Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Biomed Pharmacother ; 143: 112207, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34563950

RESUMO

Stevia rebaudiana Bertoni is a native plant to Paraguay. The extracts have been used as a famous sweetening agent, and the bioactive components derived from stevia possess a broad spectrum of therapeutical potential for various illnesses. Among its medicinal benefits are anti-hypertensive, anti-tumorigenic, anti-diabetic, and anti-hyperlipidemia. Statins (3-hydro-3-methylglutaryl-coenzyme A reductase inhibitor) are a class of drugs used to treat atherosclerosis. Statins are explicitly targeting the HMG-CoA reductase, an enzyme in the rate-limiting step of cholesterol biosynthesis. Despite being widely used in regulating plasma cholesterol levels, the adverse effects of the drug are a significant concern among clinicians and patients. Hence, steviol glycosides derived from stevia have been proposed as an alternative in replacing statins. Diterpene glycosides from stevia, such as stevioside and rebaudioside A have been evaluated for their efficacy in alleviating cholesterol levels. These glycosides are a potential candidate in treating and preventing atherosclerosis provoked by circulating lipid retention in the sub-endothelial lining of the artery. The present review is an effort to integrate the pathogenesis of atherosclerosis, involvement of lipid droplets biogenesis and its associated proteins in atherogenesis, current approaches to treat atherosclerosis, and pharmacological potential of stevia in treating the disease.


Assuntos
Aterosclerose/prevenção & controle , Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/prevenção & controle , Dislipidemias/tratamento farmacológico , Hipolipemiantes/uso terapêutico , Extratos Vegetais/uso terapêutico , Stevia , Animais , Aterosclerose/diagnóstico , Aterosclerose/epidemiologia , Biomarcadores/sangue , Fármacos Cardiovasculares/efeitos adversos , Fármacos Cardiovasculares/isolamento & purificação , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Dislipidemias/diagnóstico , Dislipidemias/epidemiologia , Fatores de Risco de Doenças Cardíacas , Humanos , Hipolipemiantes/efeitos adversos , Hipolipemiantes/isolamento & purificação , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Lipídeos/sangue , Extratos Vegetais/efeitos adversos , Extratos Vegetais/isolamento & purificação , Medição de Risco , Stevia/química , Resultado do Tratamento
2.
J Cardiovasc Pharmacol ; 78(5): e681-e689, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354001

RESUMO

ABSTRACT: Panax notoginseng saponins (PNS) are commonly used in the treatment of cardiovascular diseases. Whether PNS can protect myocardial ischemia-reperfusion injury by regulating the forkhead box O3a hypoxia-inducible factor-1 alpha (FOXO3a/HIF-1α) cell signaling pathway remains unclear. The purpose of this study was to investigate the protective effect of PNS on H9c2 cardiomyocytes through the FOXO3a/HIF-1α cell signaling pathway. Hypoxia and reoxygenation of H9C2 cells were used to mimic MIRI in vitro, and the cells were treated with PNS, 2-methoxyestradiol (2ME2), and LY294002." Cell proliferation, lactate dehydrogenase, and malonaldehyde were used to evaluate the degree of cell injury. The level of reactive oxygen species was detected with a fluorescence microscope. The apoptosis rate was detected by flow cytometry. The expression of autophagy-related proteins and apoptosis-related proteins was detected by western blot assay. PNS could reduce H9c2 hypoxia-reoxygenation injury by promoting autophagy and inhibiting apoptosis through the HIF-1α/FOXO3a cell signaling pathway. Furthermore, the protective effects of PNS were abolished by HIF-1α inhibitor 2ME2 and PI3K/Akt inhibitor LY294002. PNS could reduce H9c2 hypoxia-reoxygenation injury by promoting autophagy and inhibiting apoptosis through the HIF-1α/FOXO3a cell signaling pathway.


Assuntos
Fármacos Cardiovasculares/farmacologia , Proteína Forkhead Box O3/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Panax notoginseng , Extratos Vegetais/farmacologia , Saponinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Fármacos Cardiovasculares/isolamento & purificação , Linhagem Celular , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Panax notoginseng/química , Fosfatidilinositol 3-Quinase/metabolismo , Extratos Vegetais/isolamento & purificação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Saponinas/isolamento & purificação , Transdução de Sinais
3.
Food Funct ; 12(5): 2282-2291, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33599642

RESUMO

Phospholipids not only have high nutritional value, but also have a positive effect on cardiovascular disease, cancer and nervous system diseases. However, the activity of individual phospholipid classes of shrimp phospholipids is rarely studied. This paper researched phospholipids in the by-products of Penaeus vannamei processing. The phospholipid classes of the head from P. vannamei (PV) were separated by column chromatography, analyzed with UHPLC-Q-Exactive HF/MS, and quantified using ammonium ferrothiocyarate spectrophometry. In addition, their cardiovascular activities in zebrafish models were evaluated. A total of 5 phospholipid classes were obtained, including PV-PC, PV-PE, PV-PI, PV-PS and PV-SM, and identified as phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS) and sphingomyelin (SM), respectively. In the phospholipid profiling analysis, PV-PC (308 molecules) had the highest proportion with 85.24%, followed by PV-PE (139 types) with 9.32%, PV-SM (41 structures) with 4.75%, PV-PS (24 types) with 0.16%, and PV-PI (6 molecules) with 0.03%. In the quantitative analysis, the content of PV was 45.7%, and the purity of phospholipid classes was 75.5-88.1%. In the cardiovascular activity assays, the effects of different phospholipid classes were different. For example, PV-PC groups had strong angiogenesis activity, but PV-PE groups showed the opposite property. Our comprehensive profiling analysis and in vivo bioactivity evaluation of phospholipids from the head of P. vannamei can provide evidence for their targeted applications in the future.


Assuntos
Fármacos Cardiovasculares , Penaeidae/química , Fosfolipídeos , Indutores da Angiogênese/análise , Indutores da Angiogênese/química , Indutores da Angiogênese/isolamento & purificação , Indutores da Angiogênese/farmacologia , Animais , Fármacos Cardiovasculares/análise , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/isolamento & purificação , Fármacos Cardiovasculares/farmacologia , Coração/efeitos dos fármacos , Fosfolipídeos/análise , Fosfolipídeos/química , Fosfolipídeos/isolamento & purificação , Fosfolipídeos/farmacologia , Peixe-Zebra
4.
Biomed Pharmacother ; 135: 111184, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33418305

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Many studies have shown the beneficial effects of aconite water-soluble alkaloid extract (AWA) in experimental models of heart disease, which have been ascribed to the presence of aconine, hypaconine, talatisamine, fuziline, neoline, and songorine. This study evaluated the effects of a chemically characterized AWA by chemical content, evaluated its effects in suprarenal abdominal aortic coarctation surgery (AAC)-induced chronic heart failure (CHF) in rats, and revealed the underlying mechanisms of action by proteomics. METHODS: Rats were distributed into different groups: sham, model, and AWA-treated groups (10, 20, and 40 mg/kg/day). Sham rats received surgery without AAC, whereas model rats an AWA-treated groups underwent AAC surgery. after 8 weeks, the treatment group was fed AWA for 4 weeks, and body weight was assessed weekly. At the end of the treatment, heart function was tested by echocardiography. AAC-induced chronic heart failure, including myocardial fibrosis, cardiomyocyte hypertrophy, and apoptosis, was evaluated in heart tissue and plasma by RT-qPCR, ELISA, hematoxylin and eosin (H&E) staining, Masson's trichrome staining, TUNEL staining, and immunofluorescence staining of α-SMA, Col Ⅰ, and Col Ⅲ. Then, a proteomics approach was used to explore the underlying mechanisms of action of AWA in chronic heart failure. RESULTS: AWA administration reduced body weight gain, myocardial fibrosis, cardiomyocyte hypertrophy, and apoptosis, and rats showed improvement in cardiac function compared to model group. The extract significantly ameliorated the AAC-induced altered expression of heart failure markers such as ANP, NT-proBNP, and ß-MHC, as well as fibrosis, hypertrophy markers MMP-2 and MMP-9, and other heart failure-related factors including plasma levels of TNF-α and IL-6. Furthermore, the extract reduced the protein expression of α-SMA, Col Ⅰ, and Col Ⅲ in the left ventricular (LV), thus inhibiting the LV remodeling associated with CHF. In addition, proteomics characterization of differentially expressed proteins showed that AWA administration inhibited left ventricular remodeling in CHF rats via a calcium signaling pathway, and reversed the expression of RyR2 and SERCA2a. CONCLUSIONS: AWA extract exerts beneficial effects in an AAC-induced CHF model in rats, which was associated with an improvement in LV function, hypertrophy, fibrosis, and apoptotic status. These effects may be related to the regulation of calcium signaling by the altered expression of RyR2 and SERCA2a.


Assuntos
Aconitum , Sinalização do Cálcio/efeitos dos fármacos , Fármacos Cardiovasculares/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Aconitum/química , Animais , Apoptose/efeitos dos fármacos , Fármacos Cardiovasculares/isolamento & purificação , Doença Crônica , Modelos Animais de Doenças , Fibrose , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Extratos Vegetais/isolamento & purificação , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Solubilidade , Solventes/química , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Água/química
5.
J Ethnopharmacol ; 269: 113688, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33338592

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Scrophularia ningpoensis Hemsl. (known as Xuanshen) has been used in China for centuries as a traditional medicinal plant to treat numerous diseases including inflammation, hypertension, cancer, and diabetes. AIM OF REVIEW: In this review, we provide an update on the botany, pharmacology, phytochemistry, pharmacokinetics, traditional uses, and safety of S. ningpoensis to highlight future research needs and potential uses of this plant. MATERIALS AND METHODS: All information on S. ningpoensis was obtained from scientific databases including ScienceDirect, Springer, PubMed, Sci Finder, China Knowledge Resource Integrated Database from the China National Knowledge Infrastructure (CNKI), Google Scholar, and Baidu Scholar. Additional information was collected from Chinese herbal medicine books, Ph.D. dissertations, and M.Sc. Theses. Plant taxonomy was verified by "The Plant List" database (http://www.theplantlist.org). RESULTS: S. ningpoensis displays fever reducing, detoxifying, and nourishing 'Yin' effects in traditional Chinese medicine (TCM). More than 162 compounds have been identified and isolated from S. ningpoensis, including iridoids and iridoid glycosides, phenylpropanoid glycosides, organic acids, volatile oils, terpenoids, saccharides, flavonoids, sterols, and saponins. These compounds possess a diverse variety of pharmacological properties that affect the cardiovascular, hepatic, and nervous systems, and protect the body against inflammation, oxidation, and carcinogenesis. CONCLUSIONS: Modern pharmacological studies have confirmed that S. ningpoensis is a valuable Chinese medicinal herb with many pharmacological uses in the treatment of cardiovascular, diabetic, and liver diseases. Most of the S. ningpoensis activity may be attributed to iridoid glycosides and phenylpropanoid glycosides; however, detailed information on the molecular mechanisms, metabolic activity, toxicology, and structure-function relationships of active components is limited. Further comprehensive research to evaluate the medicinal properties of S. ningpoensis is needed.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Etnofarmacologia/métodos , Medicina Tradicional Chinesa/métodos , Compostos Fitoquímicos/uso terapêutico , Scrophularia , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Fármacos Cardiovasculares/isolamento & purificação , Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/uso terapêutico , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia
6.
J Ethnopharmacol ; 269: 113690, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33309917

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Coreopsis tinctoria Nutt. (family Asteraceae) is an important traditional medicine in North America, Europe, and Asia for quite a long historical period, which has received great attention due to its health-benefiting activities, including disinfection, treatment sexual infection, diarrhoea, acute and chronic dysentery, red-eye swelling as well as pain, heat, thirst, hypertension, palpitation, gastrointestinal discomfort, and loss of appetite. AIM OF THE REVIEW: The purpose of this review is to give an overview of the current phytochemistry and pharmacological activities of C. tinctoria, and reveals the correlation among its traditional uses, phytochemistry, pharmacological profile, and potential toxicity. MATERIALS AND METHODS: This review is based on published studies and books from electronic sources and library, including the online ethnobotanical database, ethnobotanical monographs, Scopus, SciFinder, Baidu Scholar, CNKI, and PubMed. These reports are related to the traditional uses, phytochemistry, pharmacology, and toxicology of C. tinctoria. RESULTS: Coreopsis tinctoria is traditionally used in diarrhoea, infection, and chronic metabolic diseases. From 1954 to now, more than 120 chemical constituents have been identified from C. tinctoria, such as flavonoids, polyacetylenes, polysaccharides, phenylpropanoids, and volatile oils. Flavonoids are the major bioactive components in C. tinctoria. Current research has shown that its extracts and compounds possess diverse biological and pharmacological activities such as antidiabetes, anti-cardiovascular diseases, antioxidant, anti-inflammatory, protective effects on organs, neuroprotective effects, antimicrobial, and antineoplastic. Studies in animal models, including acute toxicity, long-term toxicity, and genotoxicity have demonstrated that Snow Chrysanthemum is a non-toxic herb, especially for its water-soluble parts. CONCLUSIONS: Recent findings regarding the main phytochemical and pharmacological properties of C. tinctorial have confirmed its traditional uses in anti-infection and treatment of chronic metabolic disease and, more importantly, have revealed the plant as a valuable medicinal plant resource for the treatment of a wide range of diseases. The available reports indicated that most of the bioactivities in C. tinctorial could be attributed to flavonoids. However, higher quality studies on animals and humans studies are required to explore the efficacy and mechanism of action of C. tinctoria in future.


Assuntos
Coreopsis , Etnofarmacologia/métodos , Medicina Tradicional/métodos , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/uso terapêutico , Animais , Fármacos Cardiovasculares/isolamento & purificação , Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/uso terapêutico , Humanos , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia
7.
J Ethnopharmacol ; 257: 112887, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32315737

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The plant Anchusa italica Retz. (Anchusa azurea Mill.) has been traditionally used in Uygur medicine for the treatment of cardiovascular and cerebrovascular diseases in China. Our previous study showed that total flavonoids from Anchusa italica Retz. (TFAI) exhibited potent cardioprotection in acute ischemia/reperfusion injured rats. AIM OF THE STUDY: This study was undertaken to investigate the effects of TFAI on chronic myocardial infarction (MI) in mice and the underlying mechanism. MATERIALS AND METHODS: Total flavonoids were extracted from the whole herb of Anchusa italica Retz. and were characterized using HPLC-MS analysis. The left anterior descending branch of the coronary artery was ligated to simulate MI injury in mice. After surgery, mice were orally fed with TFAI at the doses of 10, 30 and 50 mg/kg body weight/day for a total of four weeks. Cardiac function and infarct size were measured, and inflammatory mediators were detected. Hematoxylin and eosin (H&E) staining and Masson's trichrome staining were performed on heart sections. The apoptotic factors, such as Bax, Bcl-2 and cleaved caspase 3, as well as the key proteins in the PI3K/Akt/mTOR signaling pathway were examined by Western blot. RESULTS: The content of total flavonoids in TFAI was 56.2%. Four weeks following the MI surgery, TFAI enhanced the survival rate in post-MI mice. TFAI treatment at the doses of 30 and 50 mg/kg remarkably reduced infarct size and improved cardiac function as indicated by elevated EF and FS. Assay of the inflammatory factors showed that sera levels of TNF-α, IL-1ß and IL-6 were markedly decreased by TFAI treatment compared to the MI group. H&E staining and Masson's trichrome staining demonstrated that TFAI suppressed myocyte hypertrophy and cardiac fibrosis as indicated by the decreased cross-section area and collagen volume. Western blot analysis showed that cleaved caspase 3 and Bax/Bcl-2 were significantly downregulated following TFAI treatment. Furthermore, TFAI treatment significantly suppressed the activation of the PI3K/Akt/mTOR signaling pathway. CONCLUSIONS: Our data suggest that TFAI exerts a potent protective effect against chronic MI injury, and its beneficial effects on cardiac function and cardiac remodeling might be attributable, at least in part, to anti-inflammation and inhibition of the PI3K/Akt/mTOR signaling pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Boraginaceae , Fármacos Cardiovasculares/farmacologia , Flavonoides/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/patologia , Extratos Vegetais/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Anti-Inflamatórios/isolamento & purificação , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Boraginaceae/química , Fármacos Cardiovasculares/isolamento & purificação , Modelos Animais de Doenças , Fibrose , Flavonoides/isolamento & purificação , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Extratos Vegetais/isolamento & purificação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR
8.
Curr Drug Targets ; 20(15): 1572-1586, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31215388

RESUMO

Quinolizidine alkaloids, a main form of alkaloids found in the genus Sophora, have been shown to have many pharmacological effects. This review aims to summarize the photochemical reports and biological activities of quinolizidine alkaloids in Sophora. The collected information suggested that a total of 99 quinolizidine alkaloids were isolated and detected from different parts of Sophora plants, represented by lupinine-type, cytisine-type, sparteine-type, and matrine-type. However, quality control needs to be monitored because it could provide basic information for the reasonable and efficient use of quinolizidine alkaloids as medicines and raw materials. The nonmedicinal parts may be promising to be used as a source of quinolizidine alkaloid raw materials and to reduce the waste of resources and environmental pollution. In addition, the diversity of chemical compounds based on the alkaloid scaffold to make a biological compound library needs to be extended, which may reduce toxicity and find new bioactivities of quinolizidine alkaloids. The bioactivities most reported are in the fields of antitumor activity along with the effects on the cardiovascular system. However, those studies rely on theoretical research, and novel drugs based on quinolizidine alkaloids are expected.


Assuntos
Alcaloides/farmacologia , Extratos Vegetais/farmacologia , Quinolizidinas/farmacologia , Sophora/química , Alcaloides/isolamento & purificação , Alcaloides/normas , Alcaloides/uso terapêutico , Analgésicos/isolamento & purificação , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antimetabólitos/isolamento & purificação , Antimetabólitos/farmacologia , Antimetabólitos/uso terapêutico , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Antineoplásicos/normas , Antineoplásicos/uso terapêutico , Fármacos Cardiovasculares/isolamento & purificação , Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/uso terapêutico , Desenvolvimento de Medicamentos , Descoberta de Drogas , Humanos , Inseticidas , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/normas , Extratos Vegetais/uso terapêutico , Controle de Qualidade , Quinolizidinas/isolamento & purificação , Quinolizidinas/normas , Quinolizidinas/uso terapêutico
10.
Cardiovasc Toxicol ; 19(1): 72-81, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30128816

RESUMO

Heart failure-associated morbidity and mortality is largely attributable to extensive and unregulated cardiac remodelling. Roselle (Hibiscus sabdariffa) calyces are enriched with natural polyphenols known for antioxidant and anti-hypertensive effects, yet its effects on early cardiac remodelling in post myocardial infarction (MI) setting are still unclear. Thus, the aim of this study was to investigate the actions of roselle extract on cardiac remodelling in rat model of MI. Male Wistar rats (200-300 g) were randomly allotted into three groups: Control, MI, and MI + Roselle. MI was induced with isoprenaline (ISO) (85 mg/kg, s.c) for two consecutive days followed by roselle treatment (100 mg/kg, orally) for 7 days. Isoprenaline administration showed changes in heart weight to body weight (HW/BW) ratio. MI was especially evident by the elevated cardiac injury marker, troponin-T, and histological observation. Upregulation of plasma levels and cardiac gene expression levels of inflammatory cytokines such as interleukin (IL)-6 and IL-10 was seen in MI rats. A relatively high percentage of fibrosis was observed in rat heart tissues with over-expression of collagen (Col)-1 and Col-3 genes following isoprenaline-induced MI. On top of that, cardiomyocyte areas were larger in heart tissues of MI rats with upregulation of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) gene expression, indicating cardiac hypertrophy. Interestingly, roselle supplementation attenuated elevation of plasma troponin-T, IL-6, IL10, and gene expression level of IL-10. Furthermore, reduction of cardiac fibrosis and hypertrophy were observed. In conclusion, roselle treatment was able to limit early cardiac remodelling in MI rat model by alleviating inflammation, fibrosis, and hypertrophy; hence, the potential application of roselle in early adjunctive treatment to prevent heart failure.


Assuntos
Fármacos Cardiovasculares/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Hibiscus , Hipertrofia Ventricular Esquerda/prevenção & controle , Infarto do Miocárdio/tratamento farmacológico , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Fármacos Cardiovasculares/isolamento & purificação , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Modelos Animais de Doenças , Fibrose , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Hibiscus/química , Hipertrofia Ventricular Esquerda/induzido quimicamente , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Mediadores da Inflamação/sangue , Interleucina-10/sangue , Interleucina-10/genética , Interleucina-6/sangue , Interleucina-6/genética , Isoproterenol , Masculino , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Ratos Wistar , Troponina T/sangue
11.
Vascul Pharmacol ; 113: 1-8, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30391545

RESUMO

Aspirin is currently the most widely used drug worldwide, and has been clearly one of the most important pharmacological achievements of the twentieth century. Historians of medicine have traced its birth in 1897, but the fascinating history of aspirin actually dates back >3500 years, when willow bark was used as a painkiller and antipyretic by Sumerians and Egyptians, and then by great physicians from ancient Greece and Rome. The modern history of aspirin precursors, salicylates, began in 1763 with Reverend Stone - who first described their antipyretic effects - and continued in the 19th century with many researchers involved in their extraction and chemical synthesis. Bayer chemist Felix Hoffmann synthesized aspirin in 1897, and 70 years later the pharmacologist John Vane elucidated its mechanism of action in inhibiting prostaglandin production. Originally used as an antipyretic and anti-inflammatory drug, aspirin then became, for its antiplatelet properties, a milestone in preventing cardiovascular and cerebrovascular diseases. The aspirin story continues today with the growing evidence of its chemopreventive effect against colorectal and other types of cancer, now awaiting the results of ongoing primary prevention trials in this setting. This concise review revisits the history of aspirin with a focus on its most remote origins.


Assuntos
Anti-Inflamatórios não Esteroides/história , Antipiréticos/história , Aspirina/história , Fármacos Cardiovasculares/história , Inibidores da Agregação Plaquetária/história , Salix , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Anti-Inflamatórios não Esteroides/uso terapêutico , Antipiréticos/síntese química , Antipiréticos/isolamento & purificação , Antipiréticos/uso terapêutico , Aspirina/síntese química , Aspirina/isolamento & purificação , Aspirina/uso terapêutico , Fármacos Cardiovasculares/síntese química , Fármacos Cardiovasculares/isolamento & purificação , Fármacos Cardiovasculares/uso terapêutico , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , História Antiga , Humanos , Casca de Planta , Folhas de Planta , Inibidores da Agregação Plaquetária/síntese química , Inibidores da Agregação Plaquetária/isolamento & purificação , Inibidores da Agregação Plaquetária/uso terapêutico , Salix/química
12.
J Cardiovasc Pharmacol ; 73(2): 92-99, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30531436

RESUMO

BACKGROUND AND OBJECTIVE: Panax Notoginseng Saponins (PNS) is a formula of Chinese medicine commonly used for treating ischemia myocardial in China. However, its mechanism of action is yet unclear. This study investigated the effect and the mechanism of PNS on myocardial ischemia-reperfusion injury (MIRI) through the hypoxia-inducible factor 1α (HIF-1α)/bcl-2/adenovirus E1B19kDa-interacting protein3 (BNIP3) pathway of autophagy. METHODS: We constructed a rat model of myocardial injury and compared among 4 groups (n = 10, each): the sham-operated group (Sham), the ischemia-reperfusion group (IR), the PNS low-dose group, and the PNS high-dose group were pretreated with PNS (30 and 60 mg/kg, respectively). Serum creatine kinase, malonaldehyde (MDA), lactate dehydrogenase, myocardial tissue superoxide dismutase, and reactive oxygen species were detected in rats with myocardial ischemia-reperfusion after the intervention of PNS. The rat myocardial tissue was examined using hematoxylin and eosin (H&E) staining, and the mitochondria of myocardial cells were observed using transmission electron microscopy. The expressions of microtubule-associated protein light chain 3 (LC3), HIF-1α, BNIP3, Beclin-1, and autophagy-related gene-5 (Atg5) in rat myocardial tissue were detected using Western blotting. RESULTS: The results showed that PNS was significantly protected against MIRI, as evidenced by the decreasing in the concentration of serum CK, MDA, lactate dehydrogenase, and myocardial tissue superoxide dismutase, reactive oxygen species, the attenuation of myocardial tissue histopathological changes and the mitochondrial damages of myocardial cells, and the increase of mitochondria autophagosome in myocardial cells. In addition, PNS significantly increased the expression of LC3 and the ratio of LC3II/LC3I in rat myocardial tissue. Moreover, PNS significantly increased the expression of HIF-1α, BNIP3, Atg5, and Beclin-1 in rat myocardial tissue. CONCLUSIONS: The protective effect of PNS on MIRI was mainly due to its ability to enhance the mitochondrial autophagy of myocardial tissue through the HIF-1α/BNIP3 pathway.


Assuntos
Autofagia/efeitos dos fármacos , Fármacos Cardiovasculares/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Panax , Saponinas/farmacologia , Animais , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Fármacos Cardiovasculares/isolamento & purificação , Modelos Animais de Doenças , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Panax/química , Ratos Sprague-Dawley , Saponinas/isolamento & purificação , Transdução de Sinais
13.
J Cardiovasc Pharmacol ; 72(5): 214-221, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30212415

RESUMO

There is an increase in oxidative stress and apoptosis signaling during the transition from hypertrophy to right ventricular (RV) failure caused by pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). In this study, it was evaluated the action of copaiba oil on the modulation of proteins involved in RV apoptosis signaling in rats with PAH. Male Wistar rats (±170 g, n = 7/group) were divided into 4 groups: control, MCT, copaiba oil, and MCT + copaiba oil. PAH was induced by MCT (60 mg/kg intraperitoneally) and, 7 days later, treatment with copaiba oil (400 mg/kg by gavage) was given for 14 days. Echocardiographic and hemodynamic measurements were performed, and the RV was collected for morphometric evaluations, oxidative stress, apoptosis, and cell survival signaling, and eNOS protein expression. Copaiba oil reduced RV hypertrophy (24%), improved RV systolic function, and reduced RV end-diastolic pressure, increased total sulfhydryl levels and eNOS protein expression, reduced lipid and protein oxidation, and the expression of proteins involved in apoptosis signaling in the RV of MCT + copaiba oil as compared to MCT group. In conclusion, copaiba oil reduced oxidative stress, and apoptosis signaling in RV of rats with PAH, which may be associated with an improvement in cardiac function caused by this compound.


Assuntos
Apoptose/efeitos dos fármacos , Fármacos Cardiovasculares/farmacologia , Fabaceae , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Direita/prevenção & controle , Monocrotalina , Miocárdio , Óleos de Plantas/farmacologia , Disfunção Ventricular Direita/prevenção & controle , Função Ventricular Direita/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Fármacos Cardiovasculares/isolamento & purificação , Modelos Animais de Doenças , Fabaceae/química , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Óleos de Plantas/isolamento & purificação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Disfunção Ventricular Direita/induzido quimicamente , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia , Proteína X Associada a bcl-2/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-29437027

RESUMO

BACKGROUND AND OBJECTIVE: The preventive effects of olive oil against different diseases have been attributed to its high phenolic compound content. The objective of this study was to examine available scientific evidence on the beneficial effects against chronic diseases of olive oil phenolic compounds. METHOD: This article examines recently published data on olive oil phenolic compounds and their potential benefits in the prevention of cardiovascular disease, cancer, neurodegenerative disease, and osteoporosis. RESULTS: The antioxidant, anti-proliferative, pro-apoptotic, and anti-inflammatory activities of olive oil phenolic compounds have preventive effects against heart disease and cancer. These compounds also exert neuroprotective and neuromodulator effects against neurodegenerative disease, inhibiting the development of amyloid plaques. Finally, they are known to protect against osteoporosis, favoring bone regeneration. CONCLUSION: Dietary intake of olive oil can be recommended by healthcare professionals as an important source of phenolic compounds that play a role in the prevention of chronic disease and the consequent improvement in quality of life.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Conservadores da Densidade Óssea/administração & dosagem , Fármacos Cardiovasculares/administração & dosagem , Doenças Cardiovasculares/prevenção & controle , Dieta Saudável , Neoplasias/prevenção & controle , Doenças Neurodegenerativas/prevenção & controle , Fármacos Neuroprotetores/administração & dosagem , Azeite de Oliva/administração & dosagem , Osteoporose/prevenção & controle , Fenóis/uso terapêutico , Animais , Anti-Inflamatórios/administração & dosagem , Antineoplásicos Fitogênicos/efeitos adversos , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/administração & dosagem , Conservadores da Densidade Óssea/efeitos adversos , Conservadores da Densidade Óssea/isolamento & purificação , Fármacos Cardiovasculares/efeitos adversos , Fármacos Cardiovasculares/isolamento & purificação , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Fármacos Neuroprotetores/efeitos adversos , Fármacos Neuroprotetores/isolamento & purificação , Azeite de Oliva/efeitos adversos , Azeite de Oliva/química , Osteoporose/metabolismo , Osteoporose/patologia , Fenóis/efeitos adversos , Fenóis/isolamento & purificação , Fatores de Proteção , Fatores de Risco
15.
J Ethnopharmacol ; 210: 296-310, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-28864169

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The compound epigallocatechin-3-gallate (EGCG), the major polyphenolic compound present in green tea [Camellia sinensis (Theaceae], has shown numerous cardiovascular health promoting activity through modulating various pathways. However, molecular understanding of the cardiovascular protective role of EGCG has not been reported. AIM OF THE REVIEW: This review aims to compile the preclinical and clinical studies that had been done on EGCG to investigate its protective effect on cardiovascular and metabolic diseases in order to provide a systematic guidance for future research. MATERIALS AND METHODS: Research papers related to EGCG were obtained from the major scientific databases, for example, Science direct, PubMed, NCBI, Springer and Google scholar, from 1995 to 2017. RESULTS: EGCG was found to exhibit a wide range of therapeutic properties including anti-atherosclerosis, anti-cardiac hypertrophy, anti-myocardial infarction, anti-diabetes, anti-inflammatory and antioxidant. These therapeutic effects are mainly associated with the inhibition of LDL cholesterol (anti-atherosclerosis), inhibition of NF-κB (anti-cardiac hypertrophy), inhibition of MPO activity (anti-myocardial infarction), reduction in plasma glucose and glycated haemoglobin level (anti-diabetes), reduction of inflammatory markers (anti-inflammatory) and the inhibition of ROS generation (antioxidant). CONCLUSION: EGCG shows different biological activities and in this review, a compilation of how this bioactive molecule plays its role in treating cardiovascular and metabolic diseases was discussed.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Catequina/análogos & derivados , Doenças Metabólicas/tratamento farmacológico , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Camellia sinensis/química , Fármacos Cardiovasculares/isolamento & purificação , Fármacos Cardiovasculares/farmacologia , Doenças Cardiovasculares/fisiopatologia , Catequina/isolamento & purificação , Catequina/farmacologia , Humanos , Doenças Metabólicas/fisiopatologia , Chá/química
16.
Atherosclerosis ; 258: 56-64, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28196336

RESUMO

BACKGROUND AND AIMS: Apple polyphenol contains abundant procyanidins, which have been associated with an anti-atherosclerosis and cholesterol-lowering effect. The aim of this study was to investigate whether apple procyanidins (APCs) feature therapeutic efficacy in terms of regressing atherosclerosis and whether this efficacy is due to mechanisms other than a cholesterol-lowering effect. METHODS: After eight weeks on an atherogenic diet, rabbits were given a normal diet for another eight weeks to normalize the increased serum lipids level. The rabbits in the baseline group were sacrificed at this stage. The control group was subsequently fed a normal diet for eight weeks, while the APCs group was administrated 50 mg/kg/day of APCs in addition to the normal diet. Serum lipids and aortic intimal-medial thickness (IMT) were serially examined, and the resected aorta was examined histologically and through molecular biology. RESULTS: Aortic IMT on ultrasonography and the lipid accumulation area examined using Sudan IV staining were significantly reduced in the APCs group as compared to the control group. Serum lipid profiles were not different between the groups. Immunohistochemistry showed significantly decreased staining of an oxidative stress marker and significantly increased staining of ATP-binding cassette subfamily A member 1 (ABCA1) in the APCs group. Western blotting and RT-PCR also showed increased expression of ABCA1 mRNA and its protein in the APCs group. CONCLUSIONS: This study revealed that APCs administration causes a regression of atherosclerosis. APCs might hold promise as an anti-atherosclerotic agent.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/agonistas , Aorta/efeitos dos fármacos , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Biflavonoides/farmacologia , Fármacos Cardiovasculares/farmacologia , Catequina/farmacologia , Frutas/química , Malus/química , Proantocianidinas/farmacologia , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Biflavonoides/isolamento & purificação , Fármacos Cardiovasculares/isolamento & purificação , Catequina/isolamento & purificação , Colesterol/sangue , Modelos Animais de Doenças , Lipoproteínas LDL/sangue , Masculino , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia , Plantas Medicinais , Placa Aterosclerótica , Proantocianidinas/isolamento & purificação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/sangue , Receptores Depuradores Classe E/metabolismo , Fatores de Tempo , Regulação para Cima
17.
J Ethnopharmacol ; 199: 86-90, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28132862

RESUMO

ETHNOBOTANICAL RELEVANCE: Pogostemon elsholtzioides Benth. (Lamiaceae) is an aromatic shrub, endemic to eastern Himalaya region. The leaves are used for treating goiter and high blood pressure (BP) by indigenous people in Arunachal Pradesh, India. Young leaves are used as vegetable and leaf decoction is also used for cough, cold and headache by some indigenous communities in Northeast India. AIM OF THE STUDY: This species is used for treating hypertension and the genus Pogostemon is rich in essential oil. Therefore, the present study was aimed at investigation of the chemical constituents, vasorelaxant and cardiovascular effects of the essential oil of P. elsholtzioides. MATERIALS AND METHODS: P. elsholtzioides was collected from Pasighat, Arunachal Pradesh, India and essential oil was extracted from shade dried leaves. Essential oil was analyzed by GC-FID and GC-MS and the volatile constituents were identified. Vasorelaxant and cardiovascular properties of the essential oil were studied against phenylephrine induced contraction in isolated endothelium intact aortic preparations and by measuring systolic and diastolic BP, mean arterial pressure (MAP) and heart rate (HR) after carotid artery cannulation in Wistar rats. RESULTS: The essential oil was rich in sesquiterpenes and curzerene, benzophenone, α-cadinol and germacrone were major constituents. The essential oil exhibited significant vasodilation effect in phenylephrine induced contracted aortic rings. Vasorelaxant effect of the essential oil was also observed both in the presence and absence of Nitro-L-arginine methyl ester against phenylephrine-contracted aortic rings. It also induced reduction of systolic and diastolic BP, MAP and HR. CONCLUSIONS: Essential oil of P. elsholtzioides exhibited significant vasorelaxant effect against endothelium intact aortic preparation mediated through nitric oxide dependent pathway and also reduced BP. However, further study is needed to screen the role of calcium ions in both intracellular and extracellular pathway.


Assuntos
Fármacos Cardiovasculares/farmacologia , Endotélio Vascular/efeitos dos fármacos , Óleos Voláteis/farmacologia , Pogostemon , Vasodilatadores/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Fármacos Cardiovasculares/isolamento & purificação , Relação Dose-Resposta a Droga , Endotélio Vascular/fisiologia , Masculino , Óleos Voláteis/isolamento & purificação , Folhas de Planta , Ratos , Ratos Wistar , Vasodilatadores/isolamento & purificação
18.
Adv Exp Med Biol ; 929: 1-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27771918

RESUMO

Cinnamon (Cinnamomum zeylanicum and Cinnamon cassia), the eternal tree of tropical medicine, belongs to the Lauraceae family and is one of the most important spices used daily by people all over the world. It contains a lot of manganese, iron, dietary fiber, and calcium. Cinnamon contains derivatives, such as cinnamaldehyde, cinnamic acid, cinnamate, and numerous other components such as polyphenols and antioxidant, anti-inflammatory, antidiabetic, antimicrobial, anticancer effects. Several reports have dealt with the numerous properties of cinnamon in the forms of bark, essential oils, bark powder, and phenolic compounds, and each of these properties can play a key role in human health. Recently, many trials have explored the beneficial effects of cinnamon in Alzheimer's disease, diabetes, arthritis, and arteriosclerosis, but still we need further investigations to provide additional clinical evidence for this spice against cancer and inflammatory, cardioprotective, and neurological disorders.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Fármacos Cardiovasculares/uso terapêutico , Doença Crônica/tratamento farmacológico , Cinnamomum zeylanicum/química , Descoberta de Drogas/métodos , Hipoglicemiantes/uso terapêutico , Extratos Vegetais/uso terapêutico , Analgésicos/efeitos adversos , Analgésicos/química , Analgésicos/isolamento & purificação , Animais , Anti-Inflamatórios/efeitos adversos , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Fármacos Cardiovasculares/efeitos adversos , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/isolamento & purificação , Modelos Animais de Doenças , Humanos , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Fitoterapia , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Plantas Medicinais
19.
Adv Exp Med Biol ; 929: 67-90, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27771921

RESUMO

The mechanisms of action of polyphenols have attracted much attention. Catechins are generally known as tea polyphenols. Researchers have extensively investigated the molecular mechanisms of these substances, especially (-)-epigallocatechin gallate of green tea catechin, and have provided new insights in the prevention and therapy for chronic diseases. This chapter summarizes catechins and their effects on chronic diseases, including metabolic syndromes, cardiovascular diseases, neurodegenerative diseases, and cancer, focusing on the effects of green tea catechins.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Fármacos Cardiovasculares/uso terapêutico , Catequina/uso terapêutico , Doença Crônica/tratamento farmacológico , Descoberta de Drogas/métodos , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/uso terapêutico , Chá/química , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/isolamento & purificação , Catequina/química , Catequina/isolamento & purificação , Modelos Animais de Doenças , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
20.
J Cardiovasc Pharmacol ; 68(1): 19-26, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26657713

RESUMO

Despite being used for a long time as food and beverage by Brazilian people who live on the Amazon bay, only in the beginning of this century, açaí berries have been the object of scientific research. Açaí berries are rich in polyphenols that probably explains its versatile pharmacological actions and huge consumption, not only in Brazil but also in Europe and United States. In this review, not all but some pharmacological aspects of açaí berries are analyzed. Chemical and pharmacological differences between extracts obtained from the skin and seed of açaí are considered. Polyphenols from the seed of açaí increase endothelial nitric oxide production leading to endothelium-dependent relaxation, reduce reactive oxygen species and regulate key targets associated with lipid metabolism in different conditions such as hypertension, renal failure, and metabolic syndrome. We review the novel mechanisms of actions of açaí on different targets which could trigger the health benefits of açaí such as antioxidant, vasodilator, antihypertensive, cardioprotector, renal protector, antidyslipidemic, antiobesity, and antidiabetic effects in cardiovascular and metabolic disturbances.


Assuntos
Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/prevenção & controle , Euterpe/química , Doenças Metabólicas/prevenção & controle , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/uso terapêutico , Animais , Fármacos Cardiovasculares/isolamento & purificação , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Frutas/química , Humanos , Doenças Metabólicas/metabolismo , Doenças Metabólicas/fisiopatologia , Compostos Fitoquímicos/isolamento & purificação , Fitoterapia , Extratos Vegetais/isolamento & purificação , Plantas Medicinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA