Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 883
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Dev Comp Immunol ; 156: 105159, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38492902

RESUMO

Stress-induced immunosuppression (SIIS) is one of the common problems in intensive poultry production, which brings enormous economic losses to the poultry industry. Accumulating evidence has shown that microRNAs (miRNAs) were important regulators of gene expression in the immune system. However, the miRNA-mediated molecular mechanisms underlying SIIS in chickens are still poorly understood. This study aimed to investigate the biological functions and regulatory mechanism of miRNAs in chicken SIIS. A stress-induced immunosuppression model was successfully established via daily injection of dexamethasone and analyzed miRNA expression in spleen. Seventy-four differentially expressed miRNAs (DEMs) was identified, and 229 target genes of the DEMs were predicted. Functional enrichment analysis the target genes revealed pathways related to immunity, such as MAPK signaling pathway and FoxO signaling pathway. The candidate miRNA, gga-miR-146a-5p, was found to be significantly downregulated in the Dex-induced chicken spleen, and we found that Dex stimulation significantly inhibited the expression of gga-miR-146a-5p in Chicken macrophages (HD11). Flow cytometry, 5-ethynyl-2'-deoxyuridine (EdU), cell counting kit-8 (CCK-8) and other assays indicated that gga-miR-146a-5p can promote the proliferation and inhibit apoptosis of HD11 cells. A dual-luciferase reporter assay suggested that the Interleukin 1 receptor associated kinase 2 (IRAK2) gene, which encoded a transcriptional factor, was a direct target of gga-miR-146a-5p, gga-miR-146a-5p suppressed the post-transcriptional activity of IRAK2. These findings not only improve our understanding of the specific functions of miRNAs in avian stress but also provide potential targets for genetic improvement of stress resistance in poultry.


Assuntos
Galinhas , Dexametasona , Macrófagos , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Galinhas/imunologia , Galinhas/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Dexametasona/farmacologia , Apoptose , Tolerância Imunológica , Regulação da Expressão Gênica , Terapia de Imunossupressão , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Baço/imunologia , Baço/metabolismo , Transdução de Sinais , Estresse Fisiológico/imunologia , Linhagem Celular , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Proliferação de Células
2.
J Immunol Res ; 2021: 2939693, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604391

RESUMO

All extracellular forms of Trypanosoma cruzi, the causative agent of Chagas disease, release extracellular vesicles (EVs) containing major surface molecules of the parasite. EV release depends on several mechanisms (internal and external). However, most of the environmental conditions affecting this phenomenon are still unknown. In this work, we evaluated EV release under different stress conditions and their ability to be internalized by the parasites. In addition, we investigated whether the release conditions would affect their immunomodulatory properties in preactivated bone marrow-derived macrophages (BMDM). Sodium azide and methyl-cyclo-ß-dextrin (CDB) reduced EV release, indicating that this phenomenon relies on membrane organization. EV release was increased at low temperatures (4°C) and acidic conditions (pH 5.0). Under this pH, trypomastigotes differentiated into amastigotes. EVs are rapidly liberated and reabsorbed by the trypomastigotes in a concentration-dependent manner. Nitrosative stress caused by sodium nitrite in acid medium or S-nitrosoglutathione also stimulated the secretion of EVs. EVs released under all stress conditions also maintained their proinflammatory activity and increased the expression of iNOS, Arg 1, IL-12, and IL-23 genes in IFN-γ and LPS preactivated BMDM. In conclusion, our results suggest a budding mechanism of release, dependent on the membrane structure and parasite integrity. Stress conditions did not affect functional properties of EVs during interaction with host cells. EV release variations under stress conditions may be a physiological response against environmental changes.


Assuntos
Vesículas Extracelulares/imunologia , Macrófagos/imunologia , Estresse Fisiológico/imunologia , Trypanosoma cruzi/imunologia , Animais , Linhagem Celular , Células Cultivadas , Temperatura Baixa , Vesículas Extracelulares/metabolismo , Feminino , Regulação da Expressão Gênica/imunologia , Concentração de Íons de Hidrogênio , Imunidade/genética , Imunidade/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-10/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Óxido Nítrico Sintase Tipo II/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nitrito de Sódio/metabolismo , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/fisiologia
3.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638942

RESUMO

Calcific aortic valve disease (CAVD) is an athero-inflammatory process. Growing evidence supports the inflammation-driven calcification model, mediated by cytokines such as interferons (IFNs) and tumor necrosis factor (TNF)-α. Our goal was investigating IFNs' effects in human aortic valve endothelial cells (VEC) and the potential differences between aortic (aVEC) and ventricular (vVEC) side cells. The endothelial phenotype was analyzed by Western blot, qPCR, ELISA, monocyte adhesion, and migration assays. In mixed VEC populations, IFNs promoted the activation of signal transducers and activators of transcription-1 and nuclear factor-κB, and the subsequent up-regulation of pro-inflammatory molecules. Side-specific VEC were activated with IFN-γ and TNF-α in an orbital shaker flow system. TNF-α, but not IFN-γ, induced hypoxia-inducible factor (HIF)-1α stabilization or endothelial nitric oxide synthase downregulation. Additionally, IFN-γ inhibited TNF-α-induced migration of aVEC. Also, IFN-γ triggered cytokine secretion and adhesion molecule expression in aVEC and vVEC. Finally, aVEC were more prone to cytokine-mediated monocyte adhesion under multiaxial flow conditions as compared with uniaxial flow. In conclusion, IFNs promote inflammation and reduce TNF-α-mediated migration in human VEC. Moreover, monocyte adhesion was higher in inflamed aVEC sheared under multiaxial flow, which may be relevant to understanding the initial stages of CAVD.


Assuntos
Valva Aórtica/metabolismo , Células Endoteliais/metabolismo , Interferon-alfa/farmacologia , Interferon gama/farmacologia , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/imunologia , Valva Aórtica/efeitos dos fármacos , Valva Aórtica/imunologia , Valva Aórtica/patologia , Estenose da Valva Aórtica/imunologia , Calcinose/imunologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Transplante de Coração , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/induzido quimicamente , Inflamação/imunologia , Monócitos/metabolismo , NF-kappa B/metabolismo , Fenótipo , Fator de Transcrição STAT1/metabolismo , Células THP-1 , Transplantados , Fator de Necrose Tumoral alfa/farmacologia
4.
Front Immunol ; 12: 719349, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484226

RESUMO

In adult mammals, blood cells are formed from hematopoietic stem progenitor cells, which are controlled by a complex cellular microenvironment called "niche". Drosophila melanogaster is a powerful model organism to decipher the mechanisms controlling hematopoiesis, due both to its limited number of blood cell lineages and to the conservation of genes and signaling pathways throughout bilaterian evolution. Insect blood cells or hemocytes are similar to the mammalian myeloid lineage that ensures innate immunity functions. Like in vertebrates, two waves of hematopoiesis occur in Drosophila. The first wave takes place during embryogenesis. The second wave occurs at larval stages, where two distinct hematopoietic sites are identified: subcuticular hematopoietic pockets and a specialized hematopoietic organ called the lymph gland. In both sites, hematopoiesis is regulated by distinct niches. In hematopoietic pockets, sensory neurons of the peripheral nervous system provide a microenvironment that promotes embryonic hemocyte expansion and differentiation. In the lymph gland blood cells are produced from hematopoietic progenitors. A small cluster of cells called Posterior Signaling Centre (PSC) and the vascular system, along which the lymph gland develops, act collectively as a niche, under homeostatic conditions, to control the balance between maintenance and differentiation of lymph gland progenitors. In response to an immune stress such as wasp parasitism, lymph gland hematopoiesis is drastically modified and shifts towards emergency hematopoiesis, leading to increased progenitor proliferation and their differentiation into lamellocyte, a specific blood cell type which will neutralize the parasite. The PSC is essential to control this emergency response. In this review, we summarize Drosophila cellular and molecular mechanisms involved in the communication between the niche and hematopoietic progenitors, both under homeostatic and stress conditions. Finally, we discuss similarities between mechanisms by which niches regulate hematopoietic stem/progenitor cells in Drosophila and mammals.


Assuntos
Comunicação Celular , Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Homeostase , Nicho de Células-Tronco , Estresse Fisiológico , Animais , Microambiente Celular , Drosophila , Hemócitos/citologia , Hemócitos/metabolismo , Larva , Modelos Biológicos , Neurônios/citologia , Neurônios/metabolismo , Nicho de Células-Tronco/imunologia , Estresse Fisiológico/imunologia
5.
Cell Rep ; 36(10): 109595, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496250

RESUMO

Psychological stress (PS) is associated with systemic inflammation and accelerates inflammatory disease progression (e.g., atherosclerosis). The mechanisms underlying stress-mediated inflammation and future health risk are poorly understood. Monocytes are key in sustaining systemic inflammation, and recent studies demonstrate that they maintain the memory of inflammatory insults, leading to a heightened inflammatory response upon rechallenge. We show that PS induces remodeling of the chromatin landscape and transcriptomic reprogramming of monocytes, skewing them to a primed hyperinflammatory phenotype. Monocytes from stressed mice and humans exhibit a characteristic inflammatory transcriptomic signature and are hyperresponsive upon stimulation with Toll-like receptor ligands. RNA and ATAC sequencing reveal that monocytes from stressed mice and humans exhibit activation of metabolic pathways (mTOR and PI3K) and reduced chromatin accessibility at mitochondrial respiration-associated loci. Collectively, our findings suggest that PS primes the reprogramming of myeloid cells to a hyperresponsive inflammatory state, which may explain how PS confers inflammatory disease risk.


Assuntos
Citocinas/metabolismo , Imunidade Inata/imunologia , Memória Imunológica/imunologia , Inflamação/imunologia , Estresse Fisiológico/imunologia , Animais , Humanos , Imunidade Inata/efeitos dos fármacos , Memória Imunológica/efeitos dos fármacos , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Monócitos/metabolismo
6.
Front Immunol ; 12: 662048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084166

RESUMO

Background: Within the bone marrow (BM), mature T cells are maintained under homeostatic conditions to facilitate proper hematopoietic development. This homeostasis depends upon a peculiar elevated frequency of regulatory T cells (Tregs) and immune regulatory activities from BM-mesenchymal stem cells (BM-MSCs). In response to BM transplantation (BMT), the conditioning regimen exposes the BM to a dramatic induction of inflammatory cytokines and causes an unbalanced T-effector (Teff) and Treg ratio. This imbalance negatively impacts hematopoiesis, particularly in regard to B-cell lymphopoiesis that requires an intact cross-talk between BM-MSCs and Tregs. The mechanisms underlying the ability of BM-MSCs to restore Treg homeostasis and proper B-cell development are currently unknown. Methods: We studied the role of host radio-resistant cell-derived CD40 in restoring Teff/Treg homeostasis and proper B-cell development in a murine model of BMT. We characterized the host cellular source of CD40 and performed radiation chimera analyses by transplanting WT or Cd40-KO with WT BM in the presence of T-reg and co-infusing WT or - Cd40-KO BM-MSCs. Residual host and donor T cell expansion and activation (cytokine production) and also the expression of Treg fitness markers and conversion to Th17 were analyzed. The presence of Cd40+ BM-MSCs was analyzed in a human setting in correlation with the frequency of B-cell precursors in patients who underwent HSCT and variably developed acute graft-versus-host (aGVDH) disease. Results: CD40 expression is nearly undetectable in the BM, yet a Cd40-KO recipient of WT donor chimera exhibited impaired B-cell lymphopoiesis and Treg development. Lethal irradiation promotes CD40 and OX40L expression in radio-resistant BM-MSCs through the induction of pro-inflammatory cytokines. OX40L favors Teff expansion and activation at the expense of Tregs; however, the expression of CD40 dampens OX40L expression and restores Treg homeostasis, thus facilitating proper B-cell development. Indeed, in contrast to dendritic cells in secondary lymphoid organs that require CD40 triggers to express OX40L, BM-MSCs require CD40 to inhibit OX40L expression. Conclusions: CD40+ BM-MSCs are immune regulatory elements within BM. Loss of CD40 results in uncontrolled T cell activation due to a reduced number of Tregs, and B-cell development is consequently impaired. GVHD provides an example of how a loss of CD40+ BM-MSCs and a reduction in B-cell precursors may occur in a human setting.


Assuntos
Transplante de Medula Óssea , Medula Óssea/imunologia , Antígenos CD40/genética , Regulação da Expressão Gênica/imunologia , Homeostase/imunologia , Células-Tronco Mesenquimais/imunologia , Ligante OX40/genética , Estresse Fisiológico/imunologia , Adulto , Idoso , Animais , Medula Óssea/fisiologia , Células da Medula Óssea/imunologia , Antígenos CD40/imunologia , Feminino , Homeostase/genética , Humanos , Ativação Linfocitária/imunologia , Masculino , Transplante de Células-Tronco Mesenquimais , Camundongos , Pessoa de Meia-Idade , Ligante OX40/imunologia , Linfócitos T Reguladores/imunologia , Condicionamento Pré-Transplante , Adulto Jovem
7.
Cells ; 10(5)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064383

RESUMO

Macrophages comprise a phenotypically and functionally diverse group of hematopoietic cells. Versatile macrophage subsets engage to ensure maintenance of tissue integrity. To perform tissue stress surveillance, macrophages express many different stress-sensing receptors, including purinergic P2X and P2Y receptors that respond to extracellular nucleotides and their sugar derivatives. Activation of G protein-coupled P2Y receptors can be both pro- and anti-inflammatory. Current examples include the observation that P2Y14 receptor promotes STAT1-mediated inflammation in pro-inflammatory M1 macrophages as well as the demonstration that P2Y11 receptor suppresses the secretion of tumor necrosis factor (TNF)-α and concomitantly promotes the release of soluble TNF receptors from anti-inflammatory M2 macrophages. Here, we review macrophage regulation by P2Y purinergic receptors, both in physiological and disease-associated inflammation. Therapeutic targeting of anti-inflammatory P2Y receptor signaling is desirable to attenuate excessive inflammation in infectious diseases such as COVID-19. Conversely, anti-inflammatory P2Y receptor signaling must be suppressed during cancer therapy to preserve its efficacy.


Assuntos
Inflamação/imunologia , Macrófagos/imunologia , Receptores Purinérgicos P2Y/metabolismo , Estresse Fisiológico/imunologia , Animais , COVID-19/sangue , COVID-19/imunologia , Humanos , Vigilância Imunológica/efeitos dos fármacos , Vigilância Imunológica/imunologia , Inflamação/sangue , Inflamação/tratamento farmacológico , Macrófagos/metabolismo , Camundongos , Neoplasias/sangue , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Agonistas do Receptor Purinérgico P2Y/farmacologia , Agonistas do Receptor Purinérgico P2Y/uso terapêutico , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Antagonistas do Receptor Purinérgico P2Y/uso terapêutico , Receptores do Fator de Necrose Tumoral/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Tratamento Farmacológico da COVID-19
8.
Trends Cancer ; 7(8): 778-789, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34112622

RESUMO

Autophagy is a catabolic intracellular nutrient-scavenging pathway triggered by nutrient deprivation and stress that captures and degrades intracellular proteins and organelles in lysosomes. The breakdown products are then recycled into metabolic pathways to sustain survival. Organelle turnover by autophagy contributes to quality control and suppresses inflammation. Autophagy is upregulated in many cancers and supports their growth, survival, and malignancy in a tumor cell-autonomous fashion. Host autophagy also promotes tumor growth by maintaining a supply of essential nutrients and suppressing innate and adaptive antitumor immune responses. Autophagy is also upregulated in response to cancer therapy and confers treatment resistance. Thus, autophagy is a cancer vulnerability and its inhibition is under investigation as a novel therapeutic approach.


Assuntos
Antineoplásicos/farmacologia , Autofagia/imunologia , Neoplasias/imunologia , Evasão Tumoral , Imunidade Adaptativa , Alanina/metabolismo , Animais , Antineoplásicos/uso terapêutico , Arginina/metabolismo , Autofagia/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/imunologia , Humanos , Ativação Linfocitária , Redes e Vias Metabólicas/imunologia , Camundongos , Modelos Animais , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Estresse Fisiológico/imunologia , Linfócitos T/imunologia
9.
Invest Ophthalmol Vis Sci ; 62(7): 11, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34100890

RESUMO

Purpose: The insulin-like growth factor binding protein-3 (IGFBP-3) is a multifunctional secretory protein with well-known roles in cell growth and survival. Data in our laboratory suggest that IGFBP-3 may be functioning as a stress response protein in the corneal epithelium. The purpose of this study is to determine the role of IGFBP-3 in mediating the corneal epithelial cell stress response to hyperosmolarity, a well-known pathophysiological event in the development of dry eye disease. Methods: Telomerase-immortalized human corneal epithelial (hTCEpi) cells were used in this study. Cells were cultured in serum-free media with (growth) or without (basal) supplements. Hyperosmolarity was achieved by increasing salt concentrations to 450 and 500 mOsM. Metabolic and mitochondrial changes were assessed using Seahorse metabolic flux analysis and assays for mitochondrial calcium, polarization and mtDNA. Levels of IGFBP-3 and inflammatory mediators were quantified using ELISA. Cytotoxicity was evaluated using a lactate dehydrogenase assay. In select experiments, cells were cotreated with 500 ng/mL recombinant human (rh)IGFBP-3. Results: Hyperosmolar stress altered metabolic activity, shifting cells towards a respiratory phenotype. Hyperosmolar stress further altered mitochondrial calcium levels, depolarized mitochondria, decreased levels of ATP, mtDNA, and expression of IGFBP-3. In contrast, hyperosmolar stress increased production of the proinflammatory cytokines IL-6 and IL-8. Supplementation with rhIGFBP-3 abrogated metabolic and mitochondrial changes with only marginal effects on IL-8. Conclusions: These findings indicate that IGFBP-3 is a critical protein involved in hyperosmolar stress responses in the corneal epithelium. These data further support a new role for IGFBP-3 in the control of cellular metabolism.


Assuntos
Síndromes do Olho Seco , Epitélio Corneano/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Pressão Osmótica/fisiologia , Estresse Fisiológico , Células Cultivadas , Síndromes do Olho Seco/imunologia , Síndromes do Olho Seco/metabolismo , Homeostase , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-6/imunologia , Interleucina-8/imunologia , Mitocôndrias/fisiologia , Concentração Osmolar , Estresse Fisiológico/imunologia , Estresse Fisiológico/fisiologia
10.
Nat Immunol ; 22(6): 723-734, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958784

RESUMO

Continuous supply of immune cells throughout life relies on the delicate balance in the hematopoietic stem cell (HSC) pool between long-term maintenance and meeting the demands of both normal blood production and unexpected stress conditions. Here we identified distinct subsets of human long-term (LT)-HSCs that responded differently to regeneration-mediated stress: an immune checkpoint ligand CD112lo subset that exhibited a transient engraftment restraint (termed latency) before contributing to hematopoietic reconstitution and a primed CD112hi subset that responded rapidly. This functional heterogeneity and CD112 expression are regulated by INKA1 through direct interaction with PAK4 and SIRT1, inducing epigenetic changes and defining an alternative state of LT-HSC quiescence that serves to preserve self-renewal and regenerative capacity upon regeneration-mediated stress. Collectively, our data uncovered the molecular intricacies underlying HSC heterogeneity and self-renewal regulation and point to latency as an orchestrated physiological response that balances blood cell demands with preserving a stem cell reservoir.


Assuntos
Autorrenovação Celular/imunologia , Células-Tronco Hematopoéticas/fisiologia , Reconstituição Imune , Células-Tronco Multipotentes/fisiologia , Estresse Fisiológico/imunologia , Adulto , Animais , Autorrenovação Celular/genética , Células Cultivadas , Epigênese Genética/imunologia , Feminino , Sangue Fetal/citologia , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Hematopoese , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Separação Imunomagnética , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Nectinas/metabolismo , Cultura Primária de Células , RNA-Seq , Análise de Célula Única , Sirtuína 1/metabolismo , Estresse Fisiológico/genética , Transplante Heterólogo , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
11.
Int Immunopharmacol ; 97: 107709, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33933842

RESUMO

Dexmedetomidine has been increasingly introduced into the perioperative care of surgical patients. Because a subset of anesthetics/sedatives are immunomodulatory, it is critical to understand the role of dexmedetomidine in our host immune functions. Here we reviewed the role of dexmedetomidine in different immune cells. We also reviewed published clinical articles that described the role of dexmedetomidine in organ injury, cancer surgery, and infection. In animal studies, dexmedetomidine attenuated organ injury. In clinical studies, dexmedetomidine was associated with an improvement in outcomes in cardiac surgery and transplant surgery. However, there is a paucity in research examining how dexmedetomidine is associated with these outcomes. Further studies are needed to understand its clinical application from immunological standpoints.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Dexmedetomidina/farmacologia , Fatores Imunológicos/farmacologia , Leucócitos/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos alfa 2/uso terapêutico , Animais , Dexmedetomidina/uso terapêutico , Modelos Animais de Doenças , Humanos , Fatores Imunológicos/uso terapêutico , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Período Perioperatório , Receptores Adrenérgicos alfa 2/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/imunologia , Procedimentos Cirúrgicos Operatórios/efeitos adversos
12.
J Immunol ; 206(8): 1932-1942, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33789981

RESUMO

The cell has several mechanisms to sense and neutralize stress. Stress-related stimuli activate pathways that counteract danger, support cell survival, and activate the inflammatory response. We use human cells to show that these processes are modulated by EGOT, a long noncoding RNA highly induced by viral infection, whose inhibition results in increased levels of antiviral IFN-stimulated genes (ISGs) and decreased viral replication. We now show that EGOT is induced in response to cell stress, viral replication, or the presence of pathogen-associated molecular patterns via the PI3K/AKT, MAPKs, and NF-κB pathways, which lead to cell survival and inflammation. Transcriptome analysis and validation experiments show that EGOT modulates PI3K/AKT and NF-κB responses. On the one hand, EGOT inhibition decreases expression of PI3K/AKT-induced cellular receptors and cell proliferation. In fact, EGOT levels are increased in several tumors. On the other hand, EGOT inhibition results in decreased levels of key NF-κB target genes, including those required for inflammation and ISGs in those cells that build an antiviral response. Mechanistically, EGOT depletion decreases the levels of the key coactivator TBLR1, essential for transcription by NF-κB. In summary, EGOT is induced in response to stress and may function as a switch that represses ISG transcription until a proper antiviral or stress response is initiated. EGOT then helps PI3K/AKT, MAPKs, and NF-κB pathways to activate the antiviral response, cell inflammation, and growth. We believe that modulation of EGOT levels could be used as a therapy for the treatment of certain viral infections, immune diseases, and cancer.


Assuntos
Hepacivirus/fisiologia , Hepatite C/imunologia , Inflamação/genética , RNA Longo não Codificante/genética , Estresse Fisiológico/imunologia , Processos de Crescimento Celular , Linhagem Celular , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais
13.
Artigo em Inglês | MEDLINE | ID: mdl-33865537

RESUMO

Chronic exposure to benzene is a risk factor for hematological malignancies. Gasoline-station workers are exposed to benzene in gasoline, via both inhalation and dermal contact (attendants and managers) or inhalation (workers in the on-site convenience stores and offices). We have studied the exposure of these workers to benzene and the resulting genotoxic and immunotoxic effects. Levels of urinary trans, trans-muconic acid were higher among gasoline-station workers than among office workers with no known exposure to benzene (comparison group). Among the exposed workers, we observed statistically significant biological effects, including elevated DNA damage (comet assay); higher frequencies of micronuclei and nuclear buds (CBMN assay); lower levels of T-helper lymphocytes and naive Th lymphocytes; lower CD4 / CD8 ratio; and higher levels of NK cells and memory Th lymphocytes. Both groups of exposed workers (inhalation and inhalation + dermal routes) showed similar genotoxic and immunotoxic effects.


Assuntos
Benzeno/toxicidade , Gasolina/toxicidade , Sistema Imunitário/efeitos dos fármacos , Exposição Ocupacional , Adulto , Idoso , Poluentes Ocupacionais do Ar/toxicidade , Brasil/epidemiologia , Ensaio Cometa , Estudos Transversais , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/imunologia , Feminino , Humanos , Sistema Imunitário/metabolismo , Imunomodulação/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Contagem de Linfócitos , Masculino , Testes para Micronúcleos , Pessoa de Meia-Idade , Testes de Mutagenicidade , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Exposição Ocupacional/estatística & dados numéricos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/patologia , Adulto Jovem
14.
Front Immunol ; 12: 646633, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679811

RESUMO

Conjugation with the small ubiquitin-like modifier (SUMO) constitutes a key post-translational modification regulating the stability, activity, and subcellular localization of its target proteins. However, the vast numbers of identified SUMO substrates obscure a clear view on the function of SUMOylation in health and disease. This article presents a comprehensive review on the physiological relevance of SUMOylation by discussing how global SUMOylation levels-rather than specific protein SUMOylation-shapes the immune response. In particular, we highlight the growing body of work on SUMOylation in intestinal pathologies, because of the unique metabolic, infectious, and inflammatory challenges of this organ. Recent studies show that global SUMOylation can help restrain detrimental inflammation while maintaining immune defenses and tissue integrity. These results warrant further efforts to develop new therapeutic tools and strategies to control SUMOylation in infectious and inflammatory disorders.


Assuntos
Trato Gastrointestinal/imunologia , Inflamação/imunologia , Processamento de Proteína Pós-Traducional/imunologia , Estresse Fisiológico/imunologia , Animais , Trato Gastrointestinal/citologia , Trato Gastrointestinal/metabolismo , Humanos , Interferons/imunologia , Interferons/metabolismo , Macrófagos/imunologia , Neutrófilos/imunologia , Sumoilação/imunologia
15.
Front Immunol ; 12: 566299, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732229

RESUMO

Extracellular vesicles (EVs) are important players in autoimmune diseases, both in disease pathogenesis and as potential treatments. EVs can transport autoimmune triggers throughout the body, facilitating the process of antigen presentation. Understanding the link between cellular stress and EV biogenesis and intercellular trafficking will advance our understanding of autoimmune diseases. In addition, EVs can also be effective treatments for autoimmune diseases. The diversity of cell types that produce EVs leads to a wide range of molecules to be present in EVs, and thus EVs have a wide range of physiological effects. EVs derived from dendritic cells or mesenchymal stem cells have been shown to reduce inflammation. Since many autoimmune treatments are focused only on symptom management, EVs present a promising avenue for potential treatments. This review looks at the different roles EVs can play in autoimmune diseases, from disease pathology to diagnosis and treatment. We also overview various methodologies in isolating or generating EVs and look to the future for possible applications of EVs in autoimmune diseases.


Assuntos
Apresentação de Antígeno/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Vesículas Extracelulares/imunologia , Animais , Autoantígenos/imunologia , Autoantígenos/metabolismo , Doenças Autoimunes/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Estresse Fisiológico/imunologia
16.
Immunity ; 54(4): 721-736.e10, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33725478

RESUMO

Hyperglycemia and hyperlipidemia are often observed in individuals with type II diabetes (T2D) and related mouse models. One dysmetabolic biochemical consequence is the non-enzymatic reaction between sugars, lipids, and proteins, favoring protein glycation, glycoxidation, and lipoxidation. Here, we identified oxidative alterations in key components of the major histocompatibility complex (MHC) class II molecule antigen processing and presentation machinery in vivo under conditions of hyperglycemia-induced metabolic stress. These modifications were linked to epitope-specific changes in endosomal processing efficiency, MHC class II-peptide binding, and DM editing activity. Moreover, we observed some quantitative and qualitative changes in the MHC class II immunopeptidome of Ob/Ob mice on a high-fat diet compared with controls, including changes in the presentation of an apolipoprotein B100 peptide associated previously with T2D and metabolic syndrome-related clinical complications. These findings highlight a link between glycation reactions and altered MHC class II antigen presentation that may contribute to T2D complications.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Estresse Fisiológico/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 2/imunologia , Modelos Animais de Doenças , Epitopos/imunologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/imunologia , Ligação Proteica/imunologia
17.
Cell Immunol ; 363: 104312, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33652258

RESUMO

Myeloid-derived suppressor cells (MDSCs) impair protective anti-tumor immunity and remain major obstacles that stymie the effectiveness of promising cancer therapies. Diverse tumor-derived stressors galvanize the differentiation, intra-tumoral expansion, and immunomodulatory function of MDSCs. These tumor-associated 'axes of stress' underwrite the immunosuppressive programming of MDSCs in cancer and contribute to the phenotypic/functional heterogeneity that characterize tumor-MDSCs. This review discusses various tumor-associated axes of stress that direct MDSC development, accumulation, and immunosuppressive function, as well as current strategies aimed at overcoming the detrimental impact of MDSCs in cancer. To better understand the constellation of signals directing MDSC biology, we herein summarize the pivotal roles, signaling mediators, and effects of reactive oxygen/nitrogen species-related stress, chronic inflammatory stress, hypoxia-linked stress, endoplasmic reticulum stress, metabolic stress, and therapy-associated stress on MDSCs. Although therapeutic targeting of these processes remains mostly pre-clinical, intercepting signaling through the axes of stress could overcome MDSC-related immune suppression in tumor-bearing hosts.


Assuntos
Células Supressoras Mieloides/imunologia , Neoplasias/fisiopatologia , Estresse Fisiológico/fisiologia , Diferenciação Celular , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/imunologia , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Terapia de Imunossupressão/métodos , Células Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/fisiologia , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/imunologia , Estresse Fisiológico/imunologia
18.
Sci Rep ; 11(1): 3101, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542312

RESUMO

Foot electrical stimulation (FES) has been considered as a classic stressor that can disturb homeostasis. Acute anemia was observed in the model induced by FES. The aim of this study was to explore the role of inflammatory cytokines underlying the acute anemia and gastrointestinal (GI) mucosal injury in the FES. Twenty-four male Kunming mice (20 ± 2 g) were randomly divided into control group and experimental group. The mice were placed in a footshock chamber that can generate 0.5 mA electrical impulse periodically for 0.5 h. After the process, red blood cell count, hemoglobin concentration and hematocrit, the levels of corticotropin releasing hormone (CRH) in serum and hypothalamus, and adrenocorticotropic hormone (ACTH) in serum and pituitary were detected separately. In addition, we investigated the expressions of inflammatory cytokines (IL-1, IL-6, TNF-α, iNOS, and IL-10) in the hypothalamus and duodenum by Polymerase Chain Reaction (PCR). Results showed that this FES model induced anemia, increased CRH and ACTH activity in the serum after the FES. Moreover, the expressions of IL-1ß, IL-6, TNF-α, and iNOS were significantly increased following the process, while IL-10 was not activated. These findings suggest that anemia, the inflammatory cytokines in the hypothalamus and duodenum of the mice in the model induced by FES is closely related to GI mucosal injury/bleeding. Taken together, these results underscore the importance of anemia, GI mucosal injury/bleeding and stress, future studies would be needed to translate these findings into the benefit of affected patients.


Assuntos
Anemia/genética , Duodeno/imunologia , Estimulação Elétrica/efeitos adversos , Interleucina-6/genética , Óxido Nítrico Sintase Tipo II/genética , Estresse Fisiológico/imunologia , Fator de Necrose Tumoral alfa/genética , Hormônio Adrenocorticotrópico/genética , Hormônio Adrenocorticotrópico/imunologia , Anemia/etiologia , Anemia/imunologia , Anemia/patologia , Animais , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/imunologia , Duodeno/patologia , Contagem de Eritrócitos , Membro Anterior , Regulação da Expressão Gênica , Hematócrito , Hemoglobinas/imunologia , Hemoglobinas/metabolismo , Membro Posterior , Hipotálamo/imunologia , Hipotálamo/patologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-6/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Óxido Nítrico Sintase Tipo II/imunologia , Hipófise/imunologia , Hipófise/patologia , Estresse Fisiológico/genética , Fator de Necrose Tumoral alfa/imunologia
19.
Sci Rep ; 11(1): 3157, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542475

RESUMO

Aridity and heat are significant environmental stressors that affect sheep adaptation and adaptability, thus influencing immunity, growth, reproduction, production performance, and profitability. The aim of this study was to profile mRNA expression levels in the spleen of indigenous Kazakh sheep breed for comparative analysis with the exotic Suffolk breed. Spleen histomorphology was observed in indigenous Kazakh sheep and exotic Suffolk sheep raised in Xinjiang China. Transcriptome sequencing of spleen tissue from the two breeds were performed via Illumina high-throughput sequencing technology and validated by RT-qPCR. Blood cytokine and IgG levels differed between the two breeds and IgG and IL-1ß were significantly higher in Kazakh sheep than in Suffolk sheep (p < 0.05), though spleen tissue morphology was the same. A total of 52.04 Gb clean reads were obtained and the clean reads were assembled into 67,271 unigenes using bioinformatics analysis. Profiling analysis of differential gene expression showed that 1158 differentially expressed genes were found when comparing Suffolk with Kazakh sheep, including 246 up-regulated genes and 912 down-regulated genes. Utilizing gene ontology annotation and pathway analysis, 21 immune- responsive genes were identified as spleen-specific genes associated with adaptive traits and were significantly enriched in hematopoietic cell lineage, natural killer cell-mediated cytotoxicity, complement and coagulation cascades, and in the intestinal immune network for IgA production. Four pathways and up-regulated genes associated with immune responses in indigenous sheep played indispensable and promoting roles in arid and hot environments. Overall, this study provides valuable transcriptome data on the immunological mechanisms related to adaptive traits in indigenous and exotic sheep and offers a foundation for research into adaptive evolution.


Assuntos
Adaptação Fisiológica/imunologia , Imunidade Adaptativa , Fatores de Coagulação Sanguínea/imunologia , Proteínas do Sistema Complemento/imunologia , Baço/imunologia , Transcriptoma/imunologia , Adaptação Fisiológica/genética , Animais , Fatores de Coagulação Sanguínea/genética , Proteínas do Sistema Complemento/genética , Secas , Células Eritroides/citologia , Células Eritroides/imunologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Temperatura Alta , Imunidade Inata , Imunoglobulina A/biossíntese , Imunoglobulina A/genética , Imunoglobulina G/biossíntese , Imunoglobulina G/genética , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Linfócitos/citologia , Linfócitos/imunologia , Masculino , Anotação de Sequência Molecular , Reprodução/genética , Reprodução/imunologia , Carneiro Doméstico , Baço/citologia , Estresse Fisiológico/genética , Estresse Fisiológico/imunologia
20.
Immunogenetics ; 73(1): 111-129, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33426582

RESUMO

While sexual dimorphism in immune responses has been documented in other vertebrates, evidence for a similar phenomenon in fish is lacking. Here, we review the relationship between immunity, stress, spawning, and sex hormones in fish to gain a better understanding of sex-based differences in fish immune responses and its consequences for aquaculture. It is well known that there is a strong link between the stress response and immune function in fish. In addition, research to date has demonstrated that sexual dimorphism in the stress response exists in many species; yet, the relationship between the sexual dimorphic stress responses and immune function has rarely been explored together. Aside from stress, spawning is also known to trigger changes in fish immune responses. Estrogens and androgens have been shown to modulate the immune system which could account for differences between the two sexes of fish when spawning; however, evidence regarding the sexual dimorphism of these changes varies between fishes and is likely related to the spawning strategy employed by a given species. Sex hormones are also used in aquaculture practices to produce monosex populations, and exposure to these hormones early in development has been shown to impact the development of immune organs in several fishes. While female fish are generally thought to be more robust than males, aquaculture practices should also consider the role that maternal stress has on the immune function of the offspring and what role this plays in compromising the immune response of farmed fish.


Assuntos
Peixes/imunologia , Imunidade/imunologia , Reprodução/imunologia , Estresse Fisiológico/imunologia , Androgênios/imunologia , Animais , Aquicultura , Estrogênios/imunologia , Peixes/fisiologia , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA