Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Microbiol Spectr ; 12(5): e0241823, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38591917

RESUMO

The tenacious biofilms formed by Streptococcus mutans are resistant to conventional antibiotics and current treatments. There is a growing need for novel therapeutics that selectively inhibit S. mutans biofilms while preserving the normal oral microenvironment. Previous studies have shown that increased levels of cyclic di-AMP, an important secondary messenger synthesized by diadenylate cyclase (DAC), favored biofilm formation in S. mutans. Thus, targeting S. mutans DAC is a novel strategy to inhibit S. mutans biofilms. We screened a small NCI library of natural products using a fluorescence detection assay. (+)-Brazilin, a tetracyclic homoisoflavanoid found in the heartwood of Caesalpinia sappan, was identified as one of the 11 "hits," with the greatest reduction (>99%) in fluorescence at 100 µM. The smDAC inhibitory profiles of the 11 "hits" established by a quantitative high-performance liquid chromatography assay revealed that (+)-brazilin had the most enzymatic inhibitory activity (87% at 100 µM) and was further studied to determine its half maximal inhibitory concentration (IC50 = 25.1 ± 0.98 µM). (+)-Brazilin non-competitively inhibits smDAC's enzymatic activity (Ki = 140.0 ± 27.13 µM), as determined by a steady-state Michaelis-Menten kinetics assay. In addition, (+)-brazilin's binding profile with smDAC (Kd = 11.87 µM) was illustrated by a tyrosine intrinsic fluorescence quenching assay. Furthermore, at low micromolar concentrations, (+)-brazilin selectively inhibited the biofilm of S. mutans (IC50 = 21.0 ± 0.60 µM) and other oral bacteria. S. mutans biofilms were inhibited by a factor of 105 in colony-forming units when treated with 50 µM (+)-brazilin. In addition, a significant dose-dependent reduction in extracellular DNA and glucan levels was evident by fluorescence microscopy imaging of S. mutans biofilms exposed to different concentrations of (+)-brazilin. Furthermore, colonization of S. mutans on a representative model of enamel using suspended hydroxyapatite discs showed a >90% reduction with 50 µM (+)-brazilin. In summary, we have identified a drug-like natural product inhibitor of S. mutans biofilm that not only binds to smDAC but can also inhibit the function of smDAC. (+)-Brazilin could be a good candidate for further development as a potent therapeutic for the prevention and treatment of dental caries.IMPORTANCEThis study represents a significant advancement in our understanding of potential therapeutic options for combating cariogenic biofilms produced by Streptococcus mutans. The research delves into the use of (+)-brazilin, a natural product, as a potent inhibitor of Streptococcus mutans' diadenylate cyclase (smDAC), an enzyme crucial in the formation of biofilms. The study establishes (+)-brazilin as a non-competitive inhibitor of smDAC while providing initial insights into its binding mechanism. What makes this finding even more promising is that (+)-brazilin does not limit its inhibitory effects to S. mutans alone. Instead, it demonstrates efficacy in hindering biofilms in other oral bacteria as well. The broader spectrum of anti-biofilm activity suggests that (+)-brazilin could potentially serve as a versatile tool in a natural product-based treatment for combating a range of conditions caused by resilient biofilms.


Assuntos
Antibacterianos , Biofilmes , Isoflavonas , Streptococcus mutans , Biofilmes/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/enzimologia , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Isoflavonas/química , Antibacterianos/farmacologia , Antibacterianos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Testes de Sensibilidade Microbiana , Fósforo-Oxigênio Liases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Humanos
2.
Acta Crystallogr D Struct Biol ; 80(Pt 5): 350-361, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682668

RESUMO

CdaA is the most widespread diadenylate cyclase in many bacterial species, including several multidrug-resistant human pathogens. The enzymatic product of CdaA, cyclic di-AMP, is a secondary messenger that is essential for the viability of many bacteria. Its absence in humans makes CdaA a very promising and attractive target for the development of new antibiotics. Here, the structural results are presented of a crystallographic fragment screen against CdaA from Listeria monocytogenes, a saprophytic Gram-positive bacterium and an opportunistic food-borne pathogen that can cause listeriosis in humans and animals. Two of the eight fragment molecules reported here were localized in the highly conserved ATP-binding site. These fragments could serve as potential starting points for the development of antibiotics against several CdaA-dependent bacterial species.


Assuntos
Listeria monocytogenes , Listeria monocytogenes/enzimologia , Cristalografia por Raios X/métodos , Sítios de Ligação , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Fosfatos de Dinucleosídeos/metabolismo , Fosfatos de Dinucleosídeos/química , Antibacterianos/farmacologia , Humanos , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Conformação Proteica
3.
J Bacteriol ; 205(4): e0002323, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37022175

RESUMO

Cyclic dimeric AMP (c-di-AMP) is a widespread second messenger that controls such key functions as osmotic homeostasis, peptidoglycan biosynthesis, and response to various stresses. C-di-AMP is synthesized by diadenylate cyclases that contain the DAC (DisA_N) domain, which was originally characterized as the N-terminal domain in the DNA integrity scanning protein DisA. In other experimentally studied diadenylate cyclases, DAC domain is typically located at the protein C termini and its enzymatic activity is controlled by one or more N-terminal domains. As in other bacterial signal transduction proteins, these N-terminal modules appear to sense environmental or intracellular signals through ligand binding and/or protein-protein interactions. Studies of bacterial and archaeal diadenylate cyclases also revealed numerous sequences with uncharacterized N-terminal regions. This work provides a comprehensive review of the N-terminal domains of bacterial and archaeal diadenylate cyclases, including the description of five previously undefined domains and three PK_C-related domains of the DacZ_N superfamily. These data are used to classify diadenylate cyclases into 22 families, based on their conserved domain architectures and the phylogeny of their DAC domains. Although the nature of the regulatory signals remains obscure, the association of certain dac genes with anti-phage defense CBASS systems and other phage-resistance genes suggests that c-di-AMP might also be involved in the signaling of phage infection.


Assuntos
Archaea , Fósforo-Oxigênio Liases , Humanos , Archaea/genética , Archaea/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Proteínas de Bactérias/metabolismo , Bactérias/genética , Bactérias/metabolismo , Sistemas do Segundo Mensageiro , AMP Cíclico/metabolismo , Fosfatos de Dinucleosídeos/metabolismo
4.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768753

RESUMO

DNA lesions that impede fork progression cause replisome stalling and threaten genome stability. Bacillus subtilis RecA, at a lesion-containing gap, interacts with and facilitates DisA pausing at these branched intermediates. Paused DisA suppresses its synthesis of the essential c-di-AMP messenger. The RuvAB-RecU resolvasome branch migrates and resolves formed Holliday junctions (HJ). We show that DisA prevents DNA degradation. DisA, which interacts with RuvB, binds branched structures, and reduces the RuvAB DNA-dependent ATPase activity. DisA pre-bound to HJ DNA limits RuvAB and RecU activities, but such inhibition does not occur if the RuvAB- or RecU-HJ DNA complexes are pre-formed. RuvAB or RecU pre-bound to HJ DNA strongly inhibits DisA-mediated synthesis of c-di-AMP, and indirectly blocks cell proliferation. We propose that DisA limits RuvAB-mediated fork remodeling and RecU-mediated HJ cleavage to provide time for damage removal and replication restart in order to preserve genome integrity.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , Replicação do DNA/fisiologia , Resolvases de Junção Holliday/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Quebra Cromossômica , DNA Bacteriano/metabolismo , DNA Cruciforme/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Escherichia coli/genética , Magnésio/metabolismo
5.
Cell ; 184(23): 5728-5739.e16, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34644530

RESUMO

The cyclic pyrimidines 3',5'-cyclic cytidine monophosphate (cCMP) and 3',5'-cyclic uridine monophosphate (cUMP) have been reported in multiple organisms and cell types. As opposed to the cyclic nucleotides 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP), which are second messenger molecules with well-established regulatory roles across all domains of life, the biological role of cyclic pyrimidines has remained unclear. Here we report that cCMP and cUMP are second messengers functioning in bacterial immunity against viruses. We discovered a family of bacterial pyrimidine cyclase enzymes that specifically synthesize cCMP and cUMP following phage infection and demonstrate that these molecules activate immune effectors that execute an antiviral response. A crystal structure of a uridylate cyclase enzyme from this family explains the molecular mechanism of selectivity for pyrimidines as cyclization substrates. Defense systems encoding pyrimidine cyclases, denoted here Pycsar (pyrimidine cyclase system for antiphage resistance), are widespread in prokaryotes. Our results assign clear biological function to cCMP and cUMP as immunity signaling molecules in bacteria.


Assuntos
Bactérias/imunologia , Bactérias/virologia , Bacteriófagos/fisiologia , CMP Cíclico/metabolismo , Nucleotídeos Cíclicos/metabolismo , Uridina Monofosfato/metabolismo , Sequência de Aminoácidos , Bactérias/genética , Burkholderia/enzimologia , CMP Cíclico/química , Ciclização , Escherichia coli/enzimologia , Modelos Moleculares , Mutação/genética , Nucleotídeos Cíclicos/química , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Pirimidinas/metabolismo , Uridina Monofosfato/química
6.
Elife ; 102021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34498587

RESUMO

Cyclic-di-guanosine monophosphate (c-di-GMP) is an important effector associated with acute-chronic infection transition in Pseudomonas aeruginosa. Previously, we reported a signaling network SiaABCD, which regulates biofilm formation by modulating c-di-GMP level. However, the mechanism for SiaD activation by SiaC remains elusive. Here we determine the crystal structure of SiaC-SiaD-GpCpp complex and revealed a unique mirror symmetric conformation: two SiaD form a dimer with long stalk domains, while four SiaC bind to the conserved motifs on the stalks of SiaD and stabilize the conformation for further enzymatic catalysis. Furthermore, SiaD alone exhibits an inactive pentamer conformation in solution, demonstrating that SiaC activates SiaD through a dynamic mechanism of promoting the formation of active SiaD dimers. Mutagenesis assay confirmed that the stalks of SiaD are necessary for its activation. Together, we reveal a novel mechanism for DGC activation, which clarifies the regulatory networks of c-di-GMP signaling.


Assuntos
Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Proteínas de Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Pseudomonas aeruginosa/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Biofilmes/crescimento & desenvolvimento , Catálise , Fosfatos de Dinucleosídeos/química , Ativação Enzimática , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/genética , Ligação Proteica , Conformação Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Transdução de Sinais , Relação Estrutura-Atividade
7.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34475207

RESUMO

Cyclic dimeric guanosine monophosphate (c-di-GMP) serves as a second messenger that modulates bacterial cellular processes, including biofilm formation. While proteins containing both c-di-GMP synthesizing (GGDEF) and c-di-GMP hydrolyzing (EAL) domains are widely predicted in bacterial genomes, it is poorly understood how domains with opposing enzymatic activity are regulated within a single polypeptide. Herein, we report the characterization of a globin-coupled sensor protein (GCS) from Paenibacillus dendritiformis (DcpG) with bifunctional c-di-GMP enzymatic activity. DcpG contains a regulatory sensor globin domain linked to diguanylate cyclase (GGDEF) and phosphodiesterase (EAL) domains that are differentially regulated by gas binding to the heme; GGDEF domain activity is activated by the Fe(II)-NO state of the globin domain, while EAL domain activity is activated by the Fe(II)-O2 state. The in vitro activity of DcpG is mimicked in vivo by the biofilm formation of P. dendritiformis in response to gaseous environment, with nitric oxide conditions leading to the greatest amount of biofilm formation. The ability of DcpG to differentially control GGDEF and EAL domain activity in response to ligand binding is likely due to the unusual properties of the globin domain, including rapid ligand dissociation rates and high midpoint potentials. Using structural information from small-angle X-ray scattering and negative stain electron microscopy studies, we developed a structural model of DcpG, providing information about the regulatory mechanism. These studies provide information about full-length GCS protein architecture and insight into the mechanism by which a single regulatory domain can selectively control output domains with opposing enzymatic activities.


Assuntos
GMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Paenibacillus/enzimologia , Fósforo-Oxigênio Liases/metabolismo , Sequência de Aminoácidos/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/genética , Ligantes , Paenibacillus/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/genética , Domínios Proteicos/genética , Sistemas do Segundo Mensageiro/genética
8.
Microbiologyopen ; 10(4): e1203, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34459556

RESUMO

Streptococcus mitis is a commensal bacterial species of the oral cavity, with the potential for opportunistic pathogenesis. For successful colonization, S. mitis must be able to adhere to surfaces of the oral cavity and survive and adapt to frequently changing environmental conditions. Cyclic-di-AMP (c-di-AMP) is a nucleotide second messenger, involved in the regulation of stress responses and biofilm formation in several bacterial species. Cyclic-di-AMP is produced by diadenylate cyclases and degraded by phosphodiesterases. We have previously shown that in S. mitis, one diadenylate cyclase (CdaA) and at least two phosphodiesterases (Pde1 and Pde2) regulate the intracellular concentration of c-di-AMP. In this study, we utilized S. mitis deletion mutants of cdaA, pde1, and pde2 to analyze the role of c-di-AMP signaling in various stress responses, biofilm formation, and adhesion to eukaryotic cells. Here, we demonstrate that the Δpde1 mutant displayed a tendency toward increased susceptibility to acetic acid at pH 4.0. Deletion of cdaA increases auto-aggregation of S. mitis but reduces biofilm formation on an abiotic surface. These phenotypes are more pronounced under acidic extracellular conditions. Inactivation of pde1 or pde2 reduced the tolerance to ciprofloxacin, and UV radiation and the Δpde1 mutant was more susceptible to Triton X-100, indicating a role for c-di-AMP signaling in responses to DNA damage and cell membrane perturbation. Finally, the Δpde2 mutant displayed a tendency toward a reduced ability to adhere to oral keratinocytes. Taken together, our results indicate an important role for c-di-AMP signaling in cellular processes important for colonization of the mouth.


Assuntos
Adaptação Fisiológica/fisiologia , Aderência Bacteriana/fisiologia , Biofilmes/crescimento & desenvolvimento , AMP Cíclico/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Streptococcus mitis/metabolismo , Ácido Acético/farmacologia , Linhagem Celular Tumoral , Ciprofloxacina/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/genética , Humanos , Queratinócitos/microbiologia , Boca/microbiologia , Octoxinol/farmacologia , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Streptococcus mitis/crescimento & desenvolvimento , Estresse Fisiológico/fisiologia
9.
J Bacteriol ; 203(20): e0033621, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34309400

RESUMO

Mammary gland-derived Escherichia coli is an important pathogen causing dairy cow mastitis. Mammary gland mucosal immunity against infectious E. coli mainly depends on recognition of pathogen-associated molecular patterns by innate receptors. Stimulator of interferon (IFN) gene (STING) has recently been the dominant mediator in reacting to bacterial intrusion and preventing inflammatory disorders. In this study, we first proved that the diguanylate cyclase YeaJ relieves mouse mammary gland pathological damage by changing E. coli phenotypic and host STING-dependent innate immunity responses. YeaJ decreases mammary gland circular vacuoles, bleeding, and degeneration in mice. In addition, YeaJ participates in STING-IRF3 signaling to regulate inflammation in vivo. In vitro, YeaJ decreases damage to macrophages (RAW264.7) but not to mouse mammary epithelial cells (EpH4-Ev). Consistent with the results in mouse mammary glands, YeaJ significantly activates the STING/TBK1/IRF3 pathway in RAW264.7 macrophages as well. In conclusion, the deletion of yeaJ facilitates E. coli NJ17 escape from STING-dependent innate immunity recognition in vitro and in vivo. This study highlights a novel role for YeaJ in E. coli infection, which provides a better understanding of host-bacterium interactions and potential prophylactic strategies for infections. IMPORTANCE E. coli is the etiological agent of environmental mastitis in dairy cows, which causes massive financial losses worldwide. However, the pathophysiological role of YeaJ in the interaction between E. coli and host remains unclear. We found that YeaJ significantly influences various biological characteristics and suppresses severe inflammatory response as well as greater damage. YeaJ alleviates damage to macrophages (RAW264.7) and mouse mammary gland. Moreover, these effects of YeaJ are achieved at least partial by mediating the STING-IRF3 signaling pathway. In conclusion, the deletion of yeaJ facilitates E. coli NJ17 escape from STING-dependent innate immunity recognition in vitro and in vivo. This study is the basis for further research to better understand host-bacterium interactions and provides potential prophylactic strategies for infections.


Assuntos
Células Epiteliais/microbiologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/imunologia , Escherichia coli/metabolismo , Macrófagos/microbiologia , Fósforo-Oxigênio Liases/metabolismo , Animais , Biofilmes/crescimento & desenvolvimento , Adesão Celular , Proteínas de Escherichia coli/genética , Feminino , Regulação Bacteriana da Expressão Gênica/imunologia , Glândulas Mamárias Animais/citologia , Camundongos , Movimento , Mutação , Fósforo-Oxigênio Liases/genética , Células RAW 264.7
10.
Infect Immun ; 89(6)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33846120

RESUMO

Relapsing fever (RF), caused by spirochetes of the genus Borrelia, is a globally distributed, vector-borne disease with high prevalence in developing countries. To date, signaling pathways required for infection and virulence of RF Borrelia spirochetes are unknown. Cyclic di-AMP (c-di-AMP), synthesized by diadenylate cyclases (DACs), is a second messenger predominantly found in Gram-positive organisms that is linked to virulence and essential physiological processes. Although Borrelia is Gram-negative, it encodes one DAC (CdaA), and its importance remains undefined. To investigate the contribution of c-di-AMP signaling in the RF bacterium Borrelia turicatae, a cdaA mutant was generated. The mutant was significantly attenuated during murine infection, and genetic complementation reversed this phenotype. Because c-di-AMP is essential for viability in many bacteria, whole-genome sequencing was performed on cdaA mutants, and single-nucleotide polymorphisms identified potential suppressor mutations. Additionally, conditional mutation of cdaA confirmed that CdaA is important for normal growth and physiology. Interestingly, mutation of cdaA did not affect expression of homologs of virulence regulators whose levels are impacted by c-di-AMP signaling in the Lyme disease bacterium Borrelia burgdorferi Finally, the cdaA mutant had a significant growth defect when grown with salts, at decreased osmolarity, and without pyruvate. While the salt treatment phenotype was not reversed by genetic complementation, possibly due to suppressor mutations, growth defects at decreased osmolarity and in media lacking pyruvate could be attributed directly to cdaA inactivation. Overall, these results indicate CdaA is critical for B. turicatae pathogenesis and link c-di-AMP to osmoregulation and central metabolism in RF spirochetes.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia/fisiologia , Fósforo-Oxigênio Liases/metabolismo , Febre Recorrente/microbiologia , Animais , Proteínas de Bactérias/genética , Borrelia/patogenicidade , AMP Cíclico/metabolismo , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Camundongos , Mutação , Fósforo-Oxigênio Liases/genética , Febre Recorrente/metabolismo , Sistemas do Segundo Mensageiro , Virulência/genética
11.
Biochem J ; 478(7): 1399-1412, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33600564

RESUMO

Y-family DNA polymerase iota (Pol ι) is involved in DNA damage response and tolerance. Mutations and altered expression level of POLI gene are linked to a higher incidence of cancer. We biochemically characterized five active site polymorphic variants of human Pol ι: R71G (rs3218778), P118L (rs554252419), I236M (rs3218784), E251K (rs3218783) and P365R (rs200852409). We analyzed fidelity of nucleotide incorporation on undamaged DNA, efficiency and accuracy of DNA damage bypass, as well as 5'-deoxyribophosphate lyase (dRP-lyase) activity. The I236M and P118L variants were indistinguishable from the wild-type Pol ι in activity. The E251K and P365R substitutions altered the spectrum of nucleotide incorporation opposite several undamaged DNA bases. The P365R variant also reduced the dRP-lyase activity and possessed the decreased TLS activity opposite 8-oxo-G. The R71G mutation dramatically affected the catalytic activities of Pol ι. The reduced DNA polymerase activity of the R71G variant correlated with an enhanced fidelity of nucleotide incorporation on undamaged DNA, altered lesion-bypass activity and reduced dRP-lyase activity. Therefore, this amino acid substitution likely alters Pol ι functions in vivo.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , DNA/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Polimorfismo de Nucleotídeo Único , Domínio Catalítico , DNA/genética , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Humanos , Fósforo-Oxigênio Liases/genética , DNA Polimerase iota
12.
NPJ Biofilms Microbiomes ; 6(1): 54, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188190

RESUMO

The core of the chemotaxis system of Shewanella oneidensis is made of the CheA3 kinase and the CheY3 regulator. When appropriated, CheA3 phosphorylates CheY3, which, in turn, binds to the rotor of the flagellum to modify the swimming direction. In this study, we showed that phosphorylated CheY3 (CheY3-P) also plays an essential role during biogenesis of the solid-surface-associated biofilm (SSA-biofilm). Indeed, in a ΔcheY3 strain, the formation of this biofilm is abolished. Using the phospho-mimetic CheY3D56E mutant, we showed that CheY-P is required throughout the biogenesis of the biofilm but CheY3 phosphorylation is independent of CheA3 during this process. We have recently found that CheY3 interacts with two diguanylate cyclases (DGCs) and with MxdA, the c-di-GMP effector, probably triggering exopolysaccharide synthesis by the Mxd machinery. Here, we discovered two additional DGCs involved in SSA-biofilm development and showed that one of them interacts with CheY3. We therefore propose that CheY3-P acts together with DGCs to control SSA-biofilm formation. Interestingly, two orthologous CheY regulators complement the biofilm defect of a ΔcheY3 strain, supporting the idea that biofilm formation could involve CheY regulators in other bacteria.


Assuntos
Biofilmes/crescimento & desenvolvimento , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Mutação , Shewanella/fisiologia , Anabasina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quimiotaxia , Proteínas de Escherichia coli/metabolismo , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Quimiotáticas Aceptoras de Metil/genética , Nicotina/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Fosforilação
13.
J Bacteriol ; 202(24)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32989089

RESUMO

The genus Azotobacter, belonging to the Pseudomonadaceae family, is characterized by the formation of cysts, which are metabolically dormant cells produced under adverse conditions and able to resist desiccation. Although this developmental process has served as a model for the study of cell differentiation in Gram-negative bacteria, the molecular basis of its regulation is still poorly understood. Here, we report that the ubiquitous second messenger cyclic dimeric GMP (c-di-GMP) is critical for the formation of cysts in Azotobacter vinelandii Upon encystment induction, the levels of c-di-GMP increased, reaching a peak within the first 6 h. In the absence of the diguanylate cyclase MucR, however, the levels of this second messenger remained low throughout the developmental process. A. vinelandii cysts are surrounded by two alginate layers with variable proportions of guluronic residues, which are introduced into the final alginate chain by extracellular mannuronic C-5 epimerases of the AlgE1 to AlgE7 family. Unlike in Pseudomonas aeruginosa, MucR was not required for alginate polymerization in A. vinelandii Conversely, MucR was necessary for the expression of extracellular alginate C-5 epimerases; therefore, the MucR-deficient strain produced cyst-like structures devoid of the alginate capsule and unable to resist desiccation. Expression of mucR was partially dependent on the response regulator AlgR, which binds to two sites in the mucR promoter, enhancing mucR transcription. Together, these results indicate that the developmental process of A. vinelandii is controlled through a signaling module that involves activation by the response regulator AlgR and c-di-GMP accumulation that depends on MucR.IMPORTANCEA. vinelandii has served as an experimental model for the study of the differentiation processes to form metabolically dormant cells in Gram-negative bacteria. This work identifies c-di-GMP as a critical regulator for the production of alginates with specific contents of guluronic residues that are able to structure the rigid laminated layers of the cyst envelope. Although allosteric activation of the alginate polymerase complex Alg8-Alg44 by c-di-GMP has long been recognized, our results show a previously unidentified role during the polymer modification step, controlling the expression of extracellular alginate epimerases. Our results also highlight the importance of c-di-GMP in the control of the physical properties of alginate, which ultimately determine the desiccation resistance of the differentiated cell.


Assuntos
Azotobacter vinelandii/enzimologia , Proteínas de Bactérias/metabolismo , Carboidratos Epimerases/metabolismo , GMP Cíclico/análogos & derivados , Alginatos/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/crescimento & desenvolvimento , Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/genética , Carboidratos Epimerases/genética , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
14.
Mol Cell ; 77(1): 95-107.e5, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31628042

RESUMO

GTP cyclohydrolase I (GTPCH), 6-pyruvoyltetrahydropterin synthase (PTPS), and sepiapterin reductase (SR) are sequentially responsible for de novo synthesis of tetrahydrobiopterin (BH4), a known co-factor for nitric oxide synthase (NOS). The implication of BH4-biosynthesis process in tumorigenesis remains to be investigated. Here, we show that PTPS, which is highly expressed in early-stage colorectal cancer, is phosphorylated at Thr 58 by AMPK under hypoxia; this phosphorylation promotes PTPS binding to LTBP1 and subsequently drives iNOS-mediated LTBP1 S-nitrosylation through proximal-coupling BH4 production within the PTPS/iNOS/LTBP1 complex. In turn, LTBP1 S-nitrosylation results in proteasome-dependent LTBP1 protein degradation, revealing an inverse relationship between PTPS pT58 and LTBP1 stability. Physiologically, the repressive effect of PTPS on LTBP1 leads to impaired transforming growth factor ß (TGF-ß) secretion and thereby maintains tumor cell growth under hypoxia. Our findings illustrate a molecular mechanism underlying the regulation of LTBP1-TGF-ß signaling by the BH4-biosynthesis pathway and highlight the specific requirement of PTPS for tumor growth.


Assuntos
Proliferação de Células/fisiologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Hipóxia/metabolismo , Proteínas de Ligação a TGF-beta Latente/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células HCT116 , Células HEK293 , Células HT29 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Óxido Nítrico Sintase/metabolismo , Fosforilação/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo
15.
J Inorg Biochem ; 201: 110833, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31520879

RESUMO

Heme-based oxygen sensors allow bacteria to regulate their activity based on local oxygen levels. YddV, a globin-coupled oxygen sensor with diguanylate cyclase activity from Escherichia coli, regulates cyclic-di-GMP synthesis based on oxygen availability. Stable and active samples of the full-length YddV protein were prepared by attaching it to maltose binding protein (MBP). To better understand the full-length protein's structure, the interactions between its domains were examined by performing a kinetic analysis. The diguanylate cyclase reaction catalyzed by YddV-MBP exhibited Michaelis-Menten kinetics. Its pH optimum was 8.5-9.0, and catalysis required either Mg2+ or Mn2+; other divalent metal ions gave no activity. The most active form of YddV-MBP had a 5-coordinate Fe(III) heme complex; its kinetic parameters were KmGTP 84 ±â€¯21 µM and kcat 1.2 min-1. YddV-MBP with heme Fe(II), heme Fe(II)-O2, and heme Fe(II)-CO complexes had kcat values of 0.3 min-1, 0.95 min-1, and 0.3 min-1, respectively, suggesting that catalysis is regulated by the heme iron's redox state and axial ligand binding. The kcat values for heme Fe(III) complexes of L65G, L65Q, and Y43A YddV-MBP mutants bearing heme distal amino acid replacements were 0.15 min-1, 0.26 min-1 and 0.54 min-1, respectively, implying that heme distal residues play key regulatory roles by mediating signal transduction between the sensing and functional domains. Ultracentrifugation and size exclusion chromatography experiments showed that YddV-MBP is primarily dimeric in solution, with a sedimentation coefficient around 8. The inactive heme-free H93A mutant is primarily octameric, suggesting that catalytically active dimer formation requires heme binding.


Assuntos
Proteínas de Escherichia coli/química , Ferro/química , Fósforo-Oxigênio Liases/química , Substituição de Aminoácidos , Domínio Catalítico , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Heme/química , Cinética , Ligantes , Oxirredução , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Ligação Proteica
16.
Sci Rep ; 9(1): 9928, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289286

RESUMO

DNA polymerase (Pol) ß is a key enzyme in base excision repair (BER), an important repair system for maintaining genomic integrity. We previously reported the presence of a Pol ß transcript containing exon α (105-nucleotide) in normal and colon cancer cell lines. The transcript carried an insertion between exons VI and VII and was predicted to encode a ~42 kDa variant of the wild-type 39 kDa enzyme. However, little is known about the biochemical properties of the exon α-containing Pol ß (exon α Pol ß) variant. Here, we first obtained evidence indicating expression of the 42 kDa exon α Pol ß variant in mouse embryonic fibroblasts. The exon α Pol ß variant was then overexpressed in E. coli, purified, and characterized for its biochemical properties. Kinetic studies of exon α Pol ß revealed that it is deficient in DNA binding to gapped DNA, has strongly reduced polymerase activity and higher Km for dNTP during gap-filling. On the other hand, the 5'-dRP lyase activity of the exon α Pol ß variant is similar to that of wild-type Pol ß. These results indicate the exon α Pol ß variant is base excision repair deficient, but does conduct 5'-trimming of a dRP group at the gap margin. Understanding the biological implications of this Pol ß variant warrants further investigation.


Assuntos
DNA Polimerase beta/metabolismo , Reparo do DNA , Replicação do DNA , Fibroblastos/enzimologia , Neoplasias/enzimologia , Fósforo-Oxigênio Liases/metabolismo , Polimorfismo Genético , Animais , Células Cultivadas , DNA Polimerase beta/química , Embrião de Mamíferos/enzimologia , Éxons , Humanos , Cinética , Camundongos , Neoplasias/genética , Neoplasias/patologia , Fósforo-Oxigênio Liases/química
17.
J Biol Chem ; 294(27): 10463-10470, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31118276

RESUMO

Cyclic di-AMP (c-di-AMP) is the only second messenger known to be essential for bacterial growth. It has been found mainly in Gram-positive bacteria, including pathogenic bacteria like Listeria monocytogenes CdaA is the sole diadenylate cyclase in L. monocytogenes, making this enzyme an attractive target for the development of novel antibiotic compounds. Here we report crystal structures of CdaA from L. monocytogenes in the apo state, in the post-catalytic state with bound c-di-AMP and catalytic Co2+ ions, as well as in a complex with AMP. These structures reveal the flexibility of a tyrosine side chain involved in locking the adenine ring after ATP binding. The essential role of this tyrosine was confirmed by mutation to Ala, leading to drastic loss of enzymatic activity.


Assuntos
Proteínas de Bactérias/química , Listeria monocytogenes/enzimologia , Fósforo-Oxigênio Liases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Cobalto/química , Cobalto/metabolismo , Cristalografia por Raios X , Fosfatos de Dinucleosídeos/química , Fosfatos de Dinucleosídeos/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
18.
DNA Repair (Amst) ; 77: 45-57, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30877841

RESUMO

Bacillus subtilis radA is epistatic to disA and recA genes in response to methyl methane sulfonate- and 4-nitroquinoline-1-oxide-induced DNA damage. We show that ΔradA cells were sensitive to mitomycin C- and H2O2-induced damage and impaired in natural chromosomal transformation, whereas cells lacking DisA were not. RadA/Sms mutants in the conserved H1 (K104A and K104R) or KNRFG (K255A and K255R) motifs fail to rescue the sensitivity of ΔradA in response to the four different DNA damaging agents. A RadA/Sms H1 or KNRFG mutation impairs both chromosomal and plasmid transformation, but the latter defect was suppressed by inactivating RecA. RadA/Sms K255A, K255R and wild type RadA/Sms reduced the diadenylate cyclase activity of DisA, whereas RadA/Sms K104A and K104R blocked it. Single-stranded and Holliday junction DNA are preferentially bound over double-stranded DNA by RadA/Sms and its variants. Moreover, RadA/Sms ATPase activity was neither stimulated by a variety of DNA substrates nor by DisA. RadA/Sms possesses a 5´â†’3´ DNA helicase activity. The RadA/Sms mutants neither hydrolyze ATP nor unwind DNA. Thus, we propose that RadA/Sms has two activities: to modulate DisA and to promote RecA-mediated DNA strand exchange. Both activities are required to coordinate responses to replicative stress and genetic recombination.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/genética , Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Recombinases Rec A/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Hidrólise , Mutação , Motivos de Nucleotídeos , Recombinação Genética , Estresse Fisiológico/genética
19.
PLoS Pathog ; 15(1): e1007537, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668586

RESUMO

c-di-AMP is an important second messenger molecule that plays a pivotal role in regulating fundamental cellular processes, including osmotic and cell wall homeostasis in many Gram-positive organisms. In the opportunistic human pathogen Staphylococcus aureus, c-di-AMP is produced by the membrane-anchored DacA enzyme. Inactivation of this enzyme leads to a growth arrest under standard laboratory growth conditions and a re-sensitization of methicillin-resistant S. aureus (MRSA) strains to ß-lactam antibiotics. The gene coding for DacA is part of the conserved three-gene dacA/ybbR/glmM operon that also encodes the proposed DacA regulator YbbR and the essential phosphoglucosamine mutase GlmM, which is required for the production of glucosamine-1-phosphate, an early intermediate of peptidoglycan synthesis. These three proteins are thought to form a complex in vivo and, in this manner, help to fine-tune the cellular c-di-AMP levels. To further characterize this important regulatory complex, we conducted a comprehensive structural and functional analysis of the S. aureus DacA and GlmM enzymes by determining the structures of the S. aureus GlmM enzyme and the catalytic domain of DacA. Both proteins were found to be dimers in solution as well as in the crystal structures. Further site-directed mutagenesis, structural and enzymatic studies showed that multiple DacA dimers need to interact for enzymatic activity. We also show that DacA and GlmM form a stable complex in vitro and that S. aureus GlmM, but not Escherichia coli or Pseudomonas aeruginosa GlmM, acts as a strong inhibitor of DacA function without the requirement of any additional cellular factor. Based on Small Angle X-ray Scattering (SAXS) data, a model of the complex revealed that GlmM likely inhibits DacA by masking the active site of the cyclase and preventing higher oligomer formation. Together these results provide an important mechanistic insight into how c-di-AMP production can be regulated in the cell.


Assuntos
Inibidores de Adenilil Ciclases/metabolismo , Adenilil Ciclases/metabolismo , Adenilil Ciclases/ultraestrutura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Fosfatos de Dinucleosídeos/antagonistas & inibidores , Fosfatos de Dinucleosídeos/metabolismo , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/metabolismo , Óperon/genética , Fosfoglucomutase/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Domínios Proteicos , Espalhamento a Baixo Ângulo , Sistemas do Segundo Mensageiro/genética , Infecções Estafilocócicas/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus/fisiologia , Difração de Raios X/métodos
20.
Chembiochem ; 20(1): 7-19, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30320963

RESUMO

Heme-nitric oxide/oxygen binding (H-NOX) proteins are a family of gas-binding hemoproteins that bind diatomic gas ligands such as nitric oxide (NO) and oxygen (O2 ). In bacteria, H-NOXs are often associated with signaling partners, including histidine kinases (HKs), diguanylate cyclases (DGCs) or methyl-accepting chemotaxis proteins (MCPs), either as a stand-alone protein or as a domain of a larger polypeptide. H-NOXs regulate the activity of cognate signaling proteins through ligand-induced conformational changes in the H-NOX domain and protein/protein interactions between the H-NOX and the cognate signaling partner. This review summarizes recent progress toward deciphering the molecular mechanism of bacterial H-NOX activation and the subsequent regulation of H-NOX-associated cognate sensor proteins from a structural and biochemical point of view.


Assuntos
Proteínas de Bactérias/metabolismo , Hemeproteínas/metabolismo , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Histidina Quinase/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Ligação Proteica , Domínios Proteicos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA