Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Science ; 380(6647): 818-823, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37228189

RESUMO

Cytotoxic T lymphocytes (CTLs) kill virus-infected and cancer cells through T cell receptor (TCR) recognition. How CTLs terminate signaling and disengage to allow serial killing has remained a mystery. TCR activation triggers membrane specialization within the immune synapse, including the production of diacylglycerol (DAG), a lipid that can induce negative membrane curvature. We found that activated TCRs were shed into DAG-enriched ectosomes at the immune synapse rather than internalized through endocytosis, suggesting that DAG may contribute to the outward budding required for ectocytosis. Budding ectosomes were endocytosed directly by target cells, thereby terminating TCR signaling and simultaneously disengaging the CTL from the target cell to allow serial killing. Thus, ectocytosis renders TCR signaling self-limiting.


Assuntos
Diglicerídeos , Exocitose , Sinapses Imunológicas , Receptores de Antígenos de Linfócitos T , Linfócitos T Citotóxicos , Divisão Celular , Membrana Celular/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/imunologia , Exocitose/imunologia , Sinapses Imunológicas/imunologia , Sinapses Imunológicas/ultraestrutura , Micropartículas Derivadas de Células/imunologia , Diglicerídeos/metabolismo
3.
Immunohorizons ; 5(4): 234-245, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911019

RESUMO

Cytotoxic cells, such as CD8+ T cells or NK cells, have been shown to eliminate virus-infected cells or transformed cells primarily via two pathways: the perforin/granzyme-dependent pathway and the Fas ligand-Fas pathway; however, the precise cytolytic mechanisms have not been clarified thoroughly. In our previous study, we demonstrated that a T-box transcription factor, Eomesodermin (Eomes), may play important roles in activating the perforin pathway besides inducing perforin and granzyme B mRNA expression. In this study, we identified natural killer cell group 7 sequence (Nkg7), a molecule induced by Eomes, to be found critical for perforin-dependent cytolysis. Nkg7 mRNA expression in leukocytes from normal mice was mainly restricted to cells with cytotoxicity such as NK cells, NKT cells, and activated CD8+ T cells. The cytolytic activity of NK cells or CD8+ CTLs from Nkg7-deficient mice against Fas-negative target cells was reduced significantly, whereas Fas ligand-mediated cytolysis by Nkg7-deficient CTLs was not impaired. Further, translocation of granule membrane protein CD107a to the cell surface upon CD3 stimulation was defective in CD8+ CTLs from Nkg7 knockout, whereas surface induction of another granule membrane protein, CD63, was almost normal. In addition, analyses of lytic granules in CTLs by electron microscopy revealed that the number of lytic granules with dense cores was significantly reduced in Nkg7-knockout CTLs. These results indicate that Nkg7 may specifically contribute to efficient cytolysis via the perforin/granzyme pathway by enhancing the exocytosis of a particular type of lytic granules.


Assuntos
Granzimas/metabolismo , Células Matadoras Naturais/imunologia , Proteínas de Membrana/genética , Perforina/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Grânulos Citoplasmáticos/fisiologia , Citotoxicidade Imunológica , Exocitose/imunologia , Proteína Ligante Fas , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Citotóxicos/imunologia
4.
Front Immunol ; 11: 581119, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240268

RESUMO

Congenital defects of the immune system called primary immunodeficiency disorders (PID) describe a group of diseases characterized by a decrease, an absence, or a malfunction of at least one part of the immune system. As a result, PID patients are more prone to develop life-threatening complications, including cancer. PID currently include over 400 different disorders, however, the variety of PID-related cancers is narrow. We discuss here reasons for this clinical phenotype. Namely, PID can lead to cell intrinsic failure to control cell transformation, failure to activate tumor surveillance by cytotoxic cells or both. As the most frequent tumors seen among PID patients stem from faulty lymphocyte development leading to leukemia and lymphoma, we focus on the extensive genomic alterations needed to create the vast diversity of B and T lymphocytes with potential to recognize any pathogen and why defects in these processes lead to malignancies in the immunodeficient environment of PID patients. In the second part of the review, we discuss PID affecting tumor surveillance and especially membrane trafficking defects caused by altered exocytosis and regulation of the actin cytoskeleton. As an impairment of these membrane trafficking pathways often results in dysfunctional effector immune cells, tumor cell immune evasion is elevated in PID. By considering new anti-cancer treatment concepts, such as transfer of genetically engineered immune cells, restoration of anti-tumor immunity in PID patients could be an approach to complement standard therapies.


Assuntos
Leucemia de Células B/etiologia , Linfoma de Células B/etiologia , Doenças da Imunodeficiência Primária/complicações , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/imunologia , Linfócitos B/imunologia , Linfócitos B/patologia , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/imunologia , Reparo do DNA/genética , Reparo do DNA/imunologia , Exocitose/genética , Exocitose/imunologia , Instabilidade Genômica , Humanos , Sinapses Imunológicas/genética , Leucemia de Células B/genética , Leucemia de Células B/imunologia , Linfoma de Células B/genética , Linfoma de Células B/imunologia , Modelos Imunológicos , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/imunologia , Fatores de Risco , Evasão Tumoral/genética
5.
Int J Mol Sci ; 21(7)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252488

RESUMO

Cytotoxic T lymphocytes (CTL) are key players of the adaptive immune system that target tumors and infected cells. A central step to that is the formation of a cell-cell contact zone between the CTL and its target called an immune synapse (IS). Here, we investigate the influence of the initial T cell receptor (TCR) trigger of a cytolytic IS on the distinct steps leading to cytotoxic granule (CG) exocytosis. We stimulated primary CTLs from mouse using lipid bilayers with varying anti-CD3 but constant ICAM concentrations. We fluorescently labeled molecular markers of distinct IS zones such as actin, CD3, granzyme B, and Synaptobrevin2 in CTLs and imaged cytolytic IS formation by total internal reflection fluorescence microscopy (TIRFM). We found that an intermediate anti-CD3 concentration of 10 µg/mL induces the fastest adhesion of CTLs to the bilayers and results in maximal CG fusion efficiency. The latency of actin ring formation, dwell time, and maximum surface area at the IS exhibit different dependencies on the stimulatory anti-CD3 concentrations. The number and surface area of CD3 clusters at the IS seem to show a different dependency to the TCR trigger when compared to their dwell time. Finally, the mode of full CG exocytosis appears to be independent of the TCR trigger.


Assuntos
Sinapses Imunológicas/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Biomarcadores , Degranulação Celular/imunologia , Citotoxicidade Imunológica , Exocitose/imunologia , Ativação Linfocitária/imunologia , Camundongos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
6.
Front Immunol ; 10: 1159, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231367

RESUMO

Persistent T cell antigen receptor (TCR) signaling by CD8 T cells is a feature of cancer and chronic infections and results in the sustained expression of, and signaling by, inhibitory receptors, which ultimately impair cytotoxic activity via poorly characterized mechanisms. We have previously determined that the LPA5 GPCR expressed by CD8 T cells, upon engaging the lysophosphatidic acid (LPA) bioactive serum lipid, functions as an inhibitory receptor able to negatively regulate TCR signaling. Notably, the levels of LPA and autotaxin (ATX), the phospholipase D enzyme that produces LPA, are often increased in chronic inflammatory disorders such as chronic infections, autoimmune diseases, obesity, and cancer. In this report, we demonstrate that LPA engagement selectively by LPA5 on human and mouse CD8 T cells leads to the inhibition of several early TCR signaling events including intracellular calcium mobilization and ERK activation. We further show that, as a consequence of LPA5 suppression of TCR signaling, the exocytosis of perforin-containing granules is significantly impaired and reflected by repressed in vitro and in vivo CD8 T cell cytolytic activity. Thus, these data not only document LPA5 as a novel inhibitory receptor but also determine the molecular and biochemical mechanisms by which a naturally occurring serum lipid that is elevated under settings of chronic inflammation signals to suppress CD8 T cell killing activity in both human and murine cells. As diverse tumors have repeatedly been shown to aberrantly produce LPA that acts in an autocrine manner to promote tumorigenesis, our findings further implicate LPA in activating a novel inhibitory receptor whose signaling may be therapeutically silenced to promote CD8 T cell immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Ácidos Lisofosfatídicos/imunologia , Transdução de Sinais/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Cálcio/imunologia , Cálcio/metabolismo , Carcinogênese/genética , Carcinogênese/imunologia , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Exocitose/imunologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Perforina/imunologia , Perforina/metabolismo , Diester Fosfórico Hidrolases/imunologia , Diester Fosfórico Hidrolases/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais/genética , Linfócitos T Citotóxicos/metabolismo
7.
Methods Mol Biol ; 1982: 587-622, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31172497

RESUMO

Induced pluripotent stem cells (iPSCs) are pluripotent stem cells that can be established from dedifferentiation of all somatic cell types by epigenetic phenomena. iPSCs can be differentiated into any mature cells like neurons, hepatocytes, or pancreatic cells that have not been easily available to date. Thus, iPSCs are widely used for disease modeling, drug discovery, and cell therapy development. Here, we describe a protocol to obtain human mature and functional neutrophils and macrophages as ex vivo models of X-linked chronic granulomatous disease (X-CGD). This method can be applied to model the other genetic forms of CGD. We also describe methods for testing the characteristics and functions of neutrophils and macrophages by morphology, phagocytosis assay, release of granule markers or cytokines, cell surface markers, and NADPH oxidase activity.


Assuntos
Doença Granulomatosa Crônica/etiologia , Doença Granulomatosa Crônica/metabolismo , Biomarcadores , Técnicas de Cultura de Células , Células Cultivadas , Citocinas/metabolismo , Suscetibilidade a Doenças , Exocitose/imunologia , Fibroblastos/metabolismo , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fagocitose/imunologia , Espécies Reativas de Oxigênio/metabolismo
8.
J Immunol ; 202(9): 2661-2670, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30877168

RESUMO

Cryptococcus neoformans is a pathogenic yeast capable of a unique and intriguing form of cell-to-cell transfer between macrophage cells. The mechanism for cell-to-cell transfer is not understood. In this study, we imaged mouse macrophages with CellTracker Green 5-chloromethylfluorescein diacetate-labeled cytosol to ascertain whether cytosol was shared between donor and acceptor macrophages. Analysis of several transfer events detected no transfer of cytosol from donor-to-acceptor mouse macrophages. However, blocking Fc and complement receptors resulted in a major diminution of cell-to-cell transfer events. The timing of cell-to-cell transfer (11.17 min) closely approximated the sum of phagocytosis (4.18 min) and exocytosis (6.71 min) times. We propose that macrophage cell-to-cell transfer represents a nonlytic exocytosis event, followed by phagocytosis into a macrophage that is in close proximity, and name this process Dragotcytosis ("Dragot" is a Greek surname meaning "sentinel"), as it represents sharing of a microbe between two sentinel cells of the innate immune system.


Assuntos
Criptococose/imunologia , Criptococose/transmissão , Cryptococcus neoformans/imunologia , Exocitose/imunologia , Macrófagos/imunologia , Animais , Criptococose/patologia , Feminino , Macrófagos/microbiologia , Camundongos
9.
J Leukoc Biol ; 105(6): 1275-1283, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30811627

RESUMO

NK cells are lymphocytes of the innate immune system, which are able to deal promptly with stressed cells. Cellular senescence is a cell stress response leading to cell cycle arrest that plays a key role during tissue homeostasis and carcinogenesis. In this review, how senescent cells trigger an immune response and, in particular, the ability of NK cells to recognize and clear senescent cells are discussed. Special attention is given to the NK cell-mediated clearance of senescent tumor cells. NK cells kill senescent cells through a mechanism involving perforin- and granzyme-containing granule exocytosis, and produce IFN-γ following senescent cell interaction, leading to hypothesize that NK cell-mediated immune clearance of senescent cells not only relies on direct killing but also on cytokine production, that in turn can promote macrophage activation. These aspects, as well as the ability of the senescence-associated secretory phenotype and senescent cell-produced extracellular vesicles to modulate NK cell effector functions, are described.


Assuntos
Senescência Celular/imunologia , Exocitose/imunologia , Células Matadoras Naturais/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Vesículas Secretórias/imunologia , Animais , Vesículas Extracelulares/imunologia , Humanos , Células Matadoras Naturais/citologia , Macrófagos/citologia
10.
Front Immunol ; 9: 2670, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30515160

RESUMO

Betaine is a critical nutrient for mammal health, and has been found to alleviate inflammation by lowering interleukin (IL)-1ß secretion; however, the underlying mechanisms by which betaine inhibits IL-1ß secretion remain to be uncovered. In this review, we summarize the current understanding about the mechanisms of betaine in IL-1ß production and release. For IL-1ß production, betaine affects canonical and non-canonical inflammasome-mediated processing of IL-1ß through signaling pathways, such as NF-κB, NLRP3 and caspase-8/11. For IL-1ß release, betaine inhibits IL-1ß release through blocking the exocytosis of IL-1ß-containing secretory lysosomes, reducing the shedding of IL-1ß-containing plasma membrane microvesicles, suppressing the exocytosis of IL-1ß-containing exosomes, and attenuating the passive efflux of IL-1ß across hyperpermeable plasma membrane during pyroptotic cell death, which are associated with ERK1/2/PLA2 and caspase-8/A-SMase signaling pathways. Collectively, this review highlights the anti-inflammatory property of betaine by inhibiting the production and release of IL-1ß, and indicates the potential application of betaine supplementation as an adjuvant therapy in various inflammatory diseases associating with IL-1ß secretion.


Assuntos
Betaína/farmacologia , Exocitose/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Caspase 8/imunologia , Exocitose/imunologia , Humanos , Interleucina-1beta/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Proteína Quinase 1 Ativada por Mitógeno/imunologia , Proteína Quinase 3 Ativada por Mitógeno/imunologia , NF-kappa B/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Esfingomielina Fosfodiesterase/imunologia
11.
J Immunol ; 201(10): 3051-3057, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30333125

RESUMO

During inflammation, phagocytes release digestive enzymes from lysosomes to degrade harmful cells such as pathogens and tumor cells. However, the molecular mechanisms regulating this process are poorly understood. In this study, we identified myoferlin as a critical regulator of lysosomal exocytosis by mouse phagocytes. Myoferlin is a type II transmembrane protein with seven C2 domains in the cytoplasmic region. It localizes to lysosomes and mediates their fusion with the plasma membrane upon calcium stimulation. Myoferlin promotes the release of lysosomal contents, including hydrolytic enzymes, which increase cytotoxicity. These data demonstrate myoferlin's critical role in lysosomal exocytosis by phagocytes, providing novel insights into the mechanisms of inflammation-related cellular injuries.


Assuntos
Citotoxicidade Imunológica/imunologia , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Fagócitos/metabolismo , Animais , Exocitose/imunologia , Lisossomos/imunologia , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/imunologia , Células NIH 3T3 , Fagócitos/imunologia
12.
Traffic ; 18(7): 442-452, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28471021

RESUMO

Adaptive and innate immunity utilize the perforin-killing pathway to eliminate virus-infected or cancer cells. Cytotoxic T-lymphocytes (CTLs) and natural killer cells mediate this process by releasing toxic proteins at the contact area with target cells known as immunological synapse (IS). Formation of a stable IS and exocytosis of toxic proteins requires persistent fusion of Rab11a recycling endosomes with the plasma membrane (PM) that may assure the delivery of key effector proteins. Despite the importance of the recycling endosomal compartment, the membrane fusion proteins that control this process at the IS remain elusive. Here, by performing knockdown experiments we found that syntaxin 4 (STX4) is necessary for cytotoxic activity and CD107a degranulation against target cells in a similar fashion to syntaxin 11, which is involved in lytic granule (LG) exocytosis and immunodeficiency when it is mutated. Using total internal reflection fluorescent microscopy we identified that STX4 mediates fusion of EGFP-Rab11a vesicles at the IS. Immunoprecipitation experiments in lysates of activated CTLs indicate that endogenous STX4 may drive this fusion step by interacting with cognate proteins: Munc18-3/SNAP23/VAMP7 and/or VAMP8. These results reveal the role of STX4 in mediating fusion of Rab11a endosomes upstream of lytic granules (LGs) exocytosis and further demonstrate the importance of this pathway in controlling CTL-mediated cytotoxicity.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Endossomos/metabolismo , Exocitose/imunologia , Proteínas Qa-SNARE/metabolismo , Linfócitos T Citotóxicos/metabolismo , Degranulação Celular , Linhagem Celular , Grânulos Citoplasmáticos/imunologia , Citotoxicidade Imunológica , Técnicas de Silenciamento de Genes , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Transporte Proteico , Proteínas Qa-SNARE/genética , Linfócitos T Citotóxicos/imunologia
13.
J Leukoc Biol ; 102(1): 19-29, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28096297

RESUMO

Neutrophil granule exocytosis plays an important role in innate and adaptive immune responses. The present study examined TNF-α stimulation or priming of exocytosis of the 4 neutrophil granule subsets. TNF-α stimulated exocytosis of secretory vesicles and gelatinase granules and primed specific and azurophilic granule exocytosis to fMLF stimulation. Both stimulation and priming of exocytosis by TNF-α were dependent on p38 MAPK activity. Bioinformatic analysis of 1115 neutrophil proteins identified by mass spectrometry as being phosphorylated by TNF-α exposure found that actin cytoskeleton regulation was a major biologic function. A role for p38 MAPK regulation of the actin cytoskeleton was confirmed experimentally. Thirteen phosphoproteins regulated secretory vesicle quantity, formation, or release, 4 of which-Raf1, myristoylated alanine-rich protein kinase C (PKC) substrate (MARCKS), Abelson murine leukemia interactor 1 (ABI1), and myosin VI-were targets of the p38 MAPK pathway. Pharmacologic inhibition of Raf1 reduced stimulated exocytosis of gelatinase granules and priming of specific granule exocytosis. We conclude that differential regulation of exocytosis by TNF-α involves the actin cytoskeleton and is a necessary component for priming of the 2 major neutrophil antimicrobial defense mechanisms: oxygen radical generation and release of toxic granule contents.


Assuntos
Exocitose/imunologia , Ativação de Neutrófilo , Neutrófilos/imunologia , Vesículas Secretórias/imunologia , Fator de Necrose Tumoral alfa/imunologia , Citoesqueleto de Actina/imunologia , Exocitose/efeitos dos fármacos , Gelatinases/imunologia , Humanos , Lipoilação/efeitos dos fármacos , Lipoilação/imunologia , Proteína Quinase C/imunologia , Proteínas Proto-Oncogênicas c-abl/imunologia , Proteínas Proto-Oncogênicas c-raf/imunologia , Fator de Necrose Tumoral alfa/farmacologia , alfa-Defensinas/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
14.
Immunobiology ; 222(4): 647-650, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27989425

RESUMO

Mast cells are sentinel cells with a tissue-specific localization in the interface between the host and the external environment. Their quick and selective response upon encountering pathogens is part of the innate host response and typically initiates the following adaptive immune response. Among several pattern recognition receptors (PRRs) involved in the recognition of pathogens by mast cells, the C-type lectin receptor Dectin-1 has been associated with the recognition of fungi. Our previous studies have shown that mast cells are the predominant cell type expressing Dectin-1 in human skin, and they also recognize and respond to Malassezia sympodialis by producing cytokines connected to the innate host response and upregulating the expression of Dectin-1. In the present study, we investigated mast cell responses to Curdlan, a ß-glucan that acts as an agonist for the fungi receptor Dectin-1, and found a unique response pattern with induced degranulation, but surprisingly without synthesis of Leukotriene C4, IL-6 or CCL2. Since mast cells are the predominant Dectin-1 expressing cell in the human skin, this study suggests that mast cell degranulation in response to fungi is an important part of the first line of defense against these pathogens.


Assuntos
Degranulação Celular/imunologia , Quimiocina CCL2/metabolismo , Interleucina-6/metabolismo , Leucotrieno C4/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , beta-Glucanas/imunologia , Animais , Exocitose/imunologia , Camundongos , Receptores de IgE/metabolismo
15.
Hamostaseologie ; 37(1): 13-24, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28004844

RESUMO

Weibel-Palade bodies (WPBs) are rod or cigar-shaped secretory organelles that are formed by the vascular endothelium. They contain a diverse set of proteins that either function in haemostasis, inflammation, or angiogenesis. Biogenesis of the WPB occurs at the Golgi apparatus in a process that is dependent on the main component of the WPB, the haemostatic protein von Willebrand Factor (VWF). During this process the organelle is directed towards the regulated secretion pathway by recruiting the machinery that responds to exocytosis stimulating agonists. Upon maturation in the periphery of the cell the WPB recruits Rab27A which regulates WPB secretion. To date several signaling pathways have been found to stimulate WPB release. These signaling pathways can trigger several secretion modes including single WPB release and multigranular exocytosis. In this review we will give an overview of the WPB lifecycle from biogenesis to secretion and we will discuss several deficiencies that affect the WPB lifecycle.


Assuntos
Células Endoteliais/imunologia , Exocitose/imunologia , Transdução de Sinais/imunologia , Corpos de Weibel-Palade/imunologia , Proteínas rab de Ligação ao GTP/imunologia , Fator de von Willebrand/imunologia , Animais , Humanos , Imunidade Inata/imunologia , Modelos Cardiovasculares , Modelos Imunológicos , Proteínas rab27 de Ligação ao GTP
16.
J Immunol ; 197(4): 1252-61, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27371724

RESUMO

Cryptococcus neoformans is a fungal pathogen with a unique intracellular pathogenic strategy that includes nonlytic exocytosis, a phenomenon whereby fungal cells are expunged from macrophages without lysing the host cell. The exact mechanism and specific proteins involved in this process have yet to be completely defined. Using murine macrophages deficient in the membrane phospholipid binding protein, annexin A2 (ANXA2), we observed a significant decrease in both phagocytosis of yeast cells and the frequency of nonlytic exocytosis. Cryptococcal cells isolated from Anxa2-deficient (Anxa2(-/-)) bone marrow-derived macrophages and lung parenchyma displayed significantly larger capsules than those isolated from wild-type macrophages and tissues. Concomitantly, we observed significant differences in the amount of reactive oxygen species produced between Anxa2(-/-) and Anxa2(+/+) macrophages. Despite comparable fungal burden, Anxa2(-/-) mice died more rapidly than wild-type mice when infected with C. neoformans, and Anxa2(-/-) mice exhibited enhanced inflammatory responses, suggesting that the reduced survival reflected greater immune-mediated damage. Together, these findings suggest a role for ANXA2 in the control of cryptococcal infection, macrophage function, and fungal morphology.


Assuntos
Anexina A2/imunologia , Criptococose/imunologia , Cryptococcus neoformans/imunologia , Macrófagos/imunologia , Fagocitose/imunologia , Animais , Anexina A2/metabolismo , Cryptococcus neoformans/patogenicidade , Modelos Animais de Doenças , Exocitose/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Reação em Cadeia da Polimerase , Virulência
17.
Traffic ; 17(9): 1027-41, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27288050

RESUMO

Stimulated exocytic events provide a means for physiological communication and are a hallmark of the mast cell-mediated allergic response. In mast cells these processes are triggered by antigen crosslinking of IgE bound to its high-affinity receptor, FcϵRI, on the cell surface. Here we use the endosomal v-SNARE VAMP8, and the lysosomal hydrolase ß-hexosaminidase (ß-Hex), each C-terminally fused to super-ecliptic pHluorin, to monitor stimulated exocytosis. Using these pHluorin-tagged constructs, we monitor stimulated exocytosis by fluorimetry and visualize individual exocytic events with total internal reflection (TIRF) microscopy. Similar to constitutive recycling endosome (RE) trafficking, we find that stimulated RE exocytosis, monitored by VAMP8, is attenuated by expression of dominant negative (S25N) Rab11. Stimulated ß-Hex exocytosis is also reduced in the presence of S25N Rab11, suggesting that expression of this mutant broadly impacts exocytosis. Interestingly, pretreatment with inhibitors of actin polymerization, cytochalasin D or latrunculin A, substantially restores both RE and lysosome exocytosis in cells expressing S25N Rab11. Conversely, stabilizing F-actin with jasplakinolide inhibits antigen-stimulated exocytosis but is not additive with S25N Rab11-mediated inhibition, suggesting that these reagents inhibit related processes. Together, our results suggest that Rab11 participates in the regulation necessary for depolymerization of the actin cytoskeleton during stimulated exocytosis in mast cells.


Assuntos
Endossomos/metabolismo , Exocitose/fisiologia , Mastócitos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Degranulação Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Endossomos/ultraestrutura , Exocitose/imunologia , Fluorometria , Humanos , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Microscopia de Fluorescência , Transporte Proteico , Ratos , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestrutura , Proteínas rab de Ligação ao GTP/genética
18.
Immunol Lett ; 167(2): 116-24, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26277554

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key glycolytic enzyme that is predominantly localized in the cytoplasm. However, recent studies have suggested that GAPDH is released by various cells and that extracellular GAPDH is involved in the regulation of neuritogenesis in neuronal cells. It has also been reported that GAPDH is expressed on the surfaces of macrophages and functions as a transferrin receptor. However, since GAPDH is a leaderless protein the mechanisms by which it reaches the extracellular environment remain unclear. Here, we examined the role of P2X7 receptor (P2X7R), an ATP-gated cation channel, in the unconventional release of GAPDH from microglial cells, the resident macrophages in the brain. The activation of P2X7R by ATP triggered GAPDH release from lipopolysaccharide (LPS)-primed microglial cells. ATP-induced microvesicle formation, exosome release, and K(+) efflux followed by caspase-1 activation are likely involved in the GAPDH release, but ATP-induced dilatation of membrane pores and lysosome exocytosis are not. It was also demonstrated that exogenous GAPDH facilitated LPS-induced phosphorylation of p38 MAP kinase in microglial cells. These findings suggest that P2X7R plays an important role in the unconventional release of GAPDH from microglial cells, and the GAPDH released into the extracellular space might be involved in the regulation of the neuroinflammatory response in the brain.


Assuntos
Trifosfato de Adenosina/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Microglia/imunologia , Microglia/metabolismo , Caspase 1/metabolismo , Células Cultivadas , Ativação Enzimática , Ensaio de Imunoadsorção Enzimática , Exocitose/imunologia , Espaço Extracelular , Humanos , Imuno-Histoquímica , Lipopolissacarídeos/imunologia , Lisossomos/imunologia , Lisossomos/metabolismo , Fosforilação , Potássio/metabolismo , Cultura Primária de Células , Receptores Purinérgicos P2X7/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
J Immunol ; 195(4): 1647-56, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26170381

RESUMO

The lysosomal enzyme ß-glucuronidase (Gusb) is a key regulator of Lyme-associated and K/B×N-induced arthritis severity. The luminal enzymes present in lysosomes provide essential catabolic functions for the homeostatic degradation of a variety of macromolecules. In addition to this essential catabolic function, lysosomes play important roles in the inflammatory response following infection. Secretory lysosomes and related vesicles can participate in the inflammatory response through fusion with the plasma membrane and release of bioactive contents into the extracellular milieu. In this study, we show that GUSB hypomorphism potentiates lysosomal exocytosis following inflammatory stimulation. This leads to elevated secretion of lysosomal contents, including glycosaminoglycans, lysosomal hydrolases, and matrix metalloproteinase 9, a known modulator of Lyme arthritis severity. This mechanistic insight led us to test the efficacy of rapamycin, a drug known to suppress lysosomal exocytosis. Both Lyme and K/B×N-associated arthritis were suppressed by this treatment concurrent with reduced lysosomal release.


Assuntos
Glucuronidase/metabolismo , Doença de Lyme/metabolismo , Lisossomos/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Animais , Membrana Celular/metabolismo , Modelos Animais de Doenças , Exocitose/efeitos dos fármacos , Exocitose/imunologia , Glucuronidase/deficiência , Glucuronidase/genética , Imunossupressores/farmacologia , Doença de Lyme/tratamento farmacológico , Doença de Lyme/genética , Doença de Lyme/patologia , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Camundongos , Camundongos Knockout , Modelos Biológicos , Transporte Proteico , Sirolimo/farmacologia
20.
J Immunol ; 194(11): 5520-8, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25926674

RESUMO

Bacteria colonize cystic fibrosis (CF) airways, and although T cells with appropriate Ag specificity are present in draining lymph nodes, they are conspicuously absent from the lumen. To account for this absence, we hypothesized that polymorphonuclear neutrophils (PMNs), recruited massively into the CF airway lumen and actively exocytosing primary granules, also suppress T cell function therein. Programmed death-ligand 1 (PD-L1), which exerts T cell suppression at a late step, was expressed bimodally on CF airway PMNs, delineating PD-L1(hi) and PD-L1(lo) subsets, whereas healthy control (HC) airway PMNs were uniformly PD-L1(hi). Blood PMNs incubated in CF airway fluid lost PD-L1 over time; in coculture, Ab blockade of PD-L1 failed to inhibit the suppression of T cell proliferation by CF airway PMNs. In contrast with PD-L1, arginase 1 (Arg1), which exerts T cell suppression at an early step, was uniformly high on CF and HC airway PMNs. However, arginase activity was high in CF airway fluid and minimal in HC airway fluid, consistent with the fact that Arg1 activation requires primary granule exocytosis, which occurs in CF, but not HC, airway PMNs. In addition, Arg1 expression on CF airway PMNs correlated negatively with lung function and positively with arginase activity in CF airway fluid. Finally, combined treatment with arginase inhibitor and arginine rescued the suppression of T cell proliferation by CF airway fluid. Thus, Arg1 and PD-L1 are dynamically modulated upon PMN migration into human airways, and, Arg1, but not PD-L1, contributes to early PMN-driven T cell suppression in CF, likely hampering resolution of infection and inflammation.


Assuntos
Arginase/imunologia , Antígeno B7-H1/imunologia , Fibrose Cística/imunologia , Neutrófilos/imunologia , Linfócitos T/imunologia , Adulto , Apoptose/imunologia , Arginase/biossíntese , Antígeno B7-H1/antagonistas & inibidores , Proliferação de Células , Exocitose/imunologia , Feminino , Humanos , Inflamação/imunologia , Inflamação/patologia , Pulmão/imunologia , Pulmão/patologia , Ativação Linfocitária/imunologia , Masculino , Testes de Função Respiratória , Mucosa Respiratória/citologia , Mucosa Respiratória/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA