and genetic factors involved in estrogen withdrawal increase the risk of AIAA in postmenopausal breast cancer survivors.


Assuntos
Inibidores da Aromatase/efeitos adversos , Artralgia/induzido quimicamente , Neoplasias da Mama/tratamento farmacológico , Predisposição Genética para Doença , Adulto , Idoso , Idoso de 80 Anos ou mais , Inibidores da Aromatase/uso terapêutico , Artralgia/diagnóstico , Artralgia/genética , Neoplasias da Mama/genética , Estudos Transversais , Estradiol Desidrogenases/genética , Feminino , Marcadores Genéticos , Humanos , Modelos Logísticos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Pós-Menopausa , Fatores de Risco
20.
J Steroid Biochem Mol Biol ; 195: 105471, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31513846

RESUMO

Breast cancer is a major cause of cancer-related death for women in western countries. 17ß-Hydroxysteroid dehydrogenases (17ß-HSDs) play important roles in the last step of sex-hormone activation and the first step of sex-hormone inactivation. 17ß-HSD2 is responsible for oxidizing the sex hormones. We used microarray technology to analyze the effect of 17ß-HSD2 on the MCF-7 cell transcript profile after knocking down 17ß-HSD2. Five hundred forty-two genes were regulated 1.5-fold or higher after treatment with 17ß-HSD2 siRNA. Knocking down 17ß-HSD2 interrupted nucleosome assembly. Pathway-Act-Network analysis showed that the MAPK and apoptosis signaling pathways were most regulated. In the gene-gene interaction network analysis, UGT2B15, which is involved in hormone metabolism, was the most regulated core gene. FOS, GREB1, and CXCL12 were the most regulated genes, and CXCL12 was related to tumor migration. Following 17ß-HSD2 knock-down, the cell viability decreased to 75.9%. The S-phase percentage decreased by 19.4%, the Q2-phase percentage in cell apoptosis testing increased by 1.5 times, and cell migration decreased to 66.0%. These results were consistent with our gene chip analysis and indicated that 17ß-HSD2 plays both hormone-dependent and hormone-independent enzymatic roles. In-depth investigations of this enzyme on the genomic level will help clarify its related molecular mechanisms.


Assuntos
Neoplasias da Mama/genética , Estradiol Desidrogenases/genética , Transcriptoma , Apoptose , Ciclo Celular , Humanos , Células MCF-7 , Análise de Sequência com Séries de Oligonucleotídeos , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA