Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 297(5): 101327, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34688665

RESUMO

The production of trimethylamine (TMA) from quaternary amines such as l-carnitine or γ-butyrobetaine (4-(trimethylammonio)butanoate) by gut microbial enzymes has been linked to heart disease. This has led to interest in enzymes of the gut microbiome that might ameliorate net TMA production, such as members of the MttB superfamily of proteins, which can demethylate TMA (e.g., MttB) or l-carnitine (e.g., MtcB). Here, we show that the human gut acetogen Eubacterium limosum demethylates γ-butyrobetaine and produces MtyB, a previously uncharacterized MttB superfamily member catalyzing the demethylation of γ-butyrobetaine. Proteomic analyses of E. limosum grown on either γ-butyrobetaine or dl-lactate were employed to identify candidate proteins underlying catabolic demethylation of the growth substrate. Three proteins were significantly elevated in abundance in γ-butyrobetaine-grown cells: MtyB, MtqC (a corrinoid-binding protein), and MtqA (a corrinoid:tetrahydrofolate methyltransferase). Together, these proteins act as a γ-butyrobetaine:tetrahydrofolate methyltransferase system, forming a key intermediate of acetogenesis. Recombinant MtyB acts as a γ-butyrobetaine:MtqC methyltransferase but cannot methylate free cobalamin cofactor. MtyB is very similar to MtcB, the carnitine methyltransferase, but neither was detectable in cells grown on carnitine nor was detectable in cells grown with γ-butyrobetaine. Both quaternary amines are substrates for either enzyme, but kinetic analysis revealed that, in comparison to MtcB, MtyB has a lower apparent Km for γ-butyrobetaine and higher apparent Vmax, providing a rationale for MtyB abundance in γ-butyrobetaine-grown cells. As TMA is readily produced from γ-butyrobetaine, organisms with MtyB-like proteins may provide a means to lower levels of TMA and proatherogenic TMA-N-oxide via precursor competition.


Assuntos
Proteínas de Bactérias/química , Betaína/análogos & derivados , Carnitina/química , Eubacterium/enzimologia , Metiltransferases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Betaína/química , Betaína/metabolismo , Carnitina/genética , Carnitina/metabolismo , Eubacterium/genética , Microbioma Gastrointestinal , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Simbiose
2.
Biochim Biophys Acta Bioenerg ; 1862(4): 148378, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33460587

RESUMO

ATP synthases are the key elements of cellular bioenergetics and present in any life form and the overall structure and function of this rotary energy converter is conserved in all domains of life. However, ancestral microbes, the archaea, have a unique and huge diversity in the size and number of ion-binding sites in their membrane-embedded rotor subunit c. Due to the harsh conditions for ATP synthesis in these life forms it has never been possible to address the consequences of these unusual c subunits for ATP synthesis. Recently, we have found a Na+-dependent archaeal ATP synthase with a V-type c subunit in a mesophilic bacterium and here, we have cloned and expressed the genes in the ATP synthase-negative strain Escherichia coli DK8. The enzyme was present in membranes of E. coli DK8 and catalyzed ATP hydrolysis with a rate of 35 nmol·min-1·mg protein-1. Inverted membrane vesicles of this strain were then checked for their ability to synthesize ATP. Indeed, ATP was synthesized driven by NADH oxidation despite the V-type c subunit. ATP synthesis was dependent on Na+ and inhibited by ionophores. Most importantly, ATPase activity was inhibited by DCCD and this inhibition was relieved by addition of Na+, indicating a functional coupling of the F1 and FO domains, a prerequisite for studies on structure-function relationship. A first step in this direction was the exchange of a conserved arginine (Arg530) in the FO motor subunit a which led to loss of ATP synthesis whereas ATP hydrolysis was retained.


Assuntos
Complexos de ATP Sintetase , Archaea/enzimologia , Proteínas Arqueais , Proteínas de Bactérias , Escherichia coli , Eubacterium/genética , Microrganismos Geneticamente Modificados , Complexos de ATP Sintetase/genética , Complexos de ATP Sintetase/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Archaea/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Eubacterium/enzimologia , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética
3.
CRISPR J ; 3(2): 97-108, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32315227

RESUMO

MAD7 is an engineered class 2 type V-A CRISPR-Cas (Cas12a/Cpf1) system isolated from Eubacterium rectale. Analogous to Cas9, it is an RNA-guided nuclease with demonstrated gene editing activity in Escherichia coli and yeast cells. Here, we report that MAD7 is capable of generating indels and fluorescent gene tagging of endogenous genes in human HCT116 and U2OS cancer cell lines, respectively. In addition, MAD7 is highly proficient in generating indels, small DNA insertions (23 bases), and larger integrations ranging from 1 to 14 kb in size in mouse and rat embryos, resulting in live-born transgenic animals. Due to the different protospacer adjacent motif requirement, small-guide RNA, and highly efficient targeted gene disruption and insertions, MAD7 can expand the CRISPR toolbox for genome enginnering across different systems and model organisms.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Endodesoxirribonucleases/metabolismo , Eubacterium/enzimologia , Edição de Genes/métodos , Animais , Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , DNA/genética , Endodesoxirribonucleases/genética , Endonucleases/genética , Eubacterium/genética , Eubacterium/metabolismo , Genoma/genética , Células HCT116 , Humanos , Camundongos , RNA Guia de Cinetoplastídeos/genética , Ratos
4.
FEBS J ; 287(14): 3012-3023, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31876375

RESUMO

A1 AO ATP synthases with a V-type c subunit have only been found in hyperthermophilic archaea which makes bioenergetic analyses impossible due to the instability of liposomes at high temperatures. A search for a potential archaeal A1 AO ATP synthase with a V-type c subunit in a mesophilic organism revealed an A1 AO ATP synthase cluster in the anaerobic, acetogenic bacterium Eubacterium limosum KIST612. The enzyme was purified to apparent homogeneity from cells grown on methanol to a specific activity of 1.2 U·mg-1 with a yield of 12%. The enzyme contained subunits A, B, C, D, E, F, H, a, and c. Subunit c is predicted to be a typical V-type c subunit with only one ion (Na+ )-binding site. Indeed, ATP hydrolysis was strictly Na+ -dependent. N,N'-dicyclohexylcarbodiimide (DCCD) inhibited ATP hydrolysis, but inhibition was relieved by addition of Na+ . Na+ was shown directly to abolish binding of the fluorescence DCCD derivative, NCD-4, to subunit c, demonstrating a competition of Na+ and DCCD/NCD-4 for a common binding site. After incorporation of the A1 AO ATP synthase into liposomes, ATP-dependent primary transport of 22 Na+ as well as ΔµNa+ -driven ATP synthesis could be demonstrated. The Na+ A1 AO ATP synthase from E. limosum is the first ATP synthase with a V-type c subunit from a mesophilic organism. This will enable future bioenergetic analysis of these unique ATP synthases.


Assuntos
Complexos de ATP Sintetase/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Eubacterium/enzimologia , Sódio/metabolismo , Complexos de ATP Sintetase/química , Complexos de ATP Sintetase/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Hidrólise , Transporte de Íons , Conformação Proteica , Subunidades Proteicas
5.
Appl Environ Microbiol ; 85(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31375488

RESUMO

The human intestinal anaerobe Eubacterium ramulus is known for its ability to degrade various dietary flavonoids. In the present study, we demonstrate the cleavage of the heterocyclic C-ring of flavanones and flavanonols by an oxygen-sensitive NADH-dependent reductase, previously described as enoate reductase, from E. ramulus This flavanone- and flavanonol-cleaving reductase (Fcr) was purified following its heterologous expression in Escherichia coli and further characterized. Fcr cleaved the flavanones naringenin, eriodictyol, liquiritigenin, and homoeriodictyol. Moreover, the flavanonols taxifolin and dihydrokaempferol served as substrates. The catalyzed reactions were stereospecific for the (2R)-enantiomers of the flavanone substrates and for the (2S,3S)-configured flavanonols. The enantioenrichment of the nonconverted stereoisomers allowed for the determination of hitherto unknown flavanone racemization rates. Fcr formed the corresponding dihydrochalcones and hydroxydihydrochalcones in the course of an unusual reductive cleavage of cyclic ether bonds. Fcr did not convert members of other flavonoid subclasses, including flavones, flavonols, and chalcones, the latter indicating that the reaction does not involve a chalcone intermediate. This view is strongly supported by the observed enantiospecificity of Fcr. Cinnamic acids, which are typical substrates of bacterial enoate reductases, were also not reduced by Fcr. Based on the presence of binding motifs for dinucleotide cofactors and a 4Fe-4S cluster in the amino acid sequence of Fcr, a cofactor-mediated hydride transfer from NADH onto C-2 of the respective substrate is proposed.IMPORTANCE Gut bacteria play a crucial role in the metabolism of dietary flavonoids, thereby contributing to their activation or inactivation after ingestion by the human host. Thus, bacterial activities in the intestine may influence the beneficial health effects of these polyphenolic plant compounds. While an increasing number of flavonoid-converting gut bacterial species have been identified, knowledge of the responsible enzymes is still limited. Here, we characterized Fcr as a key enzyme involved in the conversion of flavonoids of several subclasses by Eubacterium ramulus, a prevalent human gut bacterium. Sequence similarity of this enzyme to hypothetical proteins from other flavonoid-degrading intestinal bacteria in databases suggests a more widespread occurrence of this enzyme. Functional characterization of gene products of human intestinal microbiota enables the assignment of metagenomic sequences to specific bacteria and, more importantly, to certain activities, which is a prerequisite for targeted modulation of gut microbial functionality.


Assuntos
Proteínas de Bactérias/metabolismo , Eubacterium/enzimologia , Flavanonas/metabolismo , NADH NADPH Oxirredutases/metabolismo , Catálise , Chalconas/metabolismo , Cinamatos/metabolismo , Intestinos/microbiologia , Estereoisomerismo
6.
J Biol Chem ; 294(37): 13697-13707, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31341018

RESUMO

The trimethylamine methyltransferase MttB is the founding member of a widely distributed superfamily of microbial proteins. Genes encoding most members of the MttB superfamily lack the codon for pyrrolysine that distinguishes previously characterized trimethylamine methyltransferases, leaving the function(s) of most of the enzymes in this superfamily unknown. Here, investigating the MttB family member MtpB from the human intestinal isolate Eubacterium limosum ATCC 8486, an acetogen that excretes N-methyl proline during growth on proline betaine, we demonstrate that MtpB catalyzes anoxic demethylation of proline betaine. MtpB along with MtqC (a corrinoid protein) and MtqA (a methylcorrinoid:tetrahydrofolate methyltransferase) was much more abundant in E. limosum cells grown on proline betaine than on lactate. We observed that recombinant MtpB methylates Co(I)-MtqC in the presence of proline betaine and that other quaternary amines are much less preferred substrates. MtpB, MtqC, and MtqA catalyze tetrahydrofolate methylation with proline betaine, thereby forming a key intermediate in the Wood-Ljungdahl acetogenesis pathway. To our knowledge, MtpB methylation of Co(I)-MtqC for the subsequent methylation of tetrahydrofolate represents the first described anoxic mechanism of proline betaine demethylation. The activities of MtpB and associated proteins in acetogens or other anaerobes provide a possible mechanism for the production of N-methyl proline by the gut microbiome. MtpB's activity characterized here strengthens the hypothesis that much of the MttB superfamily comprises quaternary amine-dependent methyltransferases.


Assuntos
Betaína/metabolismo , Eubacterium/metabolismo , Metiltransferases/metabolismo , Prolina/metabolismo , Desmetilação , Metabolismo Energético , Eubacterium/enzimologia , Ácido Fólico/metabolismo , Humanos , Intestinos/microbiologia , Metilaminas/metabolismo , Metilação , Microbiota , Prolina/análogos & derivados , Tetra-Hidrofolatos/metabolismo
7.
Pharmacol Res ; 139: 41-49, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391354

RESUMO

Irinotecan (CPT-11), a first-line chemotherapy for advanced colorectal cancer, causes serious diarrhea in patients receiving treatment. The underlying mechanism has been shown that the active metabolite of CPT-11, SN-38, is metabolized to the inactive metabolite SN-38 glucuronide (SN-38 G) during hepatic glucuronidation, and subsequently is exported into the intestine, where SN-38 G is hydrolyzed by bacterial ß-glucuronidase (ßG) to be SN-38, thus leading to intestinal toxicity. Thus, inhibition of the intestinal bacterial ßG activity is expected to prevent CPT-11-induced diarrhea. However, the effects of such inhibition on serum pharmacokinetics of SN-38, the key determinant of CPT-11 treatment, are uncertain. Here, we determined the effects of a potent E. coli ßG (eßG)-specific inhibitor pyrazolo[4,3-c]quinoline derivative (TCH-3562) for the potential use in preventing CPT-11-induced diarrhea. TCH-3562 exhibited efficacious inhibitory potency of endogenous ßG activity in two anaerobes, Eubacteriumsp. and Peptostreptococcus anaerobius. Oral administration of TCH-3562 also effectively reduced the bacterial ßG activity in mice intestine. Moreover, pharmacokinetic analysis of TCH-3562 revealed a relatively low amount of TCH-3562 was detected in the plasma whereas the majority of TCH-3562 was found in the feces. Importantly, co-treatment of CPT-11 and TCH-3562 did not decrease active SN-38 level in mice plasma. Finally, we established that TCH-3562 as an adjuvant treatment showed protective effects on CPT-11-induced diarrhea and had no negative effects on the therapeutic efficacy of CPT-11 in tumor-bearing mice. Therefore, inhibition of the intestinal bacterial ßG activity by the specific inhibitor, TCH-3562, is promising to prevent CPT-11-induced diarrhea while maintaining its anti-tumor efficacy that may have clinical potentials for the treatment with CPT-11.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Proteínas de Bactérias/antagonistas & inibidores , Neoplasias do Colo/tratamento farmacológico , Diarreia/prevenção & controle , Glucuronidase/antagonistas & inibidores , Irinotecano/uso terapêutico , Quinolinas/farmacologia , Animais , Linhagem Celular Tumoral , Diarreia/induzido quimicamente , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Eubacterium/enzimologia , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos BALB C , Peptostreptococcus/enzimologia
8.
Appl Environ Microbiol ; 81(14): 4782-90, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25956767

RESUMO

Eubacterium limosum KIST612 is one of the few acetogens that can produce butyrate from carbon monoxide. We have used a genome-guided analysis to delineate the path of butyrate formation, the enzymes involved, and the potential coupling to ATP synthesis. Oxidation of CO is catalyzed by the acetyl-coenzyme A (CoA) synthase/CO dehydrogenase and coupled to the reduction of ferredoxin. Oxidation of reduced ferredoxin is catalyzed by the Rnf complex and Na(+) dependent. Consistent with the finding of a Na(+)-dependent Rnf complex is the presence of a conserved Na(+)-binding motif in the c subunit of the ATP synthase. Butyrate formation is from acetyl-CoA via acetoacetyl-CoA, hydroxybutyryl-CoA, crotonyl-CoA, and butyryl-CoA and is consistent with the finding of a gene cluster that encodes the enzymes for this pathway. The activity of the butyryl-CoA dehydrogenase was demonstrated. Reduction of crotonyl-CoA to butyryl-CoA with NADH as the reductant was coupled to reduction of ferredoxin. We postulate that the butyryl-CoA dehydrogenase uses flavin-based electron bifurcation to reduce ferredoxin, which is consistent with the finding of etfA and etfB genes next to it. The overall ATP yield was calculated and is significantly higher than the one obtained with H2 + CO2. The energetic benefit may be one reason that butyrate is formed only from CO but not from H2 + CO2.


Assuntos
Butiratos/metabolismo , Monóxido de Carbono/metabolismo , Eubacterium/metabolismo , Acil Coenzima A/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Butiril-CoA Desidrogenase/genética , Butiril-CoA Desidrogenase/metabolismo , Metabolismo Energético , Eubacterium/enzimologia , Eubacterium/genética , Flavinas/metabolismo , Genômica , Oxirredução
9.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 4): 907-17, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25849401

RESUMO

Flavonoids represent a large class of secondary metabolites produced by plants. These polyphenolic compounds are well known for their antioxidative abilities, are antimicrobial phytoalexins responsible for flower pigmentation to attract pollinators and, in addition to other properties, are also specific bacterial regulators governing the expression of Rhizobium genes involved in root nodulation (Firmin et al., 1986). The bacterial chalcone isomerase (CHI) from Eubacterium ramulus catalyses the first step in a flavanone-degradation pathway by ring opening of (2S)-naringenin to form naringenin chalcone. The structural biology and enzymology of plant CHIs have been well documented, whereas the existence of bacterial CHIs has only recently been elucidated. This first determination of the structure of a bacterial CHI provides detailed structural insights into the key step of the flavonoid-degradation pathway. The active site could be confirmed by co-crystallization with the substrate (2S)-naringenin. The stereochemistry of the proposed mechanism of the isomerase reaction was verified by specific (1)H/(2)H isotope exchange observed by (1)H NMR experiments and was further supported by mutagenesis studies. The active site is shielded by a flexible lid, the varying structure of which could be modelled in different states of the catalytic cycle using small-angle X-ray scattering data together with the crystallographic structures. Comparison of bacterial CHI with the plant enzyme from Medicago sativa reveals that they have unrelated folds, suggesting that the enzyme activity evolved convergently from different ancestor proteins. Despite the lack of any functional relationship, the tertiary structure of the bacterial CHI shows similarities to the ferredoxin-like fold of a chlorite dismutase and the stress-related protein SP1.


Assuntos
Eubacterium/enzimologia , Liases Intramoleculares/química , Domínio Catalítico , Cristalografia por Raios X , Eubacterium/química , Flavonoides/metabolismo , Liases Intramoleculares/metabolismo , Modelos Moleculares , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
10.
J Mol Biol ; 391(3): 609-20, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19559030

RESUMO

3-Methylitaconate-Delta-isomerase (Mii) participates in the nicotinate fermentation pathway of the anaerobic soil bacterium Eubacterium barkeri (order Clostridiales) by catalyzing the reversible conversion of (R)-3-methylitaconate (2-methylene-3-methylsuccinate) to 2,3-dimethylmaleate. The enzyme is also able to catalyze the isomerization of itaconate (methylenesuccinate) to citraconate (methylmaleate) with ca 10-fold higher K(m) but > 1000-fold lower k(cat). The gene mii from E. barkeri was cloned and expressed in Escherichia coli. The protein produced with a C-terminal Strep-tag exhibited the same specific activity as the wild-type enzyme. The crystal structure of Mii from E. barkeri has been solved at a resolution of 2.70 A. The asymmetric unit of the P2(1)2(1)2(1) unit cell with parameters a = 53.1 A, b = 142.3 A, and c = 228.4 A contains four molecules of Mii. The enzyme belongs to a group of isomerases with a common structural feature, the so-called diaminopimelate epimerase fold. The monomer of 380 amino acid residues has two topologically similar domains exhibiting an alpha/beta-fold. The active site is situated in a cleft between these domains. The four Mii molecules are arranged as a tetramer with 222 symmetry for the N-terminal domains. The C-terminal domains have different relative positions with respect to the N-terminal domains resulting in a closed conformation for molecule A and two distinct open conformations for molecules B and D. The C-terminal domain of molecule C is disordered. The Mii active site contains the putative catalytic residues Lys62 and Cys96, for which mechanistic roles are proposed based on a docking experiment of the Mii substrate complex. The active sites of Mii and the closely related PrpF, most likely a methylaconitate Delta-isomerase, have been compared. The overall architecture including the active-site Lys62, Cys96, His300, and Ser17 (Mii numbering) is similar. This positioning of (R)-3-methylitaconate allows Cys96 (as thiolate) to deprotonate C-3 and (as thiol) to donate a proton to the methylene carbon atom of the resulting allylic carbanion. Interestingly, the active site of isopentenyl diphosphate isomerase type I also contains a cysteine that cooperates with glutamate rather than lysine. It has been proposed that the initial step in this enzyme is a protonation generating a tertiary carbocation intermediate.


Assuntos
Proteínas de Bactérias/química , Isomerases de Ligação Dupla Carbono-Carbono/química , Eubacterium/enzimologia , Modelos Moleculares , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Cristalografia por Raios X , Dados de Sequência Molecular
11.
Biochim Biophys Acta ; 1784(5): 816-26, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18328273

RESUMO

Our previous work showed that the adduct between beta-mercaptoethanol and the single cysteine residue (Cys57) in superoxide dismutase from the psychrophilic eubacterium Pseudoalteromonas haloplanktis (PhSOD) reduces the enzyme inactivation by peroxynitrite. In this work, immunoblotting experiments prove that peroxynitrite inactivation of PhSOD involves formation of nitrotyrosine residue(s). In order to study the role of Cys57 as a redox-sensor residue modifiable by cellular thiols, a recombinant PhSOD and two Cys57 mutants were produced and characterized. Recombinant and mutant enzymes share similar activity and peroxynitrite inactivation, but different reactivity towards three glutathione forms. Indeed, oxidized glutathione and S-nitrosoglutathione, but reduced glutathione, lead to S-glutathionylation of recombinant PhSOD. This new covalent modification for a Fe-SOD does not occur in both Cys57 mutants, thus indicating that its target is Cys57. Moreover, mass spectrometry analysis confirmed that S-glutathionylation of Cys57 takes place also with endogenous PhSOD. Formation of this mixed disulfide in PhSOD protects the enzyme from tyrosine nitration and peroxynitrite inactivation. PhSOD undergoes S-glutathionylation during its overproduction in E. coli cells and in a growing culture of P. haloplanktis. In both cases the extent of glutathionylated PhSOD is enhanced upon cell exposure to oxidative agents. We suggest that S-glutathionylation of PhSOD could represent a further cold-adaptation strategy to improve the antioxidant cellular defence mechanism.


Assuntos
Eubacterium/enzimologia , Glutationa/metabolismo , Pseudoalteromonas/enzimologia , Superóxido Dismutase/metabolismo , Cromatografia Líquida de Alta Pressão , Cisteína/metabolismo , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Escherichia coli , Espectrometria de Massas , Proteínas Mutantes/metabolismo , Ácido Peroxinitroso/metabolismo , Proteínas Recombinantes/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/isolamento & purificação , Tirosina/metabolismo
12.
Biochemistry ; 44(31): 10541-51, 2005 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-16060663

RESUMO

Coenzyme B(12)-dependent 2-methyleneglutarate mutase from the strict anaerobe Eubacterium barkeri catalyzes the equilibration of 2-methyleneglutarate with (R)-3-methylitaconate. Proteins with mutations in the highly conserved coenzyme binding-motif DXH(X)(2)G(X)(41)GG (D483N and H485Q) exhibited decreased substrate turnover by 2000-fold and >4000-fold, respectively. These findings are consistent with the notion of H485 hydrogen-bonded to D483 being the lower axial ligand of adenosylcobalamin in 2-methyleneglutarate mutase. (E)- and (Z)-2-methylpent-2-enedioate and all four stereoisomers of 1-methylcyclopropane-1,2-dicarboxylate were synthesized and tested, along with acrylate, with respect to their inhibitory potential. Acrylate and the 2-methylpent-2-enedioates were noninhibitory. Among the 1-methylcyclopropane-1,2-dicarboxylates only the (1R,2R)-isomer displayed weak inhibition (noncompetitive, K(i) = 13 mM). Short incubation (5 min) of 2-methyleneglutarate mutase with 2-methyleneglutarate under anaerobic conditions generated an electron paramagnetic resonance (EPR) signal (g(xy) approximately 2.1; g(z) approximately 2.0), which by analogy with the findings on glutamate mutase from Clostridium cochlearium [Biochemistry, 1998, 37, 4105-4113] was assigned to cob(II)alamin coupled to a carbon-centered radical. At longer incubation times (>1 h), inactivation of the mutase occurred concomitant with the formation of oxygen-insensitive cob(II)alamin (g(xy) approximately 2.25; g(z) approximately 2.0). In order to identify the carbon-centered radical, various (13)C- and one (2)H-labeled substrate/product molecules were synthesized. Broadening (0.5 mT) of the EPR signal around g = 2.1 was observed only when C2 and/or C4 of 2-methyleneglutarate was labeled. No effect on the EPR signals was seen when [5'-(13)C]adenosylcobalamin was used as coenzyme. The inhibition and EPR data are discussed in the context of the addition-elimination and fragmentation-recombination mechanisms proposed for 2-methyleneglutarate mutase.


Assuntos
Carbono/química , Cobamidas/síntese química , Eubacterium/enzimologia , Glutaratos/síntese química , Transferases Intramoleculares/isolamento & purificação , Succinatos/síntese química , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Inibidores Enzimáticos/química , Eubacterium/genética , Transferases Intramoleculares/antagonistas & inibidores , Transferases Intramoleculares/genética , Mutagênese Sítio-Dirigida , Especificidade por Substrato
13.
J Agric Food Chem ; 52(1): 110-6, 2004 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-14709022

RESUMO

The product resulting from the reaction between E-2-hexenal and l-cysteine was shown to be a diastereoisomeric mixture of 2-(2-S-l-cysteinylpentyl)-1,3-thiazolidine-4-carboxylic acid 1. Treatment of the conjugate with two sources of cysteine-S-conjugate beta-lyase (tryptophanase from E. coli and a crude enzyme extract prepared from Eubacterium limosum) resulted in the formation of 3-mercaptohexanal. The reaction proceeded with a slight preference for the (S)-configured product, however, with low conversion rate. The role of 3-S-l-cysteinylhexanal 2 as substrate for beta-lyases was demonstrated by in situ generation of 2 from 3-S-(N-acetyl-l-cysteinyl)hexanal using acylase. Opposite enantioselectivity was observed for the liberation of 3-mercaptohexanol from 3-S-l-cysteinylhexanol 5 by the enzyme preparations from Eubacterium limosum and tryptophanase. Various yeasts produced 3-mercaptohexanol starting from 1 as well as from 5. The reactions proceeded without preferential formation of one of the enantiomers.


Assuntos
Aldeídos/metabolismo , Liases de Carbono-Enxofre/metabolismo , Cisteína/metabolismo , Hexanóis/metabolismo , Compostos de Sulfidrila/metabolismo , Escherichia coli/enzimologia , Eubacterium/enzimologia , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Saccharomyces cerevisiae/enzimologia , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo , Especificidade por Substrato
14.
J Biol Chem ; 278(27): 25081-90, 2003 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-12704200

RESUMO

Transfer RNA (guanosine-2')-methyltransferase (Gm-methylase) catalyzes the transfer of a methyl group from S-adenosyl-l-methionine to 2'-OH of G18 in the D-loop of tRNA. Based on their mode of tRNA recognition, Gm-methylases can be divided into the following two types: type I having broad specificity toward the substrate tRNA, and type II that methylates only limited tRNA species. Protein synthesized by in vitro cell-free translation revealed that Gm-methylase encoded in the Aquifex aeolicus genome is a novel type II enzyme. Experiments with chimeric tRNAs and mini- and micro-helix RNAs showed that the recognition region of this enzyme is included within the D-arm structure of tRNALeu and that a bulge is essentially required. Variants of tRNALeu, tRNASer, and tRNAPhe revealed that a combination of certain base pairs in the D-stem is strongly recognized by the enzyme, that 4 bp in the D-stem enhance methyl acceptance activity, and that the Py16Py17G18G19 sequence is important for efficient methyl transfer. The methyl acceptance activities of all the A. aeolicus tRNA genes, which can be classified into 14 categories on the basis of their D-arm structure, were tested. The results clearly showed that the substrate recognition mechanism elucidated by the variant experiments was applicable to their native substrates.


Assuntos
Eubacterium/enzimologia , RNA de Transferência/metabolismo , tRNA Metiltransferases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Eubacterium/genética , Genoma Bacteriano , Dados de Sequência Molecular , Especificidade por Substrato
15.
Arch Microbiol ; 179(2): 116-30, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12560990

RESUMO

Two gene clusters encoding similar formate dehydrogenases (FDH) were identified in Eubacterium acidaminophilum. Each cluster is composed of one gene coding for a catalytic subunit ( fdhA-I, fdhA-II) and one for an electron-transferring subunit ( fdhB-I, fdhB-II). Both fdhA genes contain a TGA codon for selenocysteine incorporation and the encoded proteins harbor five putative iron-sulfur clusters in their N-terminal region. Both FdhB subunits resemble the N-terminal region of FdhA on the amino acid level and contain five putative iron-sulfur clusters. Four genes thought to encode the subunits of an iron-only hydrogenase are located upstream of the FDH gene cluster I. By sequence comparison, HymA and HymB are predicted to contain one and four iron-sulfur clusters, respectively, the latter protein also binding sites for FMN and NAD(P). Thus, HymA and HymB seem to represent electron-transferring subunits, and HymC the putative catalytic subunit containing motifs for four iron-sulfur clusters and one H-cluster specific for Fe-only hydrogenases. HymD has six predicted transmembrane helices and might be an integral membrane protein. Viologen-dependent FDH activity was purified from serine-grown cells of E. acidaminophilum and the purified protein complex contained four subunits, FdhA and FdhB, encoded by FDH gene cluster II, and HymA and HymB, identified after determination of their N-terminal sequences. Thus, this complex might represent the most simple type of a formate hydrogen lyase. The purified formate dehydrogenase fraction contained iron, tungsten, a pterin cofactor, and zinc, but no molybdenum. FDH-II had a two-fold higher K(m) for formate (0.37 mM) than FDH-I and also catalyzed CO(2) reduction to formate. Reverse transcription (RT)-PCR pointed to increased expression of FDH-II in serine-grown cells, supporting the isolation of this FDH isoform. The fdhA-I gene was expressed as inactive protein in Escherichia coli. The in-frame UGA codon for selenocysteine incorporation was read in the heterologous system only as stop codon, although its potential SECIS element exhibited a quite high similarity to that of E. coli FDH.


Assuntos
Eubacterium/enzimologia , Formiato Desidrogenases , Hidrogenase , Proteínas Ferro-Enxofre , Selênio/análise , Tungstênio/análise , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Eubacterium/classificação , Eubacterium/genética , Eubacterium/metabolismo , Formiato Desidrogenases/análise , Formiato Desidrogenases/química , Formiato Desidrogenases/genética , Hidrogenase/análise , Hidrogenase/química , Hidrogenase/genética , Proteínas Ferro-Enxofre/análise , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Modelos Biológicos , Modelos Genéticos , Família Multigênica , Pterinas/análise , Pterinas/isolamento & purificação , Transcrição Gênica
16.
J Am Chem Soc ; 124(47): 14039-48, 2002 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-12440902

RESUMO

2-Methyleneglutarate mutase from the anaerobe Eubacterium (Clostridium) barkeri is an adenosylcobalamin (coenzyme B(12))-dependent enzyme that catalyzes the equilibration of 2-methyleneglutarate with (R)-3-methylitaconate. Two possibilities for the mechanism of the carbon skeleton rearrangement of the substrate-derived radical to the product-related radical are considered. In both mechanisms an acrylate group migrates from C-3 of 2-methyleneglutarate to C-4. In the "addition-elimination" mechanism this 1,2-shift occurs via an intermediate, a 1-methylenecyclopropane-1,2-dicarboxylate radical, in which the migrating acrylate is simultaneously attached to both C-3 and C-4. In the "fragmentation-recombination" mechanism the migrating group, a 2-acrylyl radical, becomes detached from C-3 before it starts bonding to C-4. In an attempt to distinguish between these two possibilities we have investigated the action of 2-methyleneglutarate mutase on the stereospecifically deuterated substrates (Z)-3-methyl[2'-(2)H(1)]itaconate and (Z)-3-[2'-(2)H(1),methyl-(2)H(3)]methylitaconate. The enzyme catalyzes the equilibration of both compounds with their corresponding E-isomers and with a 1:1 mixture of the corresponding (E)- and (Z)-2-methylene[2'-(2)H(1)]glutarates, as shown by monitoring of the reactions with (1)H and (2)H NMR. In the initial phase of the enzyme-catalyzed equilibration a significant excess (8-11%) of (E)-3-methyl[2'-(2)H(1)]itaconate over its equilibrium value was observed ("E-overshoot"). The E-overshoot was only 3-4% with (Z)-3-[2'-(2)H(1),methyl-(2)H(3)]methylitaconate because the presence of the deuterated methyl group raises the energy barrier from 3-methylitaconate to the corresponding radical. The overshoot is explained by postulating that the migrating acrylate group has to overcome an additional energy barrier from the state leading back to the substrate-derived radical to the state leading forward to the product-related radical. It is concluded that the fragmentation-recombination mechanism can provide an explanation for the results in terms of an additional energy barrier, despite the higher calculated activation energy for this pathway.


Assuntos
Cobamidas/metabolismo , Eubacterium/enzimologia , Transferases Intramoleculares/metabolismo , Succinatos/metabolismo , Catálise , Cobamidas/química , Transferases Intramoleculares/química , Cinética , Conformação Molecular , Ressonância Magnética Nuclear Biomolecular , Succinatos/síntese química , Succinatos/química
17.
Eur J Biochem ; 268(24): 6417-25, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11737196

RESUMO

In the amino-acid-fermenting anaerobe Eubacterium acidaminophilum, acetyl phosphate is synthesized by protein C of glycine reductase from a selenoprotein A-bound carboxymethyl-selenoether. We investigated specific thiols present in protein C for responsibility for acetyl phosphate liberation. After cloning of the genes encoding the large and the small subunit (grdC1, grdD1), they were expressed separately in Escherichia coli and purified as Strep-tag proteins. GrdD was the only subunit that catalysed arsenate-dependent hydrolysis of acetyl phosphate (up to 274 U.mg-1), whereas GrdC was completely inactive. GrdD contained two cysteine residues that were exchanged by site-directed mutagenesis. The GrdD(C98S) mutant enzyme still catalysed the hydrolysis of acetyl phosphate, but the GrdD(C359A) mutant enzyme was completely inactive. Next, these thiols were analysed further by chemical modification. After iodoacetate treatment of GrdD, the enzyme activity was lost, but in the presence of acetyl phosphate enzyme activity was protected. Subsequently, the inactivated carboxymethylated enzyme and the protected enzyme were both denatured, and the remaining thiols were pyridylethylated. Peptides generated by proteolytic cleavage were separated and subjected to mass spectrometry. Cys98 was not accessible to carboxymethylation by iodoacetate in the native enzyme in the presence or absence of the substrate, but could be alkylated after denaturation. Cys359, in contrast, was protected from carboxymethylation in the presence of acetyl phosphate, but became accessible to pyridylethylation upon prior denaturation of the protein. This clearly confirmed the catalytic role of Cys359 as the active site thiol of GrdD responsible for liberation of acetyl phosphate.


Assuntos
Aminoácido Oxirredutases/metabolismo , Cisteína/metabolismo , Eubacterium/enzimologia , Complexos Multienzimáticos/metabolismo , Fosfatos/metabolismo , Aminoácido Oxirredutases/química , Aminoácido Oxirredutases/genética , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Catálise , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Primers do DNA , Escherichia coli/genética , Dados de Sequência Molecular , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Compostos de Sulfidrila/metabolismo
18.
Biol Chem ; 382(6): 979-86, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11501765

RESUMO

A strongly 75Se-labeled 22 kDa protein detected previously showed in its N-terminal sequence the highest similarity to the family of thiol-dependent peroxidases, now called peroxiredoxins. The respective gene prxU was cloned and analyzed. prxU encodes a protein of 203 amino acids (22,470 Da) and contains an in-frame UGA codon (selenocysteine) at the position of the so far strictly conserved and catalytically active Cys47. The second conserved cysteine present in 2-Cys peroxiredoxins was replaced by alanine. Heterologous expression of the Eubacterium acid-aminophilum PrxU as a recombinant selenoprotein in Escherichia coli was not possible. A cysteine-encoding mutant gene, prxU47C, containing UGC instead of UGA was strongly expressed. This recombinant PrxU47C mutant protein was purified to homogeneity by its affinity tag, but was not active as a thiol-dependent peroxidase. The identification of prxU reveals that the limited class of natural selenoproteins may in certain organisms also include isoenzymes of peroxiredoxins, previously only known as non-selenoproteins containing catalytic cysteine residues.


Assuntos
Eubacterium/enzimologia , Peroxidases/genética , Selenocisteína , Substituição de Aminoácidos , Antioxidantes/química , Sequência de Bases , Clonagem Molecular , Peróxido de Hidrogênio/metabolismo , Dados de Sequência Molecular , Peroxidases/química , Peroxidases/metabolismo , Peroxirredoxinas , Alinhamento de Sequência
19.
Arch Pharm Res ; 23(2): 172-7, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10836746

RESUMO

The relationship between the metabolites of glycyrrhizin (18beta-glycyrrhetinic acid-3-O-beta-D-glucuronopyranosyl-(1-->2)-beta-D-glucuronide, GL) and their biological activities was investigated. By human intestinal microflora, GL was metabolized to 18beta-glycyrrhetinic acid (GA) as a main product and to 18beta-glycyrrhetinic acid-3-O-beta-D-glucuronide (GAMG) as a minor product. The former reaction was catalyzed by Eubacterium L-8 and the latter was by Streptococcus LJ-22. Among GL and its metabolites, GA and GAMG had more potent in vitro anti-platelet aggregation activity than GL. GA also showed the most potent cytotoxicity against tumor cell lines and the potent inhibitory activity on rotavirus infection as well as growth of Helicobacter pylori. GAMG, the minor metabolite of GL, was the sweetest.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Infecciosos/farmacocinética , Bactérias/metabolismo , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/farmacocinética , Intestinos/microbiologia , Antibacterianos , Biotransformação , Cromatografia em Camada Fina , Eubacterium/enzimologia , Eubacterium/crescimento & desenvolvimento , Eubacterium/metabolismo , Fezes/microbiologia , Glucuronidase/metabolismo , Humanos , Rotavirus/efeitos dos fármacos , Streptococcus/enzimologia , Streptococcus/crescimento & desenvolvimento , Streptococcus/metabolismo , Células Tumorais Cultivadas , Urease/metabolismo
20.
Eur J Biochem ; 260(1): 38-49, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10091582

RESUMO

The substrate-specific selenoprotein B of glycine reductase (PBglycine) from Eubacterium acidaminophilum was purified and characterized. The enzyme consisted of three different subunits with molecular masses of about 22 (alpha), 25 (beta) and 47 kDa (gamma), probably in an alpha 2 beta 2 gamma 2 composition. PBglycine purified from cells grown in the presence of [75Se]selenite was labeled in the 47-kDa subunit. The 22-kDa and 47-kDa subunits both reacted with fluorescein thiosemicarbazide, indicating the presence of a carbonyl compound. This carbonyl residue prevented N-terminal sequencing of the 22-kDa (alpha) subunit, but it could be removed for Edman degradation by incubation with o-phenylenediamine. A DNA fragment was isolated and sequenced which encoded beta and alpha subunits of PBglycine (grdE), followed by a gene encoding selenoprotein A (grdA2) and the gamma subunit of PBglycine (grdB2). The cloned DNA fragment represented a second GrdB-encoding gene slightly different from a previously identified partial grdBl-containing fragment. Both grdB genes contained an in-frame UGA codon which confirmed the observed selenium content of the 47-kDa (gamma) subunit. Peptide sequence analyses suggest that grdE encodes a proprotein which is cleaved into the previously sequenced N-terminal 25-kDa (beta) subunit and a 22-kDa (alpha) subunit of PBglycine. Cleavage most probably occurred at an -Asn-Cys- site concomitantly with the generation of the blocking carbonyl moiety from cysteine at the alpha subunit.


Assuntos
Aminoácido Oxirredutases/genética , Proteínas de Bactérias/genética , Eubacterium/enzimologia , Complexos Multienzimáticos/genética , Proteínas/genética , Aminoácido Oxirredutases/química , Sequência de Aminoácidos , Sequência de Bases , Divisão Celular/efeitos dos fármacos , Clonagem Molecular , Genes Bacterianos/genética , Modelos Biológicos , Dados de Sequência Molecular , Complexos Multienzimáticos/química , Proteínas/química , Radioisótopos de Selênio/metabolismo , Selenoproteínas , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA