Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
J Microbiol Biotechnol ; 31(2): 171-180, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33397827

RESUMO

Caffeine, a methylxanthine analog of purine bases, is a compound that is largely consumed in beverages and medications for psychoactive and diuretic effects and plays many beneficial roles in neuronal stimulation and enhancement of anti-tumor immune responses by blocking adenosine receptors in higher organisms. In single-cell eukaryotes, however, caffeine somehow impairs cellular fitness by compromising cell wall integrity, inhibiting target of rapamycin (TOR) signaling and growth, and overriding cell cycle arrest caused by DNA damage. Among its multiple inhibitory targets, caffeine specifically interacts with phosphatidylinositol 3-kinase (PI3K)-related kinases causing radiosensitization and cytotoxicity via specialized intermediate molecules. Caffeine potentiates the lethality of cells in conjunction with several other stressors such as oxidants, irradiation, and various toxic compounds through largely unknown mechanisms. In this review, recent findings on caffeine effects and cellular detoxification schemes are highlighted and discussed with an emphasis on the inhibitory interactions between caffeine and its multiple targets in eukaryotic microorganisms such as budding and fission yeasts.


Assuntos
Cafeína/farmacologia , Eucariotos/efeitos dos fármacos , Eucariotos/genética , Instabilidade Cromossômica/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Eucariotos/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Exp Parasitol ; 219: 108031, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33091422

RESUMO

BACKGROUND: Fungi represent an interesting candidate for the synthesis of nanoparticles. The biosynthesis of silver nanoparticles (AgNPs) has many industrial and biomedical indications. We aimed in this work to biologically synthesize silver nanoparticles using Aspergillus niger and to evaluate its effect against the newly identified Allovahlkampfia spelaea that causes resistant human keratitis. MATERIAL AND METHODS: Aspergillus niger (soil isolate) was treated with silver nitrate to produce silver nanoparticles. AgNPs were characterized by Ultraviolet-Visible Spectroscopy, Transmission Electron Microscopy, and Fourier Transform Infrared Spectroscopy. The effect of the synthesized nanoparticles against Allovahlkampfia spelaea growth, encystation, excystation, and toxicity in host cells was evaluated. RESULTS: AgNPs exhibited significant inhibition of Allovahlkampfia spelaea viability and growth of both trophozoites and cysts, with a reduction of amoebic cytotoxic activity in host cells. CONCLUSION: AgNPs may give a promising future to the treatment of Allovahlkampfia spelaea infections in humans.


Assuntos
Aspergillus niger/metabolismo , Eucariotos/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata/metabolismo , Prata/farmacologia , Anti-Infecciosos Locais/uso terapêutico , Clorexidina/uso terapêutico , Eucariotos/crescimento & desenvolvimento , Química Verde , Células HeLa , Humanos , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Trofozoítos/efeitos dos fármacos
3.
ACS Appl Mater Interfaces ; 12(12): 13657-13670, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32091877

RESUMO

Light-activated molecular nanomachines (MNMs) can be used to drill holes into prokaryotic (bacterial) cell walls and the membrane of eukaryotic cells, including mammalian cancer cells, by their fast rotational movement, leading to cell death. We examined how these MNMs function in multicellular organisms and investigated their use for treatment and eradication of specific diseases by causing damage to certain tissues and small organisms. Three model eukaryotic species, Caenorhabditis elegans, Daphnia pulex, and Mus musculus (mouse), were evaluated. These organisms were exposed to light-activated fast-rotating MNMs and their physiological and pathological changes were studied in detail. Slow rotating MNMs were used to control for the effects of rotation rate. We demonstrate that fast-rotating MNMs caused depigmentation and 70% mortality in C. elegans while reducing the movement as well as heart rate and causing tissue damage in Daphnia. Topically applied light-activated MNMs on mouse skin caused ulceration and microlesions in the epithelial tissue, allowing MNMs to localize into deeper epidermal tissue. Overall, this study shows that the nanomechanical action of light-activated MNMs is effective against multicellular organisms, disrupting cell membranes and damaging tissue in vivo. Customized MNMs that target specific tissues for therapy combined with spatial and temporal control could have broad clinical applications in a variety of benign and malignant disease states including treatment of cancer, parasites, bacteria, and diseased tissues.


Assuntos
Membrana Celular/efeitos dos fármacos , Eucariotos/efeitos dos fármacos , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Animais , Bactérias/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Membrana Celular/química , Humanos , Luz , Camundongos , Nanoestruturas/efeitos da radiação , Nanoestruturas/uso terapêutico
4.
DNA Repair (Amst) ; 71: 198-204, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30170832

RESUMO

DNA-protein crosslinks (DPCs) are a specific type of DNA lesion consisting of a protein covalently and irreversibly bound to DNA, which arise after exposure to physical and chemical crosslinking agents. DPCs can be bulky and thereby pose a barrier to DNA replication and transcription. The persistence of DPCs during S phase causes DNA replication stress and genome instability. The toxicity of DPCs is exploited in cancer therapy: many common chemotherapeutics kill cancer cells by inducing DPC formation. Recent work from several laboratories discovered a specialized repair pathway for DPCs, namely DPC proteolysis (DPCP) repair. DPCP repair is carried out by replication-coupled DNA-dependent metalloproteases: Wss1 in yeast and SPRTN in metazoans. Mutations in SPRTN cause premature ageing and liver cancer in humans and mice; thus, defective DPC repair has great clinical ramifications. In the present review, we will revise the current knowledge on the mechanisms of DPCP repair and on the regulation of DPC protease activity, while highlighting the most significant unresolved questions in the field. Finally, we will discuss the impact of faulty DPC repair on disease and cancer therapy.


Assuntos
Adutos de DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Animais , Reagentes de Ligações Cruzadas/farmacologia , Reagentes de Ligações Cruzadas/toxicidade , DNA/efeitos dos fármacos , DNA/efeitos da radiação , Proteínas de Ligação a DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/efeitos da radiação , Eucariotos/efeitos dos fármacos , Eucariotos/genética , Eucariotos/metabolismo , Eucariotos/efeitos da radiação , Humanos , Proteólise , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Aquat Toxicol ; 199: 263-268, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29677588

RESUMO

Pesticides commonly used around households can contain additives of unknown concentrations and toxicity. Given the likelihood of these chemicals washing into urban waterways, it is important to understand the effects that these additives may have on aquatic organisms. The aim of this study was to compare the toxicity of commercially available household pesticides to that of the active ingredient(s) alone. The toxicity of five household pesticides (three herbicides and two insecticides) was investigated using a bacterial cytotoxicity bioassay and an algal photosynthesis bioassay. The commercial products were up to an order of magnitude more toxic than the active ingredient(s) alone. In addition, two commercial products with the same listed active ingredients in the same ratio had a 600× difference in potency. These results clearly demonstrate that additives in commercial formulations are significant contributors to the toxicity of household pesticides. The toxicity of pesticides in aquatic systems is therefore likely underestimated by conventional chemical monitoring and risk assessment when only the active ingredients are considered. Regulators and customers should require more clarity from pesticide manufacturers about the nature and concentrations of not only the active ingredients, but also additives used in commercial formulations. In addition, monitoring programmes and chemical risk assessments schemes should develop a structured approach to assessing the toxic effects of commercial formulations, including additives, rather than simply those of the listed active ingredients.


Assuntos
Bioensaio/métodos , Praguicidas/toxicidade , Testes de Toxicidade , Animais , Organismos Aquáticos/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Eucariotos/efeitos dos fármacos , Praguicidas/análise , Poluentes Químicos da Água/toxicidade
6.
J Antibiot (Tokyo) ; 70(11): 1070-1077, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28951601

RESUMO

Tunicamycins (TUN) are inhibitors of the UDP-HexNAc: polyprenol-P HexNAc-1-P transferase family of enzymes, which initiate the biosynthesis of bacterial peptidoglycan and catalyze the first step in eukaryotic protein N-glycosylation. The TUN are therefore general and potent toxins to both eukaryotes and prokaryotes. Screening a library of synthetic TUN against Bacillus and yeast identified TUN that are antibacterial, but have significantly reduced eukaryotic toxicity. One of these (Tun-15:0) differs from the native TUN control only by the lack of the conjugated double bond in the tunicaminyl N-acyl group. Tun-15:0 also showed reduced inhibition for protein N-glycosylation in a Pichia-based bioassay. Natural TUN was subsequently modified by chemically reducing the N-acyl double bond (TunR1) or both the N-acyl and uridyl double bonds (TunR2). TunR1 and TunR2 retain their antibacterial activity, but with considerably reduced eukaryotic toxicity. In protein N-glycosylation bioassays, TunR1 is a less potent inhibitor than native TUN and TunR2 is entirely inactive. Importantly, the less toxic TunR1 and TunR2 both enhance the antibacterial activity of ß-lactams: oxacillin by 32- to 64-fold, comparable with native TUN, and with similar enhancements for methicillin and penicillin G. Hence, the modified TUNs, TunR1 and TunR2, are potentially important as less-toxic synergistic enhancers of the ß-lactams.


Assuntos
Antibacterianos/farmacologia , Tunicamicina/farmacologia , beta-Lactamas/farmacologia , Antibacterianos/química , Antibacterianos/toxicidade , Sinergismo Farmacológico , Eucariotos/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Meticilina/administração & dosagem , Meticilina/farmacologia , Oxacilina/administração & dosagem , Oxacilina/farmacologia , Penicilina G/administração & dosagem , Penicilina G/farmacologia , Tunicamicina/química , Tunicamicina/toxicidade , beta-Lactamas/administração & dosagem
7.
Sci Rep ; 7(1): 7741, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798375

RESUMO

The toxic metalloid arsenic has been environmentally ubiquitous since life first arose nearly four billion years ago and presents a challenge for the survival of all living organisms. Its bioavailability has varied dramatically over the history of life on Earth. As life spread, biogeochemical and climate changes cyclically increased and decreased bioavailable arsenic. To elucidate the history of arsenic adaptation across the tree of life, we reconstructed the phylogeny of the arsM gene that encodes the As(III) S-adenosylmethionine (SAM) methyltransferase. Our results suggest that life successfully moved into arsenic-rich environments in the late Archean Eon and Proterozoic Eon, respectively, by the spread of arsM genes. The arsM genes of bacterial origin have been transferred to other kingdoms of life on at least six occasions, and the resulting domesticated arsM genes promoted adaptation to environmental arsenic. These results allow us to peer into the history of arsenic adaptation of life on our planet and imply that dissemination of genes encoding diverse adaptive functions to toxic chemicals permit adaptation to changes in concentrations of environmental toxins over evolutionary history.


Assuntos
Adaptação Biológica/efeitos dos fármacos , Adaptação Biológica/genética , Arsênio/toxicidade , Transferência Genética Horizontal , Metiltransferases/genética , Animais , Archaea/efeitos dos fármacos , Archaea/genética , Arsênio/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/genética , Eucariotos/efeitos dos fármacos , Eucariotos/genética , Fungos/efeitos dos fármacos , Fungos/genética , Metilação , Metiltransferases/metabolismo , Modelos Biológicos , Filogenia
8.
Nat Prod Commun ; 12(3): 355-358, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30549884

RESUMO

Two new hygroline and tropane alkaloids, 4-hydroxybenzenepropanoylhygroline (1) and 3α,4ß-dihydroxy-6ß-angeloyoxytropane (2) have been isolated from the aerial parts of Schizanthus hookeri and S. tricolor, respectively, two plants indigenous from Chile. Their structures were elucidated by spectroscopic methods and high resolution mass spectrometry. Their antiparasitic activity and cytotoxicity were measured.


Assuntos
Alcaloides/química , Antineoplásicos Fitogênicos/farmacologia , Antiparasitários/farmacologia , Pirrolidinas/química , Solanaceae/química , Tropanos/química , Antineoplásicos Fitogênicos/química , Antiparasitários/química , Linhagem Celular Tumoral , Eucariotos/efeitos dos fármacos , Humanos , Estrutura Molecular
9.
Eur J Med Chem ; 125: 696-709, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27721154

RESUMO

3,6-Disubstituted imidazo[1,2-b]pyridazine derivatives were synthesized to identify new inhibitors of various eukaryotic kinases, including mammalian and protozoan kinases. Among the imidazo[1,2-b]pyridazines tested as kinase inhibitors, several derivatives were selective for DYRKs and CLKs, with IC50 < 100 nM. The characterization of the kinome of several parasites, such as Plasmodium and Leishmania, has pointed out profound divergences between protein kinases of the parasites and those of the host. This led us to investigate the activities of the prepared compounds against 11 parasitic kinases. 3,6-Disubstituted imidazo[1,2-b]pyridazines showed potent inhibition of Plasmodium falciparum CLK1 (PfCLK1). Compound 20a was found to be the most selective product against CLK1 (IC50 = 82 nM), CLK4 (IC50 = 44 nM), DYRK1A (IC50 = 50 nM), and PfCLK1 (IC50 = 32 nM). The compounds were also tested against Leishmania amazonensis. Several compounds showed anti-leishmanial activity at rather high (10 µM) concentration, but were not toxic at 1 µM or 10 µM, as judged by viability assays carried out using a neuroblastoma cell line.


Assuntos
Piridazinas/farmacologia , Antiparasitários/síntese química , Antiparasitários/química , Antiparasitários/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Eucariotos/efeitos dos fármacos , Concentração Inibidora 50 , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Piridazinas/síntese química , Piridazinas/química
10.
ACS Synth Biol ; 6(3): 535-544, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-27966891

RESUMO

Incorporation of unnatural amino acids (uAAs) via codon reassignment is a powerful approach for introducing novel chemical and biological properties to synthesized polypeptides. However, the site-selective incorporation of multiple uAAs into polypeptides is hampered by the limited number of reassignable nonsense codons. This challenge is addressed in the current work by developing Escherichia coli in vitro translation system depleted of specific endogenous tRNAs. The translational activity in this system is dependent on the addition of synthetic tRNAs for the chosen sense codon. This allows site-selective uAA incorporation via addition of tRNAs pre- or cotranslationally charged with uAA. We demonstrate the utility of this system by incorporating the BODIPY fluorophore into the unique AGG codon of the calmodulin(CaM) open reading frame using in vitro precharged BODIPY-tRNACysCCU. The deacylated tRNACysCCU is a poor substrate for Cysteinyl-tRNA synthetase, which ensures low background incorporation of Cys into the chosen codon. Simultaneously, p-azidophenylalanine mediated amber-codon suppression and its post-translational conjugation to tetramethylrhodamine dibenzocyclooctyne (TAMRA-DIBO) were performed on the same polypeptide. This simple and robust approach takes advantage of the compatibility of BODIPY fluorophore with the translational machinery and thus requires only one post-translational derivatization step to introduce two fluorescent labels. Using this approach, we obtained CaM nearly homogeneously labeled with two FRET-forming fluorophores. Single molecule FRET analysis revealed dramatic changes in the conformation of the CaM probe upon its exposure to Ca2+ or a chelating agent. The presented approach is applicable to other sense codons and can be directly transferred to eukaryotic cell-free systems.


Assuntos
Aminoácidos/genética , Códon sem Sentido/genética , Biossíntese de Proteínas/genética , Processamento de Proteína Pós-Traducional/genética , Aminoacil-tRNA Sintetases/metabolismo , Azidas/farmacologia , Cálcio/metabolismo , Sistema Livre de Células/efeitos dos fármacos , Sistema Livre de Células/metabolismo , Códon de Terminação/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Eucariotos/efeitos dos fármacos , Eucariotos/genética , Eucariotos/metabolismo , Fenilalanina/análogos & derivados , Fenilalanina/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , RNA de Transferência/genética
11.
PLoS One ; 9(9): e106199, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25198727

RESUMO

For novel biotechnology-based termite control, we developed a cellulose bait containing freeze-dried genetically engineered yeast which expresses a protozoacidal lytic peptide attached to a protozoa-recognizing ligand. The yeast acts as a 'Trojan-Horse' that kills the cellulose-digesting protozoa in the termite gut, which leads to the death of termites, presumably due to inefficient cellulose digestion. The ligand targets the lytic peptide specifically to protozoa, thereby increasing its protozoacidal efficiency while protecting non-target organisms. After ingestion of the bait, the yeast propagates in the termite's gut and is spread throughout the termite colony via social interactions. This novel paratransgenesis-based strategy could be a good supplement for current termite control using fortified biological control agents in addition to chemical insecticides. Moreover, this ligand-lytic peptide system could be used for drug development to selectively target disease-causing protozoa in humans or other vertebrates.


Assuntos
Eucariotos/isolamento & purificação , Interações Hospedeiro-Parasita , Intestinos/parasitologia , Isópteros/parasitologia , Peptídeos/farmacologia , Simbiose , Animais , Eucariotos/efeitos dos fármacos , Ligantes , Controle Biológico de Vetores
12.
Environ Microbiol ; 15(10): 2829-40, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23663419

RESUMO

Heavy metals are pollutants which affect all organisms. Since a small number of eukaryotes have been investigated with respect to metal resistance, we hypothesize that many genes that control this phenomenon remain to be identified. This was tested by screening soil eukaryotic metatranscriptomes which encompass RNA from organisms belonging to the main eukaryotic phyla. Soil-extracted polyadenylated mRNAs were converted into cDNAs and 35 of them were selected for their ability to rescue the metal (Cd or Zn) sensitive phenotype of yeast mutants. Few of the genes belonged to families known to confer metal resistance when overexpressed in yeast. Several of them were homologous to genes that had not been studied in the context of metal resistance. For instance, the BOLA ones, which conferred cross metal (Zn, Co, Cd, Mn) resistance may act by interfering with Fe homeostasis. Other genes, such as those encoding 110- to 130-amino-acid-long, cysteine-rich polypeptides, had no homologues in databases. This study confirms that functional metatranscriptomics represents a powerful approach to address basic biological processes in eukaryotes. The selected genes can be used to probe new pathways involved in metal homeostasis and to manipulate the resistance level of selected organisms.


Assuntos
Resistência a Medicamentos/genética , Eucariotos/efeitos dos fármacos , Eucariotos/genética , Metais Pesados/farmacologia , Microbiologia do Solo , Poluentes do Solo/farmacologia , Leveduras/genética , Perfilação da Expressão Gênica , Biblioteca Gênica , Variação Genética , Metais Pesados/metabolismo , Dados de Sequência Molecular , Poluentes do Solo/metabolismo , Leveduras/efeitos dos fármacos
13.
J Environ Sci Health B ; 48(9): 703-16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23688221

RESUMO

Standardised exposure scenarios play an important role in European pesticide authorisation procedures (a scenario is a combination of climate, weather and crop data to be used in exposure models). The European Food Safety Authority developed such scenarios for the assessment of exposure of soil organisms to pesticides. Scenarios were needed for both the concentration in total soil and for the concentration in the liquid phase. The goal of the exposure assessment is the 90th percentile of the exposure concentration in the area of agricultural use of a pesticide in each of three regulatory European zones (North, Centre and South). A statistical approach was adopted to find scenarios that are consistent with this exposure goal. Scenario development began with the simulation of the concentration distribution in the entire area of use by means of a simple analytical model. In the subsequent two steps, procedures were applied to account for parameter uncertainty and scenario uncertainty (i.e. the likelihood that a scenario that is derived for one pesticide is not conservative enough for another pesticide). In the final step, the six scenarios were selected by defining their average air temperature, soil organic-matter content and their soil textural class. Organic matter of the selected scenarios decreased in the order North-Centre-South. Because organic matter has a different effect on the concentration in total soil than it has on the concentration in the liquid phase, the concentration in total soil decreased in the order North-Centre-South whereas the concentration in the liquid phase decreased in the opposite order. The concentration differences between the three regulatory zones appeared to be no more than a factor of two. These differences were comparatively small in view of the considerable differences in climate and soil properties between the three zones.


Assuntos
Praguicidas/farmacologia , Poluentes do Solo/farmacologia , Animais , Eucariotos/efeitos dos fármacos , Europa (Continente) , Cinética , Modelos Teóricos , Praguicidas/química , Solo/química , Solo/parasitologia , Microbiologia do Solo , Poluentes do Solo/química
14.
Integr Environ Assess Manag ; 9(3): e64-74, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23610040

RESUMO

This article deals with prospective and retrospective ecological risk assessment (ERA) procedures for pesticides in surface waters as carried out under European legislation (Regulation 1107/2009/EC; Directive 2009/128/EC; Directive 2000/60/EC). Priorities to improve the aquatic risk assessment and management of pesticides are discussed on basis of the following 5 theses: 1) the management of the environmental risks of pesticides in surface water requires an appropriate implementation of feedback mechanisms between prospective and retrospective ERA, 2) an appropriate ERA cannot be carried out without well-defined specific protection goals, described in terms of focal vulnerable populations and related exposure assessment goals, 3) the interaction between the assessment of exposure and eco(toxico)logical effects in ERA is at a lower level of sophistication than either assessment of exposure or assessment of effects in the field, 4) there is insufficient experimental proof that, in prospective ERA, the chronic effect assessment procedures accurately predict long-term population- and community-level impacts, and 5) multiple stress by pesticides in aquatic ecosystems cannot be ignored in ERA, but in individual water bodies, toxicity usually is dominated by a limited number of substances.


Assuntos
Conservação dos Recursos Naturais , Herbicidas/toxicidade , Testes de Toxicidade/métodos , Poluentes Químicos da Água/toxicidade , Ecossistema , Política Ambiental/legislação & jurisprudência , Eucariotos/efeitos dos fármacos , União Europeia , Regulamentação Governamental , Estudos Prospectivos , Estudos Retrospectivos , Medição de Risco/métodos
15.
Sci Total Environ ; 454-455: 250-76, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23545489

RESUMO

The multiple activities that take place in hospitals (surgery, drug treatments, radiology, cleaning of premises and linen, chemical and biological analysis laboratories, etc.), are a major source of pollutant emissions into the environment (disinfectants, detergents, drug residues, etc.). Most of these pollutants can be found in hospital effluents (HWW), then in urban sewer networks and WWTP (weakly adapted for their treatment) and finally in aquatic environments. In view to evaluating the impact of these pollutants on aquatic ecosystems, it is necessary to characterise their ecotoxicity. Several reviews have focused on the quantitative and qualitative characterisation of pollutants present in HWW. However, none have focused specifically on the characterisation of their experimental ecotoxicity. We have evaluated this according to two complementary approaches: (i) a "substance" approach based on the identification of the experimental data in the literature for different substances found in hospital effluents, and on the calculation of their PNEC (Predicted Non Effect Concentration), (ii) a "matrix" approach for which we have synthesised ecotoxicity data obtained from the hospital effluents directly. This work first highlights the diversity of the substances present within hospital effluents, and the very high ecotoxicity of some of them (minimum PNEC observed close to 0,01 pg/L). We also observed that the consumption of drugs in hospitals was a predominant factor chosen by authors to prioritise the compounds to be sought. Other criteria such as biodegradability, excretion rate and the bioaccumulability of pollutants are considered, though more rarely. Studies of the ecotoxicity of the particulate phase of effluents must also be taken into account. It is also necessary to monitor the effluents of each of the specialised departments of the hospital studied. These steps is necessary to define realistic environmental management policies for hospitals (replacement of toxic products by less pollutant ones, etc.).


Assuntos
Substâncias Perigosas/toxicidade , Hospitais , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade , Bactérias/efeitos dos fármacos , Ecotoxicologia , Monitoramento Ambiental , Eucariotos/efeitos dos fármacos , Substâncias Perigosas/análise , Substâncias Perigosas/metabolismo , Resíduos de Serviços de Saúde/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
16.
PLoS One ; 7(6): e38550, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701662

RESUMO

Benthic habitats harbour a significant (yet unexplored) diversity of microscopic eukaryote taxa, including metazoan phyla, protists, algae and fungi. These groups are thought to underpin ecosystem functioning across diverse marine environments. Coastal marine habitats in the Gulf of Mexico experienced visible, heavy impacts following the Deepwater Horizon oil spill in 2010, yet our scant knowledge of prior eukaryotic biodiversity has precluded a thorough assessment of this disturbance. Using a marker gene and morphological approach, we present an intensive evaluation of microbial eukaryote communities prior to and following oiling around heavily impacted shorelines. Our results show significant changes in community structure, with pre-spill assemblages of diverse Metazoa giving way to dominant fungal communities in post-spill sediments. Post-spill fungal taxa exhibit low richness and are characterized by an abundance of known hydrocarbon-degrading genera, compared to prior communities that contained smaller and more diverse fungal assemblages. Comparative taxonomic data from nematodes further suggests drastic impacts; while pre-spill samples exhibit high richness and evenness of genera, post-spill communities contain mainly predatory and scavenger taxa alongside an abundance of juveniles. Based on this community analysis, our data suggest considerable (hidden) initial impacts across Gulf beaches may be ongoing, despite the disappearance of visible surface oil in the region.


Assuntos
Biodiversidade , Ecossistema , Eucariotos/efeitos dos fármacos , Eucariotos/genética , Poluição por Petróleo/efeitos adversos , Filogenia , Sequência de Bases , Biologia Computacional , Eucariotos/citologia , Marcadores Genéticos/genética , Golfo do México , Biologia Marinha , Dados de Sequência Molecular , Dinâmica Populacional , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Especificidade da Espécie
17.
Mar Environ Res ; 79: 70-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22743577

RESUMO

Pollution history has often been proposed to explain site-dependent bioremediation efficiencies, but this hypothesis has been poorly explored. Here, bacteria and their heterotrophic nanoflagellates (HNF) predators originating from pristine and chronically oil-polluted coastal sites were subjected to crude oil ± nutrients or emulsifier amendments. The addition of crude oil had a more visible effect on bacteria originating from the pristine site with a higher increase in the activity of given OTU and inactivation of other petroleum-sensitive bacteria, as revealed by DNA and RNA-based comparison. Such changes resulted in a delay in microbial growth and in a lower bacterial degradation of the more complex hydrocarbons. Biostimulation provoked a selection of different bacterial community assemblages and stirred metabolically active bacteria. This resulted in a clear increase of the peak of bacteria and their HNF predators and higher oil degradation, irrespective of the pollution history of the site.


Assuntos
Bactérias/efeitos dos fármacos , Eucariotos/efeitos dos fármacos , Petróleo , Poluentes Químicos da Água/farmacologia , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Ecossistema , Emulsificantes/farmacologia , Eucariotos/classificação , Eucariotos/metabolismo , Alimentos , Hidrocarbonetos/análise , Petróleo/análise , Filogenia , RNA Ribossômico 16S , RNA Ribossômico 18S , Fatores de Tempo , Poluição da Água
18.
Proc Natl Acad Sci U S A ; 109(6): E317-25, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22308424

RESUMO

In vast expanses of the oceans, growth of large phytoplankton such as diatoms is limited by iron availability. Diatoms respond almost immediately to the delivery of iron and rapidly compose the majority of phytoplankton biomass. The molecular bases underlying the subsistence of diatoms in iron-poor waters and the plankton community dynamics that follow iron resupply remain largely unknown. Here we use comparative metatranscriptomics to identify changes in gene expression associated with iron-stimulated growth of diatoms and other eukaryotic plankton. A microcosm iron-enrichment experiment using mixed-layer waters from the northeastern Pacific Ocean resulted in increased proportions of diatom transcripts and reduced proportions of transcripts from most other taxa within 98 h after iron addition. Hundreds of diatom genes were differentially expressed in the iron-enriched community compared with the iron-limited community; transcripts of diatom genes required for synthesis of photosynthesis and chlorophyll components, nitrate assimilation and the urea cycle, and synthesis of carbohydrate storage compounds were significantly overrepresented. Transcripts of genes encoding rhodopsins in eukaryotic phytoplankton were significantly underrepresented following iron enrichment, suggesting rhodopsins help cells cope with low-iron conditions. Oceanic diatoms appear to display a distinctive transcriptional response to iron enrichment that allows chemical reduction of available nitrogen and carbon sources along with a continued dependence on iron-free photosynthetic proteins rather than substituting for iron-containing functional equivalents present within their gene repertoire. This ability of diatoms to divert their newly acquired iron toward nitrate assimilation may underlie why diatoms consistently dominate iron enrichments in high-nitrate, low-chlorophyll regions.


Assuntos
Ferro/farmacologia , Metagenômica/métodos , Fitoplâncton/genética , Fitoplâncton/fisiologia , Transcriptoma/genética , Diatomáceas/efeitos dos fármacos , Diatomáceas/crescimento & desenvolvimento , Eucariotos/efeitos dos fármacos , Eucariotos/metabolismo , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Oceano Pacífico , Filogenia , Fitoplâncton/classificação , Fitoplâncton/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rodopsina/metabolismo , Água do Mar
19.
Eur J Med Chem ; 48: 296-304, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22217867

RESUMO

1,2,4-Oxadiazole and 1,2,3-triazole containing heterocyclic compounds continue to gain interest in synthesis of chemical entities and exhibit various biological activities as anti-protozoal and anti-cancer agents. By using the principle of bioisosterism, a series of novel oxadiazolyl pyrrolo triazole diones; namely, (3aS,6aR)-1-((3-(4-substituted phenyl)-1,2,4-oxadiazol-5-yl)methyl)-5-phenyl-1,6a-dihydropyrrolo[3,4-d][1,2,3] triazole-4,6(3aH,5H)-diones (5a-k) was designed and synthesized by the 1,3-dipolar cycloaddition reaction of novel 5-azidomethyl 3-aryl substituted 1,2,4-oxadiazoles (4a-k) with N-phenyl maleimide. The structures of all the cycloadducts were elucidated by means of spectroscopic methods and physical characteristics. The in vitro anti-protozoal and cytotoxic activities of these novel heterocyclic compounds were investigated.


Assuntos
Antiprotozoários/síntese química , Eucariotos/efeitos dos fármacos , Oxidiazóis/síntese química , Oxidiazóis/farmacologia , Pirróis/síntese química , Pirróis/farmacologia , Triazóis/síntese química , Triazóis/farmacologia , Animais , Antiprotozoários/química , Antiprotozoários/farmacologia , Linhagem Celular , Eucariotos/crescimento & desenvolvimento , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Oxidiazóis/química , Infecções por Protozoários/tratamento farmacológico , Pirróis/química , Ratos , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade , Triazóis/química
20.
Sci Total Environ ; 408(24): 6148-57, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20920817

RESUMO

The use of Biotic Ligand Models (BLMs) to normalize metal ecotoxicity data and predict effects in non-BLM organisms should be supported by quantitative evidence. This study determined the ability of chronic nickel BLMs developed for the cladocera Daphnia magna and Ceriodaphnia dubia to predict chronic nickel toxicity to three invertebrates for which no specific BLMs were developed. Those invertebrates were the snail Lymnaea stagnalis, the insect Chironomus tentans, and the rotifer Brachionus calyciflorus. Similarly, we also determined the ability of chronic nickel BLMs developed for the alga Pseudokirchneriella subcapitata and the terrestrial vascular plant Hordeum vulgare to predict chronic nickel toxicity to the aquatic vascular plant Lemna minor. Chronic nickel toxicity to the three invertebrates and the aquatic plant were measured in five natural waters that varied in pH, Ca, Mg, and dissolved organic carbon (DOC), which are known to affect chronic nickel toxicity and are the important input variables for the chronic nickel BLMs. Nickel toxicity to the three invertebrates varied considerably among the test waters, i.e., a 14-fold variation of EC50s in L. stagnalis, a 3-fold variation in EC20s in C. tentans, and a 10-fold variation in EC20s in B. calyciflorus, but the cladoceran BLMs were able to predict nickel effect concentrations within a factor of two. Nickel toxicity (EC50s) to L. minor varied by 6-fold among the test waters. Although the P. subcapitata and H. vulgare BLMs offered reasonable predictions of nickel EC50s to L. minor, the D. magna and C. dubia BLM showed better predictions. Our results confirm the influence of site-specific pH, hardness, and DOC on chronic nickel toxicity to aquatic organisms, and support the use of chronic nickel BLMs to manage this influence through normalizations of ecotoxicity data.


Assuntos
Invertebrados/efeitos dos fármacos , Modelos Biológicos , Níquel/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Araceae/efeitos dos fármacos , Chironomidae/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Monitoramento Ambiental , Eucariotos/efeitos dos fármacos , Água Doce/química , Ligantes , Lymnaea/efeitos dos fármacos , Níquel/química , Rotíferos/efeitos dos fármacos , Testes de Toxicidade Crônica , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA