Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Acta Crystallogr D Struct Biol ; 80(Pt 5): 350-361, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682668

RESUMO

CdaA is the most widespread diadenylate cyclase in many bacterial species, including several multidrug-resistant human pathogens. The enzymatic product of CdaA, cyclic di-AMP, is a secondary messenger that is essential for the viability of many bacteria. Its absence in humans makes CdaA a very promising and attractive target for the development of new antibiotics. Here, the structural results are presented of a crystallographic fragment screen against CdaA from Listeria monocytogenes, a saprophytic Gram-positive bacterium and an opportunistic food-borne pathogen that can cause listeriosis in humans and animals. Two of the eight fragment molecules reported here were localized in the highly conserved ATP-binding site. These fragments could serve as potential starting points for the development of antibiotics against several CdaA-dependent bacterial species.


Assuntos
Listeria monocytogenes , Listeria monocytogenes/enzimologia , Cristalografia por Raios X/métodos , Sítios de Ligação , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Fosfatos de Dinucleosídeos/metabolismo , Fosfatos de Dinucleosídeos/química , Antibacterianos/farmacologia , Humanos , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Conformação Proteica
2.
Cell ; 184(23): 5728-5739.e16, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34644530

RESUMO

The cyclic pyrimidines 3',5'-cyclic cytidine monophosphate (cCMP) and 3',5'-cyclic uridine monophosphate (cUMP) have been reported in multiple organisms and cell types. As opposed to the cyclic nucleotides 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP), which are second messenger molecules with well-established regulatory roles across all domains of life, the biological role of cyclic pyrimidines has remained unclear. Here we report that cCMP and cUMP are second messengers functioning in bacterial immunity against viruses. We discovered a family of bacterial pyrimidine cyclase enzymes that specifically synthesize cCMP and cUMP following phage infection and demonstrate that these molecules activate immune effectors that execute an antiviral response. A crystal structure of a uridylate cyclase enzyme from this family explains the molecular mechanism of selectivity for pyrimidines as cyclization substrates. Defense systems encoding pyrimidine cyclases, denoted here Pycsar (pyrimidine cyclase system for antiphage resistance), are widespread in prokaryotes. Our results assign clear biological function to cCMP and cUMP as immunity signaling molecules in bacteria.


Assuntos
Bactérias/imunologia , Bactérias/virologia , Bacteriófagos/fisiologia , CMP Cíclico/metabolismo , Nucleotídeos Cíclicos/metabolismo , Uridina Monofosfato/metabolismo , Sequência de Aminoácidos , Bactérias/genética , Burkholderia/enzimologia , CMP Cíclico/química , Ciclização , Escherichia coli/enzimologia , Modelos Moleculares , Mutação/genética , Nucleotídeos Cíclicos/química , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Pirimidinas/metabolismo , Uridina Monofosfato/química
3.
J Biol Chem ; 297(5): 101317, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34678313

RESUMO

Cyclic-di-adenosine monophosphate (c-di-AMP) is an important nucleotide signaling molecule that plays a key role in osmotic regulation in bacteria. c-di-AMP is produced from two molecules of ATP by proteins containing a diadenylate cyclase (DAC) domain. In Bacillus subtilis, the main c-di-AMP cyclase, CdaA, is a membrane-linked cyclase with an N-terminal transmembrane domain followed by the cytoplasmic DAC domain. As both high and low levels of c-di-AMP have a negative impact on bacterial growth, the cellular levels of this signaling nucleotide are tightly regulated. Here we investigated how the activity of the B. subtilis CdaA is regulated by the phosphoglucomutase GlmM, which has been shown to interact with the c-di-AMP cyclase. Using the soluble B. subtilis CdaACD catalytic domain and purified full-length GlmM or the GlmMF369 variant lacking the C-terminal flexible domain 4, we show that the cyclase and phosphoglucomutase form a stable complex in vitro and that GlmM is a potent cyclase inhibitor. We determined the crystal structure of the individual B. subtilis CdaACD and GlmM homodimers and of the CdaACD:GlmMF369 complex. In the complex structure, a CdaACD dimer is bound to a GlmMF369 dimer in such a manner that GlmM blocks the oligomerization of CdaACD and formation of active head-to-head cyclase oligomers, thus suggesting a mechanism by which GlmM acts as a cyclase inhibitor. As the amino acids at the CdaACD:GlmM interphase are conserved, we propose that the observed mechanism of inhibition of CdaA by GlmM may also be conserved among Firmicutes.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Complexos Multienzimáticos/química , Fosfoglucomutase/química , Fósforo-Oxigênio Liases/química , Multimerização Proteica , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Cristalografia por Raios X , Complexos Multienzimáticos/genética , Fosfoglucomutase/genética , Fósforo-Oxigênio Liases/genética , Domínios Proteicos , Estrutura Quaternária de Proteína
4.
Elife ; 102021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34498587

RESUMO

Cyclic-di-guanosine monophosphate (c-di-GMP) is an important effector associated with acute-chronic infection transition in Pseudomonas aeruginosa. Previously, we reported a signaling network SiaABCD, which regulates biofilm formation by modulating c-di-GMP level. However, the mechanism for SiaD activation by SiaC remains elusive. Here we determine the crystal structure of SiaC-SiaD-GpCpp complex and revealed a unique mirror symmetric conformation: two SiaD form a dimer with long stalk domains, while four SiaC bind to the conserved motifs on the stalks of SiaD and stabilize the conformation for further enzymatic catalysis. Furthermore, SiaD alone exhibits an inactive pentamer conformation in solution, demonstrating that SiaC activates SiaD through a dynamic mechanism of promoting the formation of active SiaD dimers. Mutagenesis assay confirmed that the stalks of SiaD are necessary for its activation. Together, we reveal a novel mechanism for DGC activation, which clarifies the regulatory networks of c-di-GMP signaling.


Assuntos
Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Proteínas de Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Pseudomonas aeruginosa/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Biofilmes/crescimento & desenvolvimento , Catálise , Fosfatos de Dinucleosídeos/química , Ativação Enzimática , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/genética , Ligação Proteica , Conformação Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Transdução de Sinais , Relação Estrutura-Atividade
5.
J Inorg Biochem ; 201: 110833, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31520879

RESUMO

Heme-based oxygen sensors allow bacteria to regulate their activity based on local oxygen levels. YddV, a globin-coupled oxygen sensor with diguanylate cyclase activity from Escherichia coli, regulates cyclic-di-GMP synthesis based on oxygen availability. Stable and active samples of the full-length YddV protein were prepared by attaching it to maltose binding protein (MBP). To better understand the full-length protein's structure, the interactions between its domains were examined by performing a kinetic analysis. The diguanylate cyclase reaction catalyzed by YddV-MBP exhibited Michaelis-Menten kinetics. Its pH optimum was 8.5-9.0, and catalysis required either Mg2+ or Mn2+; other divalent metal ions gave no activity. The most active form of YddV-MBP had a 5-coordinate Fe(III) heme complex; its kinetic parameters were KmGTP 84 ±â€¯21 µM and kcat 1.2 min-1. YddV-MBP with heme Fe(II), heme Fe(II)-O2, and heme Fe(II)-CO complexes had kcat values of 0.3 min-1, 0.95 min-1, and 0.3 min-1, respectively, suggesting that catalysis is regulated by the heme iron's redox state and axial ligand binding. The kcat values for heme Fe(III) complexes of L65G, L65Q, and Y43A YddV-MBP mutants bearing heme distal amino acid replacements were 0.15 min-1, 0.26 min-1 and 0.54 min-1, respectively, implying that heme distal residues play key regulatory roles by mediating signal transduction between the sensing and functional domains. Ultracentrifugation and size exclusion chromatography experiments showed that YddV-MBP is primarily dimeric in solution, with a sedimentation coefficient around 8. The inactive heme-free H93A mutant is primarily octameric, suggesting that catalytically active dimer formation requires heme binding.


Assuntos
Proteínas de Escherichia coli/química , Ferro/química , Fósforo-Oxigênio Liases/química , Substituição de Aminoácidos , Domínio Catalítico , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Heme/química , Cinética , Ligantes , Oxirredução , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Ligação Proteica
6.
Sci Rep ; 9(1): 9928, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289286

RESUMO

DNA polymerase (Pol) ß is a key enzyme in base excision repair (BER), an important repair system for maintaining genomic integrity. We previously reported the presence of a Pol ß transcript containing exon α (105-nucleotide) in normal and colon cancer cell lines. The transcript carried an insertion between exons VI and VII and was predicted to encode a ~42 kDa variant of the wild-type 39 kDa enzyme. However, little is known about the biochemical properties of the exon α-containing Pol ß (exon α Pol ß) variant. Here, we first obtained evidence indicating expression of the 42 kDa exon α Pol ß variant in mouse embryonic fibroblasts. The exon α Pol ß variant was then overexpressed in E. coli, purified, and characterized for its biochemical properties. Kinetic studies of exon α Pol ß revealed that it is deficient in DNA binding to gapped DNA, has strongly reduced polymerase activity and higher Km for dNTP during gap-filling. On the other hand, the 5'-dRP lyase activity of the exon α Pol ß variant is similar to that of wild-type Pol ß. These results indicate the exon α Pol ß variant is base excision repair deficient, but does conduct 5'-trimming of a dRP group at the gap margin. Understanding the biological implications of this Pol ß variant warrants further investigation.


Assuntos
DNA Polimerase beta/metabolismo , Reparo do DNA , Replicação do DNA , Fibroblastos/enzimologia , Neoplasias/enzimologia , Fósforo-Oxigênio Liases/metabolismo , Polimorfismo Genético , Animais , Células Cultivadas , DNA Polimerase beta/química , Embrião de Mamíferos/enzimologia , Éxons , Humanos , Cinética , Camundongos , Neoplasias/genética , Neoplasias/patologia , Fósforo-Oxigênio Liases/química
7.
J Biol Chem ; 294(27): 10463-10470, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31118276

RESUMO

Cyclic di-AMP (c-di-AMP) is the only second messenger known to be essential for bacterial growth. It has been found mainly in Gram-positive bacteria, including pathogenic bacteria like Listeria monocytogenes CdaA is the sole diadenylate cyclase in L. monocytogenes, making this enzyme an attractive target for the development of novel antibiotic compounds. Here we report crystal structures of CdaA from L. monocytogenes in the apo state, in the post-catalytic state with bound c-di-AMP and catalytic Co2+ ions, as well as in a complex with AMP. These structures reveal the flexibility of a tyrosine side chain involved in locking the adenine ring after ATP binding. The essential role of this tyrosine was confirmed by mutation to Ala, leading to drastic loss of enzymatic activity.


Assuntos
Proteínas de Bactérias/química , Listeria monocytogenes/enzimologia , Fósforo-Oxigênio Liases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Cobalto/química , Cobalto/metabolismo , Cristalografia por Raios X , Fosfatos de Dinucleosídeos/química , Fosfatos de Dinucleosídeos/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
8.
Int J Mol Sci ; 20(5)2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30836629

RESUMO

Human triokinase/flavin mononucleotide (FMN) cyclase (hTKFC) catalyzes the adenosine triphosphate (ATP)-dependent phosphorylation of D-glyceraldehyde and dihydroxyacetone (DHA), and the cyclizing splitting of flavin adenine dinucleotide (FAD). hTKFC structural models are dimers of identical subunits, each with two domains, K and L, with an L2-K1-K2-L1 arrangement. Two active sites lie between L2-K1 and K2-L1, where triose binds K and ATP binds L, although the resulting ATP-to-triose distance is too large (≈14 Å) for phosphoryl transfer. A 75-ns trajectory of molecular dynamics shows considerable, but transient, ATP-to-DHA approximations in the L2-K1 site (4.83 Å or 4.16 Å). To confirm the trend towards site closure, and its relationship to kinase activity, apo-hTKFC, hTKFC:2DHA:2ATP and hTKFC:2FAD models were submitted to normal mode analysis. The trajectory of hTKFC:2DHA:2ATP was extended up to 160 ns, and 120-ns trajectories of apo-hTKFC and hTKFC:2FAD were simulated. The three systems were comparatively analyzed for equal lengths (120 ns) following the principles of essential dynamics, and by estimating site closure by distance measurements. The full trajectory of hTKFC:2DHA:2ATP was searched for in-line orientations and short distances of DHA hydroxymethyl oxygens to ATP γ-phosphorus. Full site closure was reached only in hTKFC:2DHA:2ATP, where conformations compatible with an associative phosphoryl transfer occurred in L2-K1 for significant trajectory time fractions.


Assuntos
Apoenzimas/genética , Simulação de Dinâmica Molecular , Fósforo-Oxigênio Liases/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Trifosfato de Adenosina/química , Apoenzimas/química , Sítios de Ligação , Catálise , Domínio Catalítico/genética , Di-Hidroxiacetona/química , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/genética , Flavina-Adenina Dinucleotídeo/química , Gliceraldeído/química , Humanos , Fósforo-Oxigênio Liases/genética , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Especificidade por Substrato
9.
J Biol Chem ; 294(4): 1420-1427, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30514762

RESUMO

6-Pyruvoyl tetrahydropterin synthase (PTS) converts 7,8-dihydroneopterin triphosphate into 6-pyruvoyltetrahydropterin and is a critical enzyme for the de novo synthesis of tetrahydrobiopterin, an essential cofactor for aromatic amino acid hydroxylases and nitric-oxide synthases. Neopterin derived from 7,8-dihydroneopterin triphosphate is secreted by monocytes/macrophages, and is a well-known biomarker for cellular immunity. Because PTS activity in the cell can be a determinant of neopterin production, here we used recombinant human PTS protein to investigate how its activity is regulated, especially depending on redox conditions. Human PTS has two cysteines: Cys-43 at the catalytic site and Cys-10 at the N terminus. PTS can be oxidized and consequently inactivated by H2O2 treatment, oxidized GSH, or S-nitrosoglutathione, and determining the oxidized modifications of PTS induced by each oxidant by MALDI-TOF MS, we show that PTS is S-glutathionylated in the presence of GSH and H2O2S-Glutathionylation at Cys-43 protected PTS from H2O2-induced irreversible sulfinylation and sulfonylation. We also found that PTS expressed in HeLa and THP-1 cells is reversibly modified under oxidative stress conditions. Our findings suggest that PTS activity and S-glutathionylation is regulated by the cellular redox environment and that reversible S-glutathionylation protects PTS against oxidative stress.


Assuntos
Cisteína/química , Regulação Enzimológica da Expressão Gênica , Glutationa/química , Fósforo-Oxigênio Liases/metabolismo , Pterinas/metabolismo , Células HeLa , Humanos , Oxirredução , Estresse Oxidativo , Fósforo-Oxigênio Liases/química , Substâncias Protetoras
10.
Sci Rep ; 8(1): 17439, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487577

RESUMO

The anti-tuberculosis (TB) agent IMB-T130 was speculated to be a multi-target compound. In this research, we found that IMB-T130 inhibits the catalytic activity of Mycobacterium tuberculosis 3-dehydroquinate synthase (MtDHQS), the enzyme in the second step of the shikimate pathway. IMB-T130 was identified as a selective inhibitor of MtDHQS with an IC50 value of 0.87 µg/mL. The interaction between the compound and protein was analysed by surface plasmon resonance and circular dichroism. Based on the in silico molecular docking results, the essential amino acids in the binding pocket were then confirmed by site-directed mutagenesis. Overexpression of DHQS reduced the antibacterial activity of IMB-T130 in cells, verifying that DHQS is the target of IMB-T130. IMB-T130 inhibited standard and drug-resistant M. tuberculosis strains by targeting DHQS. Our findings improve our understanding of MtDHQS and make it to be a potential target for new anti-TB drug discovery.


Assuntos
Antituberculosos/química , Inibidores Enzimáticos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Fósforo-Oxigênio Liases/química , Animais , Antituberculosos/farmacocinética , Catálise , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacocinética , Concentração Inibidora 50 , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Mutação , Mycobacterium tuberculosis/genética , Fósforo-Oxigênio Liases/antagonistas & inibidores , Fósforo-Oxigênio Liases/genética , Ligação Proteica , Ratos , Proteínas Recombinantes/química
11.
Zhongguo Zhong Yao Za Zhi ; 43(4): 721-730, 2018 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-29600646

RESUMO

Chorismate synthase(CS, EC:4.2.3.5) catalyses 5-enolpyruvy-shikimate-3-phosphate to form chorismate, which is the essential enzyme for chorismate biosynthesis in organisms. The amino acid sequences of CS from 79 species of higher plants were reported in GenBank at present. 125 amino acid sequences of CS from Baphicacanthus cusia and other 78 species of plants were predicted and analyzed by using various bioinformatics software, including the composition of amino acid sequences, signal peptide, leader peptide, hydrophobic/hydrophilic, transmembrane structure, coiled-coil domain, protein secondary structure, tertiary structure and functional domains. The phylogenetic tree of CS protein family was constructed and divided into eight groups by phylogenetic analysis. The homology comparison indicated that B. cusia shared a high homology with several plants such as Sesamum indicum, Nicotiana tabacum, Solanum tuberosum and so on. The open reading frame(ORF) of all samples is about 1 300 bp, the molecular weight is about 50 kDa, the isoelectric point(pI) is 5.0-8.0 which illustrated that CS protein is slightly basic. The ORF of CS we cloned in B. cusia is 1 326 bp, the amino acid residues are 442, the molecular weight is 47 kDa and pI is 8.11. The CS in B.cusia showed obvious hydrophobicity area and hydrophilicity area, no signal peptide, and may exists transmembrane structure areas. The main secondary structures of CS protein are random coil and Alpha helix, also contain three main structural domains which are an active structural domain, a PLN02754 conserved domain and a FMN binding site. The acquired information in this study would provide certain scientific basis for further study on structure-activity relationship and structure modification of CS in plants in the future.


Assuntos
Acanthaceae/enzimologia , Fósforo-Oxigênio Liases/química , Proteínas de Plantas/química , Sequência de Aminoácidos , Biologia Computacional , Filogenia , Estrutura Secundária de Proteína
12.
Int J Parasitol ; 48(3-4): 203-209, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29338985

RESUMO

In Plasmodium, the shikimate pathway is a potential target for malaria chemotherapy owing to its absence in the mammalian host. Chorismate, the end product of this pathway, serves as a precursor for aromatic amino acids, Para-aminobenzoic acid and ubiquinone, and is synthesised by Chorismate synthase (CS). Therefore, it follows that the Cs locus may be refractory to genetic manipulation. By utilising a conditional mutagenesis system of yeast Flp/FRT, we demonstrate an unexpectedly dispensable role of CS in Plasmodium. Our studies reiterate the need to establish an obligate reliance on Plasmodium metabolic enzymes through genetic approaches before their selection as drug targets.


Assuntos
Ácido Corísmico/metabolismo , Malária/parasitologia , Mosquitos Vetores/parasitologia , Fósforo-Oxigênio Liases/metabolismo , Plasmodium berghei/crescimento & desenvolvimento , Ácido Chiquímico/metabolismo , Sequência de Aminoácidos , Animais , Anopheles/parasitologia , Feminino , Técnicas de Inativação de Genes , Células Hep G2 , Humanos , Fígado/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/genética , Filogenia , Plasmodium berghei/enzimologia , Plasmodium berghei/genética
13.
Methods Mol Biol ; 1657: 431-453, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28889312

RESUMO

One of the most important signals involved in controlling biofilm formation is represented by the intracellular second messenger 3',5'-cyclic diguanylic acid (c-di-GMP). Since the pathways involved in c-di-GMP biosynthesis and breakdown are found only in bacteria, targeting c-di-GMP metabolism represents an attractive strategy for the development of biofilm-disrupting drugs. Here, we present the workflow required to perform a structure-based design of inhibitors of diguanylate cyclases, the enzymes responsible for c-di-GMP biosynthesis. Downstream of the virtual screening process, detailed in the first part of the chapter, we report the step-by-step protocols required to test the positive hits in vitro and to validate their selectivity, thus minimizing possible off-target effects.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Proteínas de Escherichia coli/antagonistas & inibidores , Fósforo-Oxigênio Liases/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Cromatografia Líquida , Simulação por Computador , GMP Cíclico/análogos & derivados , GMP Cíclico/química , GMP Cíclico/metabolismo , Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Proteínas de Escherichia coli/química , Humanos , Modelos Moleculares , Conformação Molecular , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/química , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes , Análise Espectral
14.
J Mol Biol ; 429(15): 2337-2352, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28601495

RESUMO

Leptospira interrogans serovar Copenhageni is a human pathogen that causes leptospirosis, a worldwide zoonosis. The L. interrogans genome codes for a wide array of potential diguanylate cyclase (DGC) enzymes with characteristic GGDEF domains capable of synthesizing the cyclic dinucleotide c-di-GMP, known to regulate transitions between different cellular behavioral states in bacteria. Among such enzymes, LIC13137 (Lcd1), which has an N-terminal cGMP-specific phosphodiesterases, adenylyl cyclases, and FhlA (GAF) domain and a C-terminal GGDEF domain, is notable for having close orthologs present only in pathogenic Leptospira species. Although the function and structure of GGDEF and GAF domains have been studied extensively separately, little is known about enzymes with the GAF-GGDEF architecture. In this report, we address the question of how the GAF domain regulates the DGC activity of Lcd1. The full-length Lcd1 and its GAF domain form dimers in solution. The GAF domain binds specifically cAMP (KD of 0.24µM) and has an important role in the regulation of the DGC activity of the GGDEF domain. Lcd1 DGC activity is negligible in the absence of cAMP and is significantly enhanced in its presence (specific activity of 0.13s-1). The crystal structure of the Lcd1 GAF domain in complex with cAMP provides valuable insights toward explaining its specificity for cAMP and pointing to possible mechanisms by which this cyclic nucleotide regulates the assembly of an active DGC enzyme.


Assuntos
AMP Cíclico/química , AMP Cíclico/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Leptospira interrogans/enzimologia , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Cristalografia por Raios X , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica
15.
Curr Genet ; 62(4): 731-738, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27074767

RESUMO

Bacteria can sense environmental cues and alter their physiology accordingly through the use of signal transduction pathways involving second messenger nucleotides. One broadly conserved second messenger is cyclic-di-AMP (c-di-AMP) which regulates a range of processes including cell wall homeostasis, potassium uptake, DNA repair, fatty acid synthesis, biofilm formation and central metabolism in bacteria. The intracellular pool of c-di-AMP is maintained by the activities of diadenylate cyclase (DAC) and phosphodiesterase (PDE) enzymes, as well as possibly via c-di-AMP export. Whilst extracellular stimuli regulating c-di-AMP levels in bacteria are poorly understood, recent work has identified effector proteins which directly interact and alter the activity of DACs. These include the membrane bound CdaR and the phosphoglucosamine mutase GlmM which both bind directly to the membrane bound CdaA DAC and the recombination protein RadA which binds directly to the DNA binding DisA DAC. The genes encoding these multiprotein complexes are co-localised in many bacteria providing further support for their functional connection. The roles of GlmM in peptidoglycan synthesis and RadA in Holliday junction intermediate processing suggest that c-di-AMP synthesis by DACs will be responsive to these cellular activities. In addition to these modulatory interactions, permanent dysregulation of DAC activity due to suppressor mutations can occur during selection to overcome growth defects, rapid cell lysis and osmosensitivity. DACs have also been investigated as targets for the development of new antibiotics and several small compound inhibitors have recently been identified. This review aims to provide an overview of how c-di-AMP synthesis by DACs can be regulated.


Assuntos
Bactérias/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Mutação , Fósforo-Oxigênio Liases/antagonistas & inibidores , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/genética , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais
16.
Proc Natl Acad Sci U S A ; 113(7): 1790-5, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26839412

RESUMO

Over 30 years ago, GGDEF domain-containing enzymes were shown to be diguanylate cyclases that produce cyclic di-GMP (cdiG), a second messenger that modulates the key bacterial lifestyle transition from a motile to sessile biofilm-forming state. Since then, the ubiquity of genes encoding GGDEF proteins in bacterial genomes has established the dominance of cdiG signaling in bacteria. However, the observation that proteobacteria encode a large number of GGDEF proteins, nearing 1% of coding sequences in some cases, raises the question of why bacteria need so many GGDEF enzymes. In this study, we reveal that a subfamily of GGDEF enzymes synthesizes the asymmetric signaling molecule cyclic AMP-GMP (cAG or 3', 3'-cGAMP). This discovery is unexpected because GGDEF enzymes function as symmetric homodimers, with each monomer binding to one substrate NTP. Detailed analysis of the enzyme from Geobacter sulfurreducens showed it is a dinucleotide cyclase capable of switching the major cyclic dinucleotide (CDN) produced based on ATP-to-GTP ratios. We then establish through bioinformatics and activity assays that hybrid CDN-producing and promiscuous substrate-binding (Hypr) GGDEF enzymes are found in other deltaproteobacteria. Finally, we validated the predictive power of our analysis by showing that cAG is present in surface-grown Myxococcus xanthus. This study reveals that GGDEF enzymes make alternative cyclic dinucleotides to cdiG and expands the role of this widely distributed enzyme family to include regulation of cAG signaling.


Assuntos
Proteínas de Escherichia coli/metabolismo , Nucleotídeos Cíclicos/biossíntese , Fósforo-Oxigênio Liases/metabolismo , Deltaproteobacteria/enzimologia , Proteínas de Escherichia coli/química , Fósforo-Oxigênio Liases/química , Conformação Proteica
17.
Biochem J ; 469(3): 367-74, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26014055

RESUMO

The identification of the essential bacterial second messenger cyclic-di-AMP (c-di-AMP) synthesized by the DNA-integrity scanning protein A (DisA) has opened up a new and emerging field in bacterial signalling. To further analyse the diadenylate cyclase (DAC) reaction catalysed by the DAC domains of DisA, we crystallized Thermotoga maritima DisA in the presence of different ATP analogues and metal ions to identify the metal-binding site and trap the enzyme in pre- and post-reaction states. Through structural and biochemical assays we identified important residues essential for the reaction in the active site of the DAC domains. Our structures resolve the metal-binding site and thus explain the activation of ATP for the DAC reaction. Moreover, we were able to identify a potent inhibitor of the DAC domain. Based on the available structures and homology to annotated DAC domains we propose a common mechanism for c-di-AMP synthesis by DAC domains in c-di-AMP-producing species and a possible approach for its effective inhibition.


Assuntos
Proteínas de Bactérias/química , AMP Cíclico/metabolismo , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Thermotoga maritima/enzimologia , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , AMP Cíclico/química , Dados de Sequência Molecular , Fósforo-Oxigênio Liases/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência , Thermotoga maritima/química , Thermotoga maritima/genética
18.
J Biol Chem ; 290(10): 6596-606, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25605729

RESUMO

The recently identified second messenger cyclic di-AMP (c-di-AMP) is involved in several important cellular processes, such as cell wall metabolism, maintenance of DNA integrity, ion transport, transcription regulation, and allosteric regulation of enzyme function. Interestingly, c-di-AMP is essential for growth of the Gram-positive model bacterium Bacillus subtilis. Although the genome of B. subtilis encodes three c-di-AMP-producing diadenlyate cyclases that can functionally replace each other, the phylogenetically related human pathogens like Listeria monocytogenes and Staphylococcus aureus possess only one enzyme, the diadenlyate cyclase CdaA. Because CdaA is also essential for growth of these bacteria, the enzyme is a promising target for the development of novel antibiotics. Here we present the first crystal structure of the L. monocytogenes CdaA diadenylate cyclase domain that is conserved in many human pathogens. Moreover, biochemical characterization of the cyclase revealed an unusual metal cofactor requirement.


Assuntos
Proteínas de Bactérias/química , Cristalografia por Raios X , Listeria monocytogenes/enzimologia , Fósforo-Oxigênio Liases/química , Sequência de Aminoácidos , Bacillus subtilis/química , Catálise , Parede Celular/química , Cobalto/química , Fosfatos de Dinucleosídeos/metabolismo , Humanos , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Conformação Proteica
19.
FEBS J ; 281(23): 5208-19, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25238584

RESUMO

The catalytic activity of a heme-based oxygen sensor phosphodiesterase from Escherichia coli (EcDOS) towards cyclic diGMP is regulated by the redox state of the heme iron complex in the enzyme's sensing domain and the association of external ligands with the iron center. Specifically, the Fe(II) complex is more active towards cyclic diGMP than the Fe(III) complex, and its activity is further enhanced by O2 or CO binding. In order to determine how the redox state and coordination of the heme iron atom regulate the catalytic activity of EcDOS, we investigated the flexibility of its isolated N-terminal heme-binding domain (EcDOS-heme) by monitoring its spectral properties at various hydrostatic pressures. The most active form of the heme-containing domain, i.e. the Fe(II)-CO complex, was found to be the least flexible. Conversely, the oxidized Fe(III) forms of EcDOS-heme and its mutants had relatively high flexibilities, which appeared to be linked to the low catalytic activity of the corresponding intact enzymes. These findings corroborate the suggestion, made on the basis of crystallographic data, that there is an inverse relationship between the flexibility of the heme-containing domain of EcDOS and its catalytic activity. The Fe(II)-CO form of the heme domain of a second heme-based oxygen sensor, diguanylate cyclase (YddV), was also found to be quite rigid. Interestingly, the incorporation of a water molecule into the heme complex of YddV caused by mutation of the Leu65 residue reduced the flexibility of this heme domain. Conversely, mutation of the Tyr43 residue increased its flexibility.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Diester Fosfórico Hidrolases/química , Fósforo-Oxigênio Liases/química , Catálise , Pressão Hidrostática , Oxirredução , Estrutura Terciária de Proteína , Espectrofotometria Ultravioleta
20.
Plant Cell ; 26(8): 3286-98, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25172144

RESUMO

The Euphorbiaceae produce a diverse range of diterpenoids, many of which have pharmacological activities. These diterpenoids include ingenol mebutate, which is licensed for the treatment of a precancerous skin condition (actinic keratosis), and phorbol derivatives such as resiniferatoxin and prostratin, which are undergoing investigation for the treatment of severe pain and HIV, respectively. Despite the interest in these diterpenoids, their biosynthesis is poorly understood at present, with the only characterized step being the conversion of geranylgeranyl pyrophosphate into casbene. Here, we report a physical cluster of diterpenoid biosynthetic genes from castor (Ricinus communis), including casbene synthases and cytochrome P450s from the CYP726A subfamily. CYP726A14, CYP726A17, and CYP726A18 were able to catalyze 5-oxidation of casbene, a conserved oxidation step in the biosynthesis of this family of medicinally important diterpenoids. CYP726A16 catalyzed 7,8-epoxidation of 5-keto-casbene and CYP726A15 catalyzed 5-oxidation of neocembrene. Evidence of similar gene clustering was also found in two other Euphorbiaceae, including Euphorbia peplus, the source organism of ingenol mebutate. These results demonstrate conservation of gene clusters at the higher taxonomic level of the plant family and that this phenomenon could prove useful in further elucidating diterpenoid biosynthetic pathways.


Assuntos
Diterpenos/metabolismo , Genes de Plantas , Família Multigênica , Ricinus/metabolismo , Vias Biossintéticas , Sequência Conservada , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Diterpenos/química , Euphorbiaceae/genética , Euphorbiaceae/metabolismo , Evolução Molecular , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Filogenia , Ricinus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA