Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 583
Filtrar
1.
J Mater Chem B ; 12(29): 7153-7170, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38952270

RESUMO

Europium ions (Eu3+) are gaining attention in the field of regenerative medicine due to increasing evidence of their osteogenic properties. However, inflammatory and oxidative environments present in many bone diseases, such as osteoporosis or rheumatoid arthritis, are known to hinder this regenerative process. Herein, we describe a straightforward synthetic procedure to prepare Eu3+-tannic acid nanocomplexes (EuTA NCs) with modulable physicochemical characteristics, as well as antioxidant, anti-inflammatory, and osteogenic properties. EuTA NCs were rationally synthesized to present different contents of Eu3+ on their structure to evaluate the effect of the cation on the biological properties of the formulations. In all the cases, EuTA NCs were stable in distilled water at physiological pH, had a highly negative surface charge (ζ ≈ -25.4 mV), and controllable size (80 < Dh < 160 nm). In vitro antioxidant tests revealed that Eu3+ complexation did not significantly alter the total radical scavenging activity (RSA) of TA but enhanced its ability to scavenge H2O2 and ferrous ions, thus improving its overall antioxidant potential. At the cellular level, EuTA NCs reduced the instantaneous toxicity of high concentrations of free TA, resulting in better antioxidant (13.3% increase of RSA vs. TA) and anti-inflammatory responses (17.6% reduction of nitric oxide production vs. TA) on cultures of H2O2- and LPS-stimulated macrophages, respectively. Furthermore, the short-term treatment of osteoblasts with EuTA NCs was found to increase their alkaline phosphatase activity and their matrix mineralization capacity. Overall, this simple and tunable platform is a potential candidate to promote bone growth in complex environments by simultaneously targeting multiple pathophysiological mechanisms of disease.


Assuntos
Regeneração Óssea , Európio , Taninos , Európio/química , Európio/farmacologia , Regeneração Óssea/efeitos dos fármacos , Camundongos , Animais , Células RAW 264.7 , Taninos/química , Taninos/farmacologia , Inflamação/tratamento farmacológico , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/síntese química , Estresse Oxidativo/efeitos dos fármacos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Tamanho da Partícula , Propriedades de Superfície , Osteogênese/efeitos dos fármacos , Polifenóis
2.
Anal Chem ; 96(24): 9961-9968, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38838250

RESUMO

In this study, a novel europium dual-ligand metal-organic gel (Eu-D-MOGs) with high-efficient anodic annihilation electrochemiluminescence (ECL) was synthesized as an ECL emitter to construct a biosensor for ultrasensitive detection of microRNA-221 (miR-221). Impressively, compared to the ECL signal of europium single-ligand metal-organic gels (Eu-S-MOGs), the ECL signal of Eu-D-MOGs was significantly improved since the two organic ligands could jointly replace the H2O and coordinate with Eu3+, which could remarkably reduce the nonradiative vibrational energy transfer caused by the coordination between H2O and Eu3+ with a high coordination demand. In addition, Eu-D-MOGs could be electrochemically oxidized to Eu-D-MOGs•+ at 1.45 V and reduced to Eu-D-MOGs•- at 0.65 V to achieve effective annihilation of ECL, which overcame the side reaction brought by the remaining emitters at negative potential. This benefited from the annihilation ECL performance of the central ion Eu3+ caused by its redox in the electrochemical process. Furthermore, the annihilation ECL signal of Eu3+ could be improved by sensitizing Eu3+ via the antenna effect. In addition, combined with the improved rolling circle amplification-assisted strand displacement amplification strategy (RCA-SDA), a sensitive biosensor was constructed for the sensitive detection of miR-221 with a low detection limit of 5.12 aM and could be successfully applied for the detection of miR-221 in the lysate of cancer cells. This strategy offered a unique approach to synthesizing metal-organic gels as ECL emitters without a coreactant for the construction of ECL biosensing platforms in biomarker detection and disease diagnosis.


Assuntos
Técnicas Eletroquímicas , Eletrodos , Európio , Géis , Medições Luminescentes , MicroRNAs , Európio/química , MicroRNAs/análise , Técnicas Eletroquímicas/métodos , Ligantes , Géis/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Humanos
3.
Colloids Surf B Biointerfaces ; 239: 113975, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762934

RESUMO

Early and accurate cancer diagnosis is crucial for improving patient survival rates. Luminescent nanoparticles have emerged as a promising tool in fluorescence bioimaging for cancer diagnosis. To enhance diagnostic accuracy, ligands promoting endocytosis into cancer cells are commonly incorporated onto nanoparticle surfaces. Folic acid (FA) is one such ligand, known to specifically bind to folate receptors (FR) overexpressed in various cancer cells such as cervical and ovarian carcinoma. Therefore, surface modification of luminescent nanoparticles with FA can enhance both luminescence efficiency and diagnostic accuracy. In this study, luminescent europium-doped hydroxyapatite (EuHAp) nanocrystals were prepared via hydrothermal method and subsequently modified with (3-Aminopropyl)triethoxysilane (APTES) followed by FA to target FR-positive human cervical adenocarcinoma cell line (HeLa) cells. The sequential grafting of APTES and then FA formed a robust covalent linkage between the nanocrystals and FA. Rod-shaped FA-modified EuHAp nanocrystals, approximately 100 nm in size, exhibited emission peaks at 589, 615, and 650 nm upon excitation at 397 nm. Despite a reduction in photoluminescence intensity following FA modification, fluorescence microscopy revealed a remarkable 120-fold increase in intensity compared to unmodified EuHAp, attributed to the enhanced uptake of FA-modified EuHAp. Additionally, confocal microscope observations confirmed the specificity and the internalization of FA-modified EuHAp nanocrystals in HeLa cells. In conclusion, the modification of EuHAp nanocrystals with FA presents a promising strategy to enhance the diagnostic potential of cancer bioimaging probes.


Assuntos
Durapatita , Európio , Ácido Fólico , Nanopartículas , Humanos , Ácido Fólico/química , Európio/química , Nanopartículas/química , Células HeLa , Durapatita/química , Luminescência , Microscopia de Fluorescência , Propilaminas/química , Tamanho da Partícula , Substâncias Luminescentes/química
4.
Analyst ; 149(13): 3547-3554, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38767669

RESUMO

A novel nanocomposite, [Eu(BTD)3(DPBT)]-BSA@MnO2, is reported to serve as an effective nanoprobe for bimodal time-gated luminescence (TGL) and magnetic resonance (MR) imaging of H2O2in vitro and in vivo. The nanoprobe was fabricated by immobilizing visible-light-excitable Eu3+ complexes in bovine serum albumin (BSA)-coated lamellar MnO2 nanosheets. The TGL of the Eu3+ complex was effectively quenched by the MnO2 nanosheets. Upon exposure to H2O2, the MnO2 nanosheets underwent reduction to Mn2+, which simultaneously triggered rapid, selective and sensitive "turn-on" responses toward H2O2 in both TGL and MR detection modes. The presence of a protective "corona" formed by BSA enables the nanoprobe to withstand high concentrations of glutathione (GSH), a strong reducing agent of MnO2 nanosheets. This capability allows the nanoprobe to be utilized for detecting H2O2 in living biosamples. The combined utilization of TGL and MR detection modes enables the nanoprobe to image H2O2 across a wide range of resolutions, from the subcellular level to the whole body, without any depth limitations. The results obtained from these modes can be cross-validated, enhancing the accuracy of the detection. The capability of the nanoprobe was validated by TGL imaging of endogenous and exogenous H2O2 in live HeLa cells, as well as bimodal TGL-MR imaging of H2O2 in tumor-bearing mice. The research achievements suggest that the integration of luminescent lanthanide complexes with protein-coated MnO2 nanosheets offers a promising bimodal TGL-MR sensing platform for H2O2in vitro and in vivo.


Assuntos
Európio , Peróxido de Hidrogênio , Imageamento por Ressonância Magnética , Compostos de Manganês , Óxidos , Soroalbumina Bovina , Peróxido de Hidrogênio/química , Soroalbumina Bovina/química , Európio/química , Compostos de Manganês/química , Animais , Óxidos/química , Imageamento por Ressonância Magnética/métodos , Humanos , Camundongos , Células HeLa , Medições Luminescentes/métodos , Nanoestruturas/química , Bovinos , Luminescência , Nanocompostos/química , Complexos de Coordenação/química , Limite de Detecção
5.
Sci Total Environ ; 937: 173482, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38795982

RESUMO

Extensive application of rare earth element oxide nanoparticles (REE NPs) has raised a concern over the possible toxic health effects after human exposure. Once entering the body, REE NPs are primarily processed by phagocytes in particular macrophages and undergo biotic phosphate complexation in lysosomal compartment. Such biotransformation affects the target organs and in vivo fate of REE NPs after escaping the lysosomes. However, the immunomodulatory effects of intraphagolysosomal dissolved REE NPs remains insufficient. Here, europium oxide (Eu2O3) NPs were pre-incubated with phagolysosomal simulant fluid (PSF) to mimic the biotransformation of europium oxide (p-Eu2O3) NPs under acid phagolysosome conditions. We investigated the alteration in immune cell components and the hematopoiesis disturbance on adult mice after intravenous administration of Eu2O3 NPs and p-Eu2O3 NPs. Our results indicated that the liver and spleen were the main target organs for Eu2O3 NPs and p-Eu2O3 NPs. Eu2O3 NPs had a much higher accumulative potential in organs than p-Eu2O3 NPs. Eu2O3 NPs induced more alterations in immune cells in the spleen, while p-Eu2O3 NPs caused stronger response in the liver. Regarding hematopoietic disruption, Eu2O3 NPs reduced platelets (PLTs) in peripheral blood, which might be related to the inhibited erythrocyte differentiation in the spleen. By contrast, p-Eu2O3 NPs did not cause significant disturbance in peripheral PLTs. Our study demonstrated that the preincubation with PSF led to a distinct response in the immune system compared to the pristine REE NPs, suggesting that the potentially toxic effects induced by the release of NPs after phagocytosis should not be neglected, especially when evaluating the safety of NPs application in vivo.


Assuntos
Európio , Hematopoese , Lisossomos , Nanopartículas Metálicas , Óxidos , Animais , Európio/toxicidade , Camundongos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Óxidos/toxicidade , Hematopoese/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Baço/efeitos dos fármacos , Nanopartículas/toxicidade
6.
Biosens Bioelectron ; 258: 116356, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705073

RESUMO

In this work, the dual-ligand lanthanide metal-organic framework (MOF)-based electrochemiluminescence (ECL) sensor was constructed for the detection of miRNA-128 in glioblastoma (GBM) diagnosis. The luminescent Eu-MOF (EuBBN) was synthesized with terephthalic acid (BDC) and 2-amino terephthalic acid (BDC-NH2) as dual-ligand. Due to the antenna effect, EuBBN with conjugated-π structure exhibited strong luminescent signal and high quantum efficiency, which can be employed as ECL nanoprobe. Furthermore, the novel plasmonic CuS@Au heterostructure array has been prepared. The localized surface plasmon resonance coupling effect of the CuS@Au heterostructure array can amplify the ECL signal of EuBBN significantly. The EuBBN/CuS@Au heterostructure array-based sensing system has been prepared for the detection of miRNA-128 with a wide linear range from 1 fM to 1 nM and a detection limit of 0.24 fM. Finally, miRNA-128 in the clinic GBM tissue sample has been analysis for the distinguish of tumor grade successfully. The results demonstrated that the dual-ligand MOF/CuS@Au heterostructure array-based ECL sensor can provide important support for the development of GBM diagnosis.


Assuntos
Técnicas Biossensoriais , Európio , Glioblastoma , Ouro , Estruturas Metalorgânicas , MicroRNAs , MicroRNAs/análise , Glioblastoma/diagnóstico , Humanos , Estruturas Metalorgânicas/química , Técnicas Biossensoriais/métodos , Ouro/química , Európio/química , Limite de Detecção , Medições Luminescentes/métodos , Ligantes , Técnicas Eletroquímicas/métodos , Neoplasias Encefálicas/diagnóstico , Ácidos Ftálicos/química , Nanopartículas Metálicas/química , Cobre/química
7.
Luminescence ; 39(4): e4740, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38618664

RESUMO

A lanthanide complex based on europium (Eu) and chelidamic acid was synthesized (Eu-CHE) and characterized. The complex Eu-CHE exhibited intense luminescence at 615 nm under excitation at 300 nm and was further investigated for highly sensitive turn-off detection of l-kynurenine (l-kyn), a cancer biomarker. The probe detected l-kyn linearly from 6 nM to 0.2 µM with a limit of detection and limit of quantification of 1.37 and 4.57 nM, respectively. The probe was investigated for selectivity towards l-kyn among co-existing amino acids and further extended for detecting l-kyn from human serum and urine samples. A low-cost paper strip-based sensing platform was also developed for the visual detection of l-kyn.


Assuntos
Elementos da Série dos Lantanídeos , Neoplasias , Humanos , Cinurenina , Biomarcadores Tumorais , Neoplasias/diagnóstico , Aminoácidos , Európio
8.
Anal Chem ; 96(11): 4589-4596, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38442212

RESUMO

Herein, novel europium metal-organic gels (Eu-MOGs) with excellent cathode electrochemiluminescence (ECL) emission are first used to construct biosensors for the ultrasensitive detection of miRNA-222. Impressively, N and O elements of organic ligand 2,2':6,2″-terpyridine 4,4',4″-tricarboxylic acid (H3-tctpy) can perfectly coordinate with Eu3+ to form Eu-MOGs, which not only reduce nonradiative transition caused by the intramolecular free rotation of phenyl rings in other MOGs to enhance the ECL signal with extraordinary ECL efficiency as high as 37.2% (vs the [Ru(bpy)3]2+/S2O82- ECL system) but also reinforce ligand-to-metal charge transfer (LMCT) by the strong affinity between Eu3+ and N and O elements to greatly improve the stability of ECL signals. Besides, an improved nucleic acid cascade amplification reaction is developed to greatly raise the conversion efficiency from target miRNA-222 to a DNAzyme-mediated dual-drive DNA walker as output DNA, which can simultaneously shear the specific recognition sites from two directions. In that way, the proposed biosensor can further enhance the detection sensitivity of miRNA-222 with a linear range of 10 aM-1 nM and a detection limit (LOD) of 8.5 aM, which can also achieve an accurate response in cancer cell lysates of MHCC-97L and HeLa. Additionally, the biosensor can be self-regenerated by the folding/unfolding of related triplets with pH changes to simplify experimental operations and reduce the cost. Hence, this work proposed novel MOGs with stable and intense ECL signals for the construction of a renewable ECL biosensor, supplying a reliable detection method in biomarker analysis and disease diagnosis.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , MicroRNAs , Humanos , Európio , Ligantes , DNA/química , Medições Luminescentes/métodos , MicroRNAs/análise , Técnicas Biossensoriais/métodos , Géis , Técnicas Eletroquímicas/métodos , Limite de Detecção
9.
Talanta ; 270: 125644, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218005

RESUMO

Sensitive detection of pro-gastrin-releasing peptide (Pro-GRP) is crucial because it is a highly sensitive and specific tumor marker for small cell lung cancer. Herein, we synthesized an efficient luminescent europium metal-organic framework and developed a sandwich ECL immunosensor for the sensitive detection of Pro-GRP, which used Eu3+ as the central ion and 2,4,6-tri (4-carboxyphenyl)-1,3,5-triazine (H3TATB) as the organic ligand. H3TATB acted as a strong absorbing reagent and transferred its energy to Eu3+ via the antenna effect to enhance the ECL response signal of Eu3+. As per calculations, the ECL efficiency of Eu-TATB, which was a promising ECL luminophore, was up to 130 %. The Cu2O cube worked as a substrate to assist the electron transfer and was used as a co-reaction accelerator to catalyze S2O82- to produce more SO4•- and then enhance the ECL intensity of Eu-TATB. Under optimal experimental conditions, the ECL immunosensor had a linear range of 5 fg mL-1-50 ng mL-1 for detecting Pro-GRP with a detection limit of 1.6 fg mL-1; moreover, it demonstrated excellent stability and specificity and has been successfully applied for detecting Pro-GRP in the human serum.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , Humanos , Peptídeo Liberador de Gastrina , Európio , Medições Luminescentes , Técnicas Eletroquímicas , Imunoensaio , Limite de Detecção
10.
Int J Biol Macromol ; 259(Pt 2): 129325, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219935

RESUMO

Hepatocellular carcinoma (HPTC) currently ranks as the third leading cause of cancer-related mortality, necessitating an advanced formulation strategy. Recently, lactoferrin (Lf) has been utilized as a specific targeting ligand in HPTC due to its high specificity towards the asialoglycoprotein receptor expressed in cancer cells. Therefore, we present the fabrication of an Lf-decorated carboxymethyl dextran-encased chitosan-coated europium metal-organic framework-based nanobioconjugate (Lf-CMD-CS-CUR@Eu-MOF) for targeted curcumin (CUR) delivery. Briefly, CUR was loaded into Eu-MOF, followed by coating cationic 'CS' on the CUR@Eu-MOF surface. Simultaneously, Lf-decorated CMD was prepared via an esterification reaction. Subsequently, Lf-CMD-CS-CUR@Eu-MOF was synthesized using the Maillard reaction. Various spectral characterizations, drug entrapment, drug content, in vitro drug release, biocompatibility and cell cytotoxicity studies were performed. It exhibited an entrapment efficiency of 88.87 ± 2.1 %, a drug content of 3.45 ± 0.98 %, and a drug loading rate of 34.85 ± 0.6 mg/g. Furthermore, the Lf-CMD-CS-CUR@Eu-MOF exhibits excellent biocompatibility with normal cells. The in vitro dissolution study confirmed a release of 78.12 % of 'CUR' in pH 5.8 phosphate buffer (over 120 h), attributed to the controlled release rate by the 'CS' coating on the surface of CUR@Eu-MOF. The BEL-7402 cell line showed concentration-dependent toxicity of nanobioconjugate to cancerous cells. Therefore, when 'Lf' is surface-decorated onto an appropriate polymeric material, it gains the capability to function as a carrier for transporting 'CUR' to the precise target site within HPTC. In conclusion, Lf-CMD incorporated CS-coated Eu-MOF can provide a promising approach for targeted drug delivery in HPTC management.


Assuntos
Quitosana , Curcumina , Estruturas Metalorgânicas , Nanopartículas , Curcumina/farmacologia , Curcumina/química , Quitosana/química , Estruturas Metalorgânicas/química , Európio , Lactoferrina , Dextranos , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química
11.
Food Chem ; 439: 138171, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100875

RESUMO

Nitrofuran (NF) antibiotics have been banned worldwide in aquaculture due to their potential carcinogenicity and mutagenicity. Because of the short half-life of NF antibiotics, an easy and sensitive multiple lateral flow immunoassay (mLFIA) based on europium nanoparticles (EuNPs) has been successfully established to simultaneously and quantitatively detect 3-amino-5-morpholinomethyl-2-oxazolidinone (AMOZ), 3-amino-2-oxazolidinone (AOZ) and sodium nifurstylenate (NFS) in aquatic products. The EuNP-mLFIA assay was accomplished within 10 min. The limits of detection (LODs) for AOZ, AMOZ and NFS were 0.013, 0.019 and 0.023 ng/mL, respectively. The average recoveries of AOZ, AMOZ and NFS were 98.0-104.4%, 96.0-102.6% and 98.0-102.8%, respectively. It showed satisfactory consistency, and the feasibility was validated by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Briefly, this method will become a powerful tool for monitoring multiple NF antibiotics and provide promising applications in the field of food safety and environmental testing.


Assuntos
Nanopartículas Metálicas , Nitrofuranos , Antibacterianos/análise , Európio , Espectrometria de Massas em Tandem/métodos , Nitrofuranos/análise , Imunoensaio
12.
J Am Chem Soc ; 145(44): 24358-24366, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37869897

RESUMO

Discrete luminescent lanthanide complexes represent a potential alternative to organic chromophores due to their tunability of optical properties, insensitivity to photobleaching, and large pseudo-Stokes shifts. Previously, we demonstrated that the lack of depth penetration of UV excitation required to sensitize discrete terbium and europium complexes can be overcome using Cherenkov radiation emitted by clinically employed radioisotopes in situ. Here, we show that the second-generation europium complexes [Eu(III)(pcta-PEPA2)] and [Eu(III)(tacn-pic-PEPA2)] (Φ = 57% and 76%, respectively) lower the limit of detection (LoD) to 1 nmol in the presence of 10 µCi of Cherenkov emitting isotopes, 18F and 68Ga. Bifunctionalization provides access to cysteine-linked peptide conjugates with comparable brightness and LoD. The conjugate, [Eu(tacn-(pic-PSMA)-PEPA2)], displays high binding affinity to prostate-specific membrane antigen (PSMA)-expressing PC-3 prostate cancer cells in vitro and can be visualized in the membrane-bound state using confocal microscopy. Biodistribution studies with the [86Y][Y(III)(tacn-(pic-PSMA)-PEPA2)] analogue in a mouse xenograft model were employed to study pharmacokinetics. Systemic administration of the targeted Cherenkov emitter, [68Ga][Ga(III)(PSMA-617)], followed by intratumoral injection or topical application of 20 or 10 nmol [Eu(III)(tacn-(pic-PSMA)-PEPA2)], respectively, in live mice resulted in statistically significant signal enhancement using conventional small animal imaging (620 nm bandpass filter). Optical imaging informed successful tumor resection. Ex vivo imaging of the fixed tumor tissue with 1 and 2 photon excitation further reveals the accumulation of the administered Eu(III) complex in target tissues. This work represents a significant step toward the application of luminescent lanthanide complexes for optical imaging in a clinical setting.


Assuntos
Elementos da Série dos Lantanídeos , Neoplasias , Masculino , Humanos , Animais , Camundongos , Európio/química , Luminescência , Distribuição Tecidual , Radioisótopos de Gálio , Elementos da Série dos Lantanídeos/química , Neoplasias/diagnóstico por imagem , Neoplasias/cirurgia , Microscopia Confocal
13.
Biochem Biophys Res Commun ; 674: 1-9, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37392717

RESUMO

In an effort to enhance the antitumor efficacy of breast cancer treatment, the chemotherapeutic agent Paclitaxel (PTX) was encapsulated within hyaluronic acid (HA) modified hollow mesoporous silica (HMSNs). In vitro drug release assays showed that the resulting formulation, Eu-HMSNs-HA-PTX, exhibited enzyme-responsive drug release. In addition, cell cytotoxicity and hemolysis assays demonstrated the favorable biocompatibility of both Eu-HMSNs and Eu-HMSNs-HA. Notably, compared to Eu-HMSNs alone, Eu-HMSNs-HA showed enhanced accumulation within CD44-expressing cancer cells (MDA-MB-231). As anticipated, apoptosis experiments indicated that Eu-HMSNs-HA-PTX displayed significantly greater cytotoxicity toward MDA-MB-231 cells than non-targeted Eu-HMSNs-PTX and free PTX. In conclusion, Eu-HMSNs-HA-PTX demonstrated excellent anticancer effects and holds promise as a potent candidate for the efficient therapy of breast cancer.


Assuntos
Neoplasias da Mama , Európio , Ácido Hialurônico , Nanopartículas , Paclitaxel , Dióxido de Silício , Európio/química , Dióxido de Silício/química , Ácido Hialurônico/química , Paclitaxel/farmacologia , Nanopartículas/química , Nanopartículas/ultraestrutura , Materiais Biocompatíveis , Humanos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos
14.
Anal Bioanal Chem ; 415(17): 3475-3486, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37278743

RESUMO

Tricarboxylic acid (TCA) metabolites in cancer cells show a marked difference from those in normal cells. Herein, we report a single-particle multiple-signal lanthanide/europium-based metal-organic framework (Tb/Eu MOF) sensor array for the detection of TCA metabolites and discrimination of cancer cells. In the presence of TCA metabolite, 6 characteristic peaks of Tb/Eu MOF showed dramatic changes due to host-guest interactions, allowing sensor array-based qualitative and quantitative detection to be performed. In the qualitative detection ability test, 18 TCA metabolites at 4 concentrations (50 µM, 100 µM, 200 µM, 300 µM) were accurately discriminated by the sensor array via linear discriminant analysis (LDA). Significantly, these 4 concentrations include the clinical detection criteria for most TCA metabolites. In the quantitative detection ability test, a good linear relationship between Euclidean distances and the concentrations of L-valine (Val) could be obtained in the range of 50 to 500 µM (R2 = 0.9755). On this basis, the provided method was successfully applied for the classification of 2 normal cells and 5 cancer cells via principal components analysis (PCA), LDA and a radial basis function neural network (RBFN). What's more, by verifying the weight coefficient of each point, detection and discrimination results are proved as a trustworthy balanced evaluation of multiple factors. Depending on precise data processing, the experimental operation was simplified on the premise of ensuring accuracy, so our method is a meaningful exploration for array design.


Assuntos
Ciclo do Ácido Cítrico , Estruturas Metalorgânicas , Európio
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122887, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37224630

RESUMO

A novel, easy, touchy and selective spectrofluorimetric technique has been successfully applied for sensitive determination of High Sensitivity Cardiac Troponin (TNHS I) in the serum samples of patients suffering malignant tumors through the usage of optical sensor Eu3+-BINAM complex. The technique is primarily based on quenching of the Eu3+-BINAM complex's luminescence intensity upon introducing various concentrations of High Sensitivity Cardiac Troponin (TNHS I). The synthesis and characterization of the optical sensor was performed via absorption and emission. The sensor was also adapted to offer excitation at 394 nm in acetonitrile at pH 7.5. Concentration of High Sensitivity Cardiac Troponin (TNHS I) in serum samples was found to be proportional to the luminescence intensity quenching of the Eu3+-BINAM complex, most prominently at λem = 618 nm. The limit of the dynamic range is 4.26 × 10-4 to 2 ng/mL. The limit of detection and quantitation were calculated to be 1.35 and 4.10 ng/mL, respectively. The suggested analytical approach proved its applicability, simplicity and comparatively interference- free. The technique was effectively recruited to quantify High Sensitivity Cardiac Troponin (TNHS I) in human serum samples. The proposed technique could be further extended to evaluate some biomarkers associated with malignancy related diseases in human.


Assuntos
Biomarcadores Tumorais , Neoplasias , Humanos , Troponina , Európio/química , Luminescência , Neoplasias/diagnóstico
16.
Analyst ; 148(11): 2493-2500, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37183980

RESUMO

Bimodal imaging probes that combine magnetic resonance imaging (MRI) and photoluminescence imaging are quite appealing since they can supply both anatomical and molecular information to effectively ameliorate the accuracy of detection. In this study, an activatable nanoprobe, [Eu(BTD)3(DPBT)]@MnO2, for bimodal time-gated luminescence imaging (TGLI) and MRI has been constructed by anchoring visible-light-excitable Eu3+ complexes on lamellar MnO2 nanosheets. Due to the luminescence quenching effect and non-magnetic resonance (MR) activity of MnO2 nanosheets, the developed nanoprobe presents quite weak TGL and MR signals. After exposure to H2O2 or GSH, accompanied by the transformation from MnO2 to Mn2+, the nanoprobe exhibits rapid, sensitive, and selective "turn-on" responses towards GSH and H2O2 in TGL and MR detection modes. Furthermore, the nanoprobe displays high stability, low cytotoxicity, good biocompatibility and water dispersion. Given the high contents of GSH and H2O2 in cancer cells, the nanoprobe was used for the identification of cancer cells by TGLI of intracellular GSH and H2O2, as well as for the tracing of tumor cells in tumor-bearing mice by tumor-targeting in vivo MRI and TGLI of tumor tissues. The research outcomes proved the potential of [Eu(BTD)3(DPBT)]@MnO2 as a useful nanoprobe for the tracing and accurate detection of cancer cells in vitro and in vivo via bimodal TGLI and MRI.


Assuntos
Luminescência , Nanocompostos , Camundongos , Animais , Európio , Compostos de Manganês , Peróxido de Hidrogênio , Óxidos , Nanocompostos/toxicidade , Imageamento por Ressonância Magnética
17.
J Mater Chem B ; 11(19): 4346-4353, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37158402

RESUMO

The synergy of magnetic resonance imaging (MRI) and time-gated luminescence imaging (TGLI) provides a robust platform with extensive spatial resolution (from submicrometer to hundred-micron) and unlimited penetration depth for visual detection of lesion tissues and target biomolecules. In this work, highly stable lanthanide (Eu3+ and Gd3+) complexes with a terpyridine polyacid ligand, CNSTTA-Ln3+, were chosen as signal reporters for TGLI (Ln3+ = Eu3+) and MRI (Ln3+ = Gd3+), respectively. After conjugating CNSTTA-Ln3+ with a tumor-targetable glycoprotein, transferrin (Tf), the obtained bioconjugate, showed low cytotoxicity and high stability and exhibited strong long-lived luminescence (Tf-CNSTTA-Eu3+, ϕ = 10.8%, τ = 1.27 ms), high magnetic resonance relaxivity (Tf-CNSTTA-Gd3+, r1 = 8.70 mM-1 s-1, r2 = 10.90 mM-1 s-1), and high binding affinity toward Tf receptor-overexpressed cancerous cells. On the basis of these features, a tumor-targetable probe was constructed by simply mixing Tf-CNSTTA-Eu3+ and Tf-CNSTTA-Gd3+, and successfully used for the bimodal TGLI and MRI of tumor cells in tumor-bearing mice. The bimodal imaging simultaneously provided the anatomical and molecular information of the tumor, which enabled the accuracy for tumor diagnosis to be mutually verified, and revealed the potential of Tf-CNSTTA-Gd3+/Eu3+ for the monitoring of cancer cells in vivo.


Assuntos
Európio , Neoplasias , Animais , Camundongos , Európio/química , Gadolínio/química , Luminescência , Transferrina , Imageamento por Ressonância Magnética/métodos
18.
Clin Chim Acta ; 543: 117323, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003518

RESUMO

BACKGROUND: Glycans are strongly involved in stability and function of integrins (ITG) and tetraspanin protein CD63 and their respective interaction partners as they are dysregulated in the tumorigenic processes. Glycosylation changes is a universal phenomenon of cancer cells. In this study, glycosylation changes in epithelial ovarian cancer (EOC) are explored using tetraspanin and integrin molecules. METHODS: ITG and CD63 were immobilized from 10 EOC and 5 benign ovarian cyst fluid on microtiter wells and traced with 3 glycan binding proteins (STn, WGA, UEA) conjugated on europium nanoparticles. Total protein measurements (ITG & CD63 immunoassays) were also performed. The most promising glycovariant candidates identified were then clinically evaluated on the whole cohort of 77 ovarian cyst fluids. Additional testing was performed in ascites fluid samples of liver cirrhosis (n = 2) and EOC (n = 4). RESULTS: Sialylated Tn antibody based glycovariants of ITGα3 (ITGα3STn) and CD63 (CD63STn) performed better than corresponding protein epitope-based immunoassays, ITGα3IA and CD63IA respectively. Combined ITGα3 based assays (ITGα3IA + ITGα3STn) detected 49 out of 55 malignant & borderline cases without detecting any of the 22 benign and healthy cysts. CONCLUSION: Our findings indicate the potential diagnostic application of ITGα3STn along with total ITGα3IA, which could help reduce the unnecessary surgeries. The results encourage studying further the potential use of these novel assays to detect EOC at earlier clinical stages.


Assuntos
Nanopartículas Metálicas , Cistos Ovarianos , Neoplasias Ovarianas , Feminino , Humanos , Biomarcadores Tumorais/metabolismo , Carcinoma Epitelial do Ovário/diagnóstico , Európio , Glicosilação , Integrinas/metabolismo , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/metabolismo , Integrina alfa3/metabolismo
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 292: 122431, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36753865

RESUMO

In this work, a ratiometric fluorometric sensor based on nickel nanoclusters (NiNCs)-europium complex (NiNCs-Eu3+) was constructed for the highly selectivity detection of tetracyclines (TCs) in water samples. In the presence of TCs, the blue fluorescence of the sensor NiNCs-Eu3+ was quenched at 430 nm and the characteristic red fluorescence of Eu3+-TCs appeared at 620 nm because of the combined help of inner filter effect (IFE) and antenna effect. Under the optimized conditions (100 mM Eu3+ (100 µL); temperature (25℃); reaction time (10 min), HEPES buffer solution (pH = 7.0)), the sensor offered a wide detection range of tetracycline (TC) and oxytetracycline (OTC) from 0.1 to 50 µM with the detection limit (LOD) of 25 nM and 21 nM, respectively. Moreover, the sensor was able to detect of TC and OTC in tap and lake water with high recovery rate (89.10%-97.60%). In addition, the portable paper-based sensor was constructed using filter paper embedded with NiNCs-Eu3+. The distinct fluorescent color of the paper-based sensor varied from bright blue to red against different concentrations of TC and OTC. These above findings demonstrated the potential for wide application of as-prepared ratio metric fluorescence sensor for visual detection of TCs in water samples.


Assuntos
Oxitetraciclina , Tetraciclinas , Európio , Corantes Fluorescentes , Níquel , Antibacterianos/análise , Água , Espectrometria de Fluorescência , Limite de Detecção
20.
Biosens Bioelectron ; 221: 114925, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455370

RESUMO

The wide and even whole pH range electrochemiluminescence (ECL) is attractive for steroid estrogens detection under harsh conditions (such as strong acid and alkali). Herein, we presented an efficient europium-based metal-organic framework (Eu-MOF) as ECL luminophore, which has been synthesized via the specific 2, 4-bis(3, 5-dicarboxyphenylamino)-6-oltriazine (H4BDPO) ligand with acid-base buffering effect. The functional groups with weak acid and base endowed the H4BDPO with eight ionogenic group states, thereout different total charges of H4BDPO were derived, thus high and steady ECL signals of Eu-MOF were acquired under different environments with pH = 1.0-14.0. Most notably, combined with the means of UV-vis, fluorescence spectra, cyclic voltammetry (CV) and density functional theory (DFT) calculations, the Eu-MOF has been explored different luminescence mechanisms with variational total charges. The constructed ECL biosensor based on the Eu-MOF realized sensitive detection of trenbolone under wide pH range (In order to maintain the biological activity of antigen and antibody, the studied pH value is 5-8.5), in which the limits of detection were 3.95 fg/mL (pH = 5.0), 2.36 fg/mL (pH = 7.4) and 5.48 fg/mL (pH = 8.5) respectively. This work provides a considerable method to realize efficient trace detection of steroid estrogens under the wide or even whole pH conditions.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Európio , Acetato de Trembolona , Estrogênios , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA