RESUMO
Nanomaterials, such as graphene oxide (GO), are increasingly being investigated for their suitability in biomedical applications. Tubulin is the key molecule for the formation of microtubules crucial for cellular function and proliferation, and as such an appealing target for developing anticancer drug. Here we employ biophysical techniques to study the effect of GO on tubulin structure and how the changes affect the tubulin/microtubule assembly. GO disrupts the structural integrity of the protein, with consequent retardation of tubulin polymerization. Investigating the anticancer potential of GO, we found that it is more toxic to human colon cancer cells (HCT116), as compared to human embryonic kidney epithelial cells (HEK293). Immunocytochemistry indicated the disruption of microtubule assembly in HCT116 cells. GO arrested cells in the S phase with increased accumulation in Sub-G1 population of cell cycle, inducing apoptosis by generating reactive oxygen species (ROS) in a dose- and time-dependent manner. GO inhibited microtubule formation by intervening into the polymerization of tubulin heterodimers both in vitro and ex vivo, resulting in growth arrest at the S phase and ROS induced apoptosis of HCT116 colorectal carcinoma cells. There was no significant harm to the HEK293 kidney epithelial cells used as control. Our report of pristine GO causing ROS-induced apoptosis of cancer cells and inhibition of tubulin-microtubule assembly can be of interest in cancer therapeutics and nanomedicine.
Assuntos
Neoplasias Colorretais/patologia , Grafite/toxicidade , Microtúbulos/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HCT116 , Humanos , Microtúbulos/metabolismo , Compostos de Organossilício , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Compostos de Amônio Quaternário , Tubulina (Proteína)/químicaRESUMO
Differential scanning calorimetry and differential scanning fluorimetry were used to measure the thermal stability of human retinoid X receptor-α ligand binding domain (RXRα LBD) homodimer in the absence or presence of rexinoid and coactivator peptide, GRIP-1. The apo-RXRα LBD homodimer displayed a single thermal unfolding transition with a Tm of 58.7 °C and an unfolding enthalpy (ΔH) of 673 kJ/mol (12.5 J/g), much lower than average value (35 J/g) of small globular proteins. Using a heat capacity change (ΔCp) of 15 kJ/(mol K) determined by measurements at different pH values, the free energy of unfolding (ΔG) of the native state was 33 kJ/mol at 37 °C. Rexinoid binding to the apo-homodimer increased Tm by 5 to 9 °C and increased the ΔG of the native homodimer by 12 to 20 kJ/mol at 37 °C, consistent with the nanomolar dissociation constant (Kd) of the rexinoids. GRIP-1 binding to holo-homodimers containing rexinoid resulted in additional increases in ΔG of 14 kJ/mol, a value that was the same for all three rexinoids. Binding of rexinoid and GRIP-1 resulted in a combined 50% increase in unfolding enthalpy, consistent with reduced structural fluidity and more compact folding observed in other published structural studies. The complexes of UAB110 and UAB111 are each more stable than the UAB30 complex by 8 kJ/mol due to enhanced hydrophobic interactions in the binding pocket because of their larger end groups. This increase in thermodynamic stability positively correlates with their improved RXR activation potency. Thermodynamic measurements are thus valuable in predicting agonist potency.
Assuntos
Peptídeos/farmacologia , Multimerização Proteica/efeitos dos fármacos , Receptor X Retinoide alfa/química , Concentração de Íons de Hidrogênio , Cinética , Estabilidade Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , TermodinâmicaRESUMO
The selective targeting of protein-protein interactions remains a significant determinant for the proper modulation and regulation of cell apoptosis. Prototypic galectins such as human galectin-7 (GAL-7) are characterized by their ability to form homodimers that control the molecular fate of a cell by mediating subtle yet critical glycan-dependent interactions between pro- and anti-apoptotic molecular partners. Altering the structural architecture of GAL-7 can therefore result in resistance to apoptosis in various human cancer cells, further illustrating its importance in cell survival. In this study, we used a combination of biophysical and cellular assays to illustrate that binding of a water-soluble meso-tetraarylporphyrin molecule to GAL-7 induces protein oligomerization and modulation of GAL-7-induced apoptosis in human Jurkat T cells. Our results suggest that the integrity of the GAL-7 homodimer architecture is essential for its molecular function, in addition to providing an interesting porphyrin binding modulator for controlling apoptosis in mammalian cells.
Assuntos
Galectinas/química , Galectinas/metabolismo , Mesoporfirinas/química , Mesoporfirinas/metabolismo , Apoptose/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Galectinas/farmacologia , Humanos , Técnicas In Vitro , Células Jurkat , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Espalhamento a Baixo Ângulo , Solubilidade , Difração de Raios XRESUMO
The antigen-antibody complex (AAC) has novel functions for immunomodulation, encouraging the application of diverse quaternary protein structures for vaccination. In this study, GA733 antigen and anti-GA733 antibody proteins were both co-expressed to obtain the AAC protein structures in a F1 plant obtained by crossing the plants expressing each protein. In F1 plant, the antigen and antibody assembled to form a large quaternary circular ACC structure (~30 nm). The large quaternary protein structures induced immune response to produce anticancer immunoglobulins G (IgGs) that are specific to the corresponding antigens in mouse. The serum containing the anticancer IgGs inhibited the human colorectal cancer cell growth in the xenograft nude mouse. Taken together, antigens and antibodies can be assembled to form AAC protein structures in plants. Plant crossing represents an alternative strategy for the formation of AAC vaccines that efficiently increases anticancer antibody production.
Assuntos
Anticorpos Anti-Idiotípicos/farmacologia , Complexo Antígeno-Anticorpo/imunologia , Molécula de Adesão da Célula Epitelial/imunologia , Neoplasias/tratamento farmacológico , Planticorpos/farmacologia , Animais , Anticorpos Anti-Idiotípicos/imunologia , Complexo Antígeno-Anticorpo/farmacologia , Vacinas Anticâncer/imunologia , Moléculas de Adesão Celular/imunologia , Humanos , Imunidade/efeitos dos fármacos , Imunidade/imunologia , Imunoglobulina G/imunologia , Imunomodulação/efeitos dos fármacos , Imunomodulação/imunologia , Camundongos , Neoplasias/imunologia , Planticorpos/imunologia , Estrutura Quaternária de Proteína/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Protein kinase CK2, a heterotetrameric holoenzyme composed of two catalytic chains (CK2α) attached to a homodimer of regulatory subunits (CK2ß), is a target for drug development for cancer therapy. Here, we describe the tetraiodobenzimidazole derivative ARC-3140, a bisubstrate inhibitor addressing the ATP site and the substrate-binding site of CK2 with extraordinary affinity (Ki = 84 pM). In a crystal structure of ARC-3140 in complex with CK2α, three copies of the inhibitor are visible, one of them at the CK2ß interface of CK2α. Subsequent interaction studies based on microscale thermophoresis and fluorescence anisotropy changes revealed a significant impact of ARC-3140 and of its tetrabromo equivalent ARC-1502 on the CK2α/CK2ß interaction. A structural inspection revealed that ARC-3140, unlike CK2ß antagonists described so far, interferes with both sub-interfaces of the bipartite CK2α/CK2ß interaction. Thus, ARC-3140 is a lead for the further development of highly effective compounds perturbating the quaternary structure of the CK2α2ß2 holoenzyme.
Assuntos
Benzimidazóis/química , Benzimidazóis/farmacologia , Caseína Quinase II/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Domínio Catalítico/efeitos dos fármacos , Cristalografia por Raios X , Halogenação , Humanos , Simulação de Acoplamento Molecular , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/química , Subunidades Proteicas/metabolismoRESUMO
Tumour necrosis factor (TNF) is a cytokine belonging to a family of trimeric proteins; it has been shown to be a key mediator in autoimmune diseases such as rheumatoid arthritis and Crohn's disease. While TNF is the target of several successful biologic drugs, attempts to design small molecule therapies directed to this cytokine have not led to approved products. Here we report the discovery of potent small molecule inhibitors of TNF that stabilise an asymmetrical form of the soluble TNF trimer, compromising signalling and inhibiting the functions of TNF in vitro and in vivo. This discovery paves the way for a class of small molecule drugs capable of modulating TNF function by stabilising a naturally sampled, receptor-incompetent conformation of TNF. Furthermore, this approach may prove to be a more general mechanism for inhibiting protein-protein interactions.
Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Multimerização Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Anti-Inflamatórios/uso terapêutico , Artrite Experimental/imunologia , Linhagem Celular , Cristalografia por Raios X , Descoberta de Drogas , Masculino , Camundongos , Simulação de Dinâmica Molecular , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Estabilidade Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Transdução de Sinais/imunologia , Relação Estrutura-Atividade , Resultado do Tratamento , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/isolamento & purificação , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/ultraestruturaRESUMO
Flaviviruses are emerging arthropod-borne viruses posing a great threat to human beings worldwide. The E dimer configuration of the flavivirus was prominent during viral assembly, maturation and entry. Neutralization antibodies targeting E dimer played the important role in controlling the flavivirus infection. Previously, the ideal drug target of small molecular inhibitors of JEV was viral proteases and polymerases. The crystal structure of JEV E protein showed a conserved pocket in it is important at membrane fusion step. Recently, a set of anti-virus drugs has been found by virtual screening. Here, we show that the fusion-loop pocket of JEV E protein was a conservative region and an ideal drug target. ChemDiv-3 from virtual screening as the lead compound was found to show a relatively modest inhibition effect for JEV in vitro and in vivo test and could interfere with the formation of JEV sE dimer. ChemDiv-3 interacts with the amino acid residues ASN 313, PRO 314, ALA 315, and VAL 323 in E protein via hydrogen bonds for occupation of the fusion-loop pocket. The key binding sites LYS 312, ALA 513 and THR 317 forming the fusion-loop pocket are the same and other auxiliary sites are similar among the flavivirus. Taken together, the fusion-loop pocket of the flavivirus could be one promising target for drug discovery.
Assuntos
Antivirais/química , Antivirais/farmacologia , Vírus da Encefalite Japonesa (Espécie)/química , Vírus da Encefalite Japonesa (Espécie)/efeitos dos fármacos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Bases de Dados de Produtos Farmacêuticos , Modelos Animais de Doenças , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/tratamento farmacológico , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Relação Estrutura-Atividade , Interface Usuário-Computador , Proteínas do Envelope Viral/genéticaRESUMO
Cystic fibrosis (CF) is characterized by increased mucus viscosity and delayed mucociliary clearance that contributes to progressive decline of lung function. Mucus in the respiratory and GI tract is excessively adhesive in the presence of airway dehydration and excess extracellular Ca2+ upon mucin release, promoting hyperviscous, densely packed mucins characteristic of CF. Therapies that target mucins directly through ionic interactions remain unexploited. Here we show that poly (acetyl, arginyl) glucosamine (PAAG), a polycationic biopolymer suitable for human use, interacts directly with mucins in a Ca2+-sensitive manner to reduce CF mucus viscoelasticity and improve its transport. Notably, PAAG induced a linear structure of purified MUC5B and altered its sedimentation profile and viscosity, indicative of proper mucin expansion. In vivo, PAAG nebulization improved mucociliary transport in CF rats with delayed mucus clearance, and cleared mucus plugging in CF ferrets. This study demonstrates the potential use of a synthetic glycopolymer PAAG as a molecular agent that could benefit patients with a broad array of mucus diseases.
Assuntos
Fibrose Cística/tratamento farmacológico , Glucosamina/análogos & derivados , Mucina-5B/metabolismo , Depuração Mucociliar/efeitos dos fármacos , Muco/efeitos dos fármacos , Polímeros/farmacologia , Animais , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Modelos Animais de Doenças , Furões , Glucosamina/farmacologia , Glucosamina/uso terapêutico , Humanos , Camundongos , Camundongos Endogâmicos CFTR , Mucina-5B/química , Muco/metabolismo , Polímeros/uso terapêutico , Estrutura Quaternária de Proteína/efeitos dos fármacos , Ratos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/patologia , Viscosidade/efeitos dos fármacosRESUMO
Acetyl-CoA carboxylase catalyses the ATP-dependent carboxylation of acetyl-CoA, a rate-limiting step in fatty acid biosynthesis1,2. Eukaryotic acetyl-CoA carboxylases are large, homodimeric multienzymes. Human acetyl-CoA carboxylase occurs in two isoforms: the metabolic, cytosolic ACC1, and ACC2, which is anchored to the outer mitochondrial membrane and controls fatty acid ß-oxidation1,3. ACC1 is regulated by a complex interplay of phosphorylation, binding of allosteric regulators and protein-protein interactions, which is further linked to filament formation1,4-8. These filaments were discovered in vitro and in vivo 50 years ago7,9,10, but the structural basis of ACC1 polymerization and regulation remains unknown. Here, we identify distinct activated and inhibited ACC1 filament forms. We obtained cryo-electron microscopy structures of an activated filament that is allosterically induced by citrate (ACC-citrate), and an inactivated filament form that results from binding of the BRCT domains of the breast cancer type 1 susceptibility protein (BRCA1). While non-polymeric ACC1 is highly dynamic, filament formation locks ACC1 into different catalytically competent or incompetent conformational states. This unique mechanism of enzyme regulation via large-scale conformational changes observed in ACC1 has potential uses in engineering of switchable biosynthetic systems. Dissecting the regulation of acetyl-CoA carboxylase opens new paths towards counteracting upregulation of fatty acid biosynthesis in disease.
Assuntos
Acetil-CoA Carboxilase/química , Acetil-CoA Carboxilase/ultraestrutura , Microscopia Crioeletrônica , Acetil-CoA Carboxilase/metabolismo , Animais , Proteína BRCA1/química , Proteína BRCA1/farmacologia , Biopolímeros/química , Biopolímeros/metabolismo , Linhagem Celular , Ácido Cítrico/farmacologia , Humanos , Modelos Moleculares , Polimerização/efeitos dos fármacos , Domínios Proteicos/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Spodoptera , Relação Estrutura-AtividadeRESUMO
Fast chemical communication in the nervous system is mediated by neurotransmitter-gated ion channels. The prototypical member of this class of cell surface receptors is the cation-selective nicotinic acetylcholine receptor. As with most ligand-gated ion channels, nicotinic receptors assemble as oligomers of subunits, usually as hetero-oligomers and often with variable stoichiometries 1 . This intrinsic heterogeneity in protein composition provides fine tunability in channel properties, which is essential to brain function, but frustrates structural and biophysical characterization. The α4ß2 subtype of the nicotinic acetylcholine receptor is the most abundant isoform in the human brain and is the principal target in nicotine addiction. This pentameric ligand-gated ion channel assembles in two stoichiometries of α- and ß-subunits (2α:3ß and 3α:2ß). Both assemblies are functional and have distinct biophysical properties, and an imbalance in the ratio of assemblies is linked to both nicotine addiction2,3 and congenital epilepsy4,5. Here we leverage cryo-electron microscopy to obtain structures of both receptor assemblies from a single sample. Antibody fragments specific to ß2 were used to 'break' symmetry during particle alignment and to obtain high-resolution reconstructions of receptors of both stoichiometries in complex with nicotine. The results reveal principles of subunit assembly and the structural basis of the distinctive biophysical and pharmacological properties of the two different stoichiometries of this receptor.
Assuntos
Microscopia Crioeletrônica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/ultraestrutura , Animais , Sítios de Ligação , Condutividade Elétrica , Feminino , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/farmacologia , Ativação do Canal Iônico , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Nicotina/química , Nicotina/metabolismo , Nicotina/farmacologia , Isoformas de Proteínas/química , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestrutura , Estrutura Quaternária de Proteína/efeitos dos fármacos , Subunidades Proteicas/agonistas , Subunidades Proteicas/imunologia , Receptores Nicotínicos/química , Receptores Nicotínicos/imunologiaRESUMO
The catecholaldehyde hypothesis posits that 3,4-dihydroxyphenylacetaldehyde (DOPAL), an obligate intermediary metabolite of dopamine, is an autotoxin that challenges neuronal homeostasis in catecholaminergic neurons. DOPAL toxicity may involve protein modifications, such as oligomerization of α-synuclein (AS). Potential interactions between DOPAL and other proteins related to catecholaminergic neurodegeneration, however, have not been systemically explored. This study examined DOPAL-induced protein-quinone adduct formation ("quinonization") and protein oligomerization, ubiquitination, and aggregation in cultured MO3.13 human oligodendrocytes and PC12 rat pheochromocytoma cells and in test tube experiments. Using near-infrared fluorescence spectroscopy, we detected spontaneous DOPAL oxidation to DOPAL-quinone, DOPAL-induced quinonization of intracellular proteins in both cell lines, and DOPAL-induced quinonization of several proteins related to catecholaminergic neurodegeneration, including AS, the type 2 vesicular monoamine transporter, glucocerebrosidase, ubiquitin, and l-aromatic-amino-acid decarboxylase (LAAAD). DOPAL also oligomerized AS, ubiquitin, and LAAAD; inactivated LAAAD (IC50 54 µM); evoked substantial intracellular protein ubiquitination; and aggregated intracellular AS. Remarkably, N-acetylcysteine, which decreases DOPAL-quinone formation, attenuated or prevented all of these protein modifications and functional changes. The results fit with the proposal that treatments based on decreasing the formation and oxidation of DOPAL may slow or prevent catecholaminergic neurodegeneration.
Assuntos
Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Acetilcisteína/farmacologia , Proteínas/química , Proteínas/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/farmacologia , Animais , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Oxirredução/efeitos dos fármacos , Células PC12 , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Quinonas/metabolismo , RatosRESUMO
The androgen receptor (AR) plays a crucial role in normal physiology, development and metabolism as well as in the aetiology and treatment of diverse pathologies such as androgen insensitivity syndromes (AIS), male infertility and prostate cancer (PCa). Here we show that dimerization of AR ligand-binding domain (LBD) is induced by receptor agonists but not by antagonists. The 2.15-Å crystal structure of homodimeric, agonist- and coactivator peptide-bound AR-LBD unveils a 1,000-Å2 large dimerization surface, which harbours over 40 previously unexplained AIS- and PCa-associated point mutations. An AIS mutation in the self-association interface (P767A) disrupts dimer formation in vivo, and has a detrimental effect on the transactivating properties of full-length AR, despite retained hormone-binding capacity. The conservation of essential residues suggests that the unveiled dimerization mechanism might be shared by other nuclear receptors. Our work defines AR-LBD homodimerization as an essential step in the proper functioning of this important transcription factor.
Assuntos
Síndrome de Resistência a Andrógenos/genética , Neoplasias da Próstata/genética , Domínios Proteicos/genética , Receptores Androgênicos/metabolismo , Antagonistas de Receptores de Andrógenos/farmacologia , Androgênios/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Cristalografia por Raios X , Humanos , Ligantes , Masculino , Modelos Moleculares , Mutação Puntual , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Receptores Androgênicos/genética , Ressonância de Plasmônio de Superfície , Enzimas Ativadoras de Ubiquitina/química , Enzimas Ativadoras de Ubiquitina/metabolismoRESUMO
Ebola viruses (EBOVs) are responsible for repeated outbreaks of fatal infections, including the recent deadly epidemic in West Africa. There are currently no approved therapeutic drugs or vaccines for the disease. EBOV has a membrane envelope decorated by trimers of a glycoprotein (GP, cleaved by furin to form GP1 and GP2 subunits), which is solely responsible for host cell attachment, endosomal entry and membrane fusion. GP is thus a primary target for the development of antiviral drugs. Here we report the first, to our knowledge, unliganded structure of EBOV GP, and high-resolution complexes of GP with the anticancer drug toremifene and the painkiller ibuprofen. The high-resolution apo structure gives a more complete and accurate picture of the molecule, and allows conformational changes introduced by antibody and receptor binding to be deciphered. Unexpectedly, both toremifene and ibuprofen bind in a cavity between the attachment (GP1) and fusion (GP2) subunits at the entrance to a large tunnel that links with equivalent tunnels from the other monomers of the trimer at the three-fold axis. Proteindrug interactions with both GP1 and GP2 are predominately hydrophobic. Residues lining the binding site are highly conserved among filoviruses except Marburg virus (MARV), suggesting that MARV may not bind these drugs. Thermal shift assays show up to a 14 °C decrease in the protein melting temperature after toremifene binding, while ibuprofen has only a marginal effect and is a less potent inhibitor. These results suggest that inhibitor binding destabilizes GP and triggers premature release of GP2, thereby preventing fusion between the viral and endosome membranes. Thus, these complex structures reveal the mechanism of inhibition and may guide the development of more powerful anti-EBOV drugs.
Assuntos
Antivirais/química , Antivirais/metabolismo , Ebolavirus/química , Toremifeno/química , Toremifeno/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Antivirais/farmacologia , Sítios de Ligação , Linhagem Celular , Sequência Conservada , Ebolavirus/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ibuprofeno/química , Ibuprofeno/metabolismo , Ibuprofeno/farmacologia , Ligantes , Marburgvirus/química , Fusão de Membrana/efeitos dos fármacos , Modelos Moleculares , Ligação Proteica , Estabilidade Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Temperatura , Toremifeno/farmacologia , Proteínas do Envelope Viral/antagonistas & inibidores , Ligação Viral/efeitos dos fármacosRESUMO
Extracellular superoxide dismutase (EC-SOD) is expressed by both macrophages and neutrophils and is known to influence the inflammatory response. Upon activation, neutrophils generate hypochlorous acid (HOCl) and secrete proteases to combat invading microorganisms. This produces a hostile environment in which enzymatic activity in general is challenged. In this study, we show that EC-SOD exposed to physiologically relevant concentrations of HOCl remains enzymatically active and retains the heparin-binding capacity, although HOCl exposure established oxidative modification of the N-terminal region (Met32) and the formation of an intermolecular cross-link in a fraction of the molecules. The cross-linking was also induced by activated neutrophils. Moreover, we show that the neutrophil-derived proteases human neutrophil elastase and cathepsin G cleaved the N-terminal region of EC-SOD irrespective of HOCl oxidation. Although the cleavage by elastase did not affect the quaternary structure, the cleavage by cathepsin G dissociated the molecule to produce EC-SOD monomers. The present data suggest that EC-SOD is stable and active at the site of inflammation and that neutrophils have the capacity to modulate the biodistribution of the protein by generating EC-SOD monomers that can diffuse into tissue.
Assuntos
Catepsina G/química , Ácido Hipocloroso/farmacologia , Elastase de Leucócito/química , Macrófagos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Superóxido Dismutase/química , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Aorta/enzimologia , Catepsina G/metabolismo , Bovinos , Espaço Extracelular/química , Espaço Extracelular/enzimologia , Heparina/química , Humanos , Ácido Hipocloroso/metabolismo , Elastase de Leucócito/metabolismo , Macrófagos/citologia , Macrófagos/enzimologia , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/citologia , Neutrófilos/enzimologia , Oxirredução , Cultura Primária de Células , Ligação Proteica , Estrutura Quaternária de Proteína/efeitos dos fármacos , Superóxido Dismutase/metabolismoRESUMO
The mitochondrial enzyme glutaminase C (GAC) catalyzes the hydrolysis of glutamine to glutamate plus ammonia, a key step in the metabolism of glutamine by cancer cells. Recently, we discovered a class of allosteric inhibitors of GAC that inhibit cancer cell growth without affecting their normal cellular counterparts, with the lead compound being the bromo-benzophenanthridinone 968. Here, we take advantage of mouse embryonic fibroblasts transformed by oncogenic Dbl, which hyperactivates Rho GTPases, together with (13)C-labeled glutamine and stable-isotope tracing methods, to establish that 968 selectively blocks the enhancement in glutaminolysis necessary for satisfying the glutamine addiction of cancer cells. We then determine how 968 inhibits the catalytic activity of GAC. First, we developed a FRET assay to examine the effects of 968 on the ability of GAC to undergo the dimer-to-tetramer transition necessary for enzyme activation. We next demonstrate how the fluorescence of a reporter group attached to GAC provides a direct read-out of the binding of 968 and related compounds to the enzyme. By combining these fluorescence assays with newly developed GAC mutants trapped in either the monomeric or dimeric state, we show that 968 has the highest affinity for monomeric GAC and that the dose-dependent binding of 968 to GAC monomers directly matches its dose-dependent inhibition of enzyme activity and cellular transformation. Together, these findings highlight the requirement of tetramer formation as the mechanism of GAC activation and shed new light on how a distinct class of allosteric GAC inhibitors impacts the metabolic program of transformed cells.
Assuntos
Glutamina/metabolismo , Regulação Alostérica , Substituição de Aminoácidos , Animais , Benzofenantridinas/farmacologia , Transformação Celular Neoplásica/metabolismo , Inibidores Enzimáticos/farmacologia , Transferência Ressonante de Energia de Fluorescência , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Estrutura Quaternária de Proteína/efeitos dos fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Transaminases/antagonistas & inibidores , Transaminases/química , Transaminases/genéticaRESUMO
Approximately forty percent of diseases are attributable to protein misfolding, including those for which genetic mutation produces misfolding mutants. Intriguingly, many of these mutants are not terminally misfolded since native-like folding, and subsequent trafficking to functional locations, can be induced by target-specific, small molecules variably termed pharmacological chaperones, pharmacoperones, or pharmacochaperones (PCs). PC targets include enzymes, receptors, transporters, and ion channels, revealing the breadth of proteins that can be engaged by ligand-assisted folding. The purpose of this review is to provide an integrated primer of the diverse mechanisms and pharmacology of PCs. In this regard, we examine the structural mechanisms that underlie PC rescue of misfolding mutants, including the ability of PCs to act as surrogates for defective intramolecular interactions and, at the intermolecular level, overcome oligomerization deficiencies and dominant negative effects, as well as influence the subunit stoichiometry of heteropentameric receptors. Not surprisingly, PC-mediated structural correction of misfolding mutants normalizes interactions with molecular chaperones that participate in protein quality control and forward-trafficking. A variety of small molecules have proven to be efficacious PCs and the advantages and disadvantages of employing orthostatic antagonists, active-site inhibitors, orthostatic agonists, and allosteric modulator PCs are considered. Also examined is the possibility that several therapeutic agents may have unrecognized activity as PCs, and this chaperoning activity may mediate/contribute to therapeutic action and/or account for adverse effects. Lastly, we explore evidence that pharmacological chaperoning exploits intrinsic ligand-assisted folding mechanisms. Given the widespread applicability of PC rescue of mutants associated with protein folding disorders, both in vitro and in vivo, the therapeutic potential of PCs is vast. This is most evident in the treatment of lysosomal storage disorders, cystic fibrosis, and nephrogenic diabetes insipidus, for which proof of principle in humans has been demonstrated.
Assuntos
Descoberta de Drogas , Dobramento de Proteína/efeitos dos fármacos , Proteínas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/enzimologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Proteínas/química , Receptores LHRH/química , Receptores LHRH/metabolismoRESUMO
Cannabinoid (CB) ligands have demonstrated neuroprotective properties. In this study we compared the effects of a diverse set of CB ligands against ß amyloid-mediated neuronal toxicity and activated microglial-conditioned media-based neurotoxicity in vitro, and compared this with a capacity to directly alter ß amyloid (Aß) fibril or aggregate formation. Neuroblastoma (SH-SY5Y) cells were exposed to Aß1-42 directly or microglial (BV-2 cells) conditioned media activated with lipopolysaccharide (LPS) in the presence of the CB1 receptor-selective agonist ACEA, CB2 receptor-selective agonist JWH-015, phytocannabinoids Δ(9)-THC and cannabidiol (CBD), the endocannabinoids 2-arachidonoyl glycerol (2-AG) and anandamide or putative GPR18/GPR55 ligands O-1602 and abnormal-cannabidiol (Abn-CBD). TNF-α and nitrite production was measured in BV-2 cells to compare activation via LPS or albumin with Aß1-42. Aß1-42 evoked a concentration-dependent loss of cell viability in SH-SY5Y cells but negligible TNF-α and nitrite production in BV-2 cells compared to albumin or LPS. Both albumin and LPS-activated BV-2 conditioned media significantly reduced neuronal cell viability but were directly innocuous to SH-SY5Y cells. Of those CB ligands tested, only 2-AG and CBD were directly protective against Aß-evoked SH-SY5Y cell viability, whereas JWH-015, THC, CBD, Abn-CBD and O-1602 all protected SH-SY5Y cells from BV-2 conditioned media activated via LPS. While CB ligands variably altered the morphology of Aß fibrils and aggregates, there was no clear correlation between effects on Aß morphology and neuroprotective actions. These findings indicate a neuroprotective action of CB ligands via actions at microglial and neuronal cells.
Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/toxicidade , Canabinoides/farmacologia , Microglia/metabolismo , Neurônios/metabolismo , Estrutura Quaternária de Proteína/efeitos dos fármacos , Albuminas/metabolismo , Peptídeos beta-Amiloides/ultraestrutura , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Humanos , Ligantes , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologiaRESUMO
FtsZ is a bacterial cytoskeletal protein involved in cell division. It forms a ringlike structure that attaches to the membrane to complete bacterial division. It binds and hydrolyzes GTP, assembling into polymers in a GTP-dependent manner. To test how the orientation of the monomers affects the curvature of the filaments on a surface, we performed site-directed mutagenesis on the E. coli FtsZ protein to insert cysteine residues at lateral locations to orient FtsZ on planar lipid bilayers. The E93C and S255C mutants were overproduced, purified, and found to be functionally active in solution, as well as being capable of sustaining cell division in vivo in complementation assays. Atomic force microscopy was used to observe the shape of the filament fibers formed on the surface. The FtsZ mutants were covalently linked to the lipids and could be polymerized on the bilayer surface in the presence of GTP. Unexpectedly, both mutants assembled into straight structures. E93C formed a well-defined lattice with monomers interacting at 60° and 120° angles, whereas S255C formed a more open array of straight thicker filament aggregates. These results indicate that filament curvature and bending are not fixed and that they can be modulated by the orientation of the monomers with respect to the membrane surface. As filament curvature has been associated with the force generation mechanism, these results point to a possible role of filament membrane attachment in lateral association and curvature, elements currently identified as relevant for force generation.
Assuntos
Proteínas de Bactérias/química , Proteínas do Citoesqueleto/química , Bicamadas Lipídicas/química , Proteínas de Bactérias/genética , Proteínas do Citoesqueleto/genética , Guanosina Trifosfato/farmacologia , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Multimerização Proteica , Estrutura Quaternária de Proteína/efeitos dos fármacos , Propriedades de SuperfícieRESUMO
Spinocerebellar ataxia type 3 (SCA3) is one of nine polyglutamine (polyQ) diseases all characterized by the presence of intraneuronal inclusions that contain aggregated protein. Aggregation of ataxin-3, the causative protein of SCA3, has been well characterized in vitro, with both pathogenic and non-pathogenic length ataxin-3 undergoing fibrillogenesis. However, only ataxin-3 containing an expanded polyQ tract leads to SCA3. Therefore other cellular factors, not present in previous in vitro studies, may modulate aggregation during disease. The interactions between fibrillar species and cell membranes have been characterized in a number of amyloid diseases, including Huntington's Disease, and these interactions affect aggregation and toxicity. We have characterized the effects of the membrane mimetic sodium dodecyl sulfate (SDS) on ataxin-3 structure and aggregation, to show that both micellar and non-micellar SDS have differing effects on the two stages of ataxin-3 aggregation. We also demonstrate that fibrillar ataxin-3 binds phospholipids, in particular phosphorylated phosphotidylinositols. These results highlight the effect of intracellular factors on the ataxin-3 misfolding landscape and their implications in SCA3 and polyQ diseases in general are discussed.
Assuntos
Proteínas do Tecido Nervoso/química , Multimerização Proteica/efeitos dos fármacos , Dodecilsulfato de Sódio/farmacologia , Concentração de Íons de Hidrogênio , Micelas , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Fosfolipídeos/metabolismo , Estrutura Quaternária de Proteína/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos , Dodecilsulfato de Sódio/química , SolubilidadeRESUMO
There is a consensus that oxidative stress promotes neurodegeneration and may be linked to plaque formation. α-Synuclein is the main component of neurodegenerative plaques. We have found that α-synuclein binds strongly to the enzyme phospholipase Cß1 (PLCß1) in vitro and in cells affecting both its G protein activation and its degradation. Because PLCß1 binds to α-synuclein in cells, we tested whether decreasing its level would promote α-synuclein aggregation and whether overproducing PLCß1 would inhibit aggregation. By imaging fluorescent α-synuclein in living HEK293, PC12, and SK-H-SH cells, we find that α-synuclein aggregation is directly related to the level of PLCß1. Importantly, we found that oxidative stress does not affect the cellular levels of α-synuclein but results in the down-regulation of PLCß1 thereby promoting α-synuclein aggregation. A peptide that mimics part of the α-synuclein binding site to PLCß prevents aggregation. Our studies indicate that PLCß1 can reduce cell damage under oxidative stress and offers a potential site that might be exploited to prevent α-synuclein aggregation.