Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 292(52): 21662-21675, 2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29123030

RESUMO

The degenerin/epithelial sodium channel (DEG/ENaC) superfamily of ion channels contains subfamilies with diverse functions that are fundamental to many physiological and pathological processes, ranging from synaptic transmission to epileptogenesis. The absence in mammals of some DEG/ENaCs subfamily orthologues such as FMRFamide peptide-activated sodium channels (FaNaCs), which have been identified only in mollusks, indicates that the various subfamilies diverged early in evolution. We recently reported that the nonproton agonist 2-guanidine-4-methylquinazoline (GMQ) activates acid-sensing ion channels (ASICs), a DEG/ENaC subfamily mainly in mammals, in the absence of acidosis. Here, we show that GMQ also could directly activate the mollusk-specific FaNaCs. Differences in ion selectivity and unitary conductance and effects of substitutions at key residues revealed that GMQ and FMRFamide activate FaNaCs via distinct mechanisms. The presence of two activation mechanisms in the FaNaC subfamily diverging early in the evolution of DEG/ENaCs suggested that dual gating is an ancient feature in this superfamily. Notably, the GMQ-gating mode is still preserved in the mammalian ASIC subfamily, whereas FMRFamide-mediated channel gating was lost during evolution. This implied that GMQ activation may be essential for the functions of mammalian DEG/ENaCs. Our findings provide new insights into the evolution of DEG/ENaCs and may facilitate the discovery and characterization of their endogenous agonists.


Assuntos
Canais Epiteliais de Sódio/fisiologia , FMRFamida/metabolismo , FMRFamida/fisiologia , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Células CHO , Cricetulus , Cristalografia por Raios X/métodos , Canais de Sódio Degenerina/fisiologia , Guanidinas/farmacologia , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico/fisiologia , Ligantes , Moluscos/metabolismo , Oócitos/fisiologia , Peptídeos/farmacologia , Quinazolinas/farmacologia , Xenopus laevis
3.
J Neurophysiol ; 90(2): 586-98, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12724359

RESUMO

Whole cell voltage-clamp recordings from Aplysia mechanosensory neurons obtained from the pleural ganglion were used to investigate the actions on membrane currents of the neuropeptides SCP(B) and FMRFamide. At the start of whole cell recording, SCP(B) typically evoked an inward current at a holding potential of -40 mV, due to the cAMP-mediated closure of the S-type K+ channel, whereas FMRFamide evoked an outward current, due to the opening of the S-type K+ channels mediated by 12-lipoxygenase metabolites of arachidonic acid. However, after several minutes of whole cell recording with a high concentration of chloride in the whole cell patch pipette solution, the responses to SCP(B) and FMRF-amide at -40 mV were inverted; SCP(B) evoked an outward current, whereas FMRFamide and YGGFMRFamide evoked inward currents. Ion substitution experiments and reversal potential measurements revealed that these responses were due to the opposing regulation of a Cl(-) current, whose magnitude was greatly enhanced by dialysis with the high Cl(-) - containing pipette solution. SCP(B) inhibited this Cl(-) current through production of cAMP and activation of PKA. YGGFMRFamide activated this Cl(-) current by stimulating a cGMP-activated phosphodiesterase that hydrolyzed cAMP. Thus a cAMP-dependent Cl(-) current undergoes antagonistic modulation by two neuropeptides in Aplysia sensory neurons.


Assuntos
Canais de Cloreto/efeitos dos fármacos , Canais de Cloreto/fisiologia , FMRFamida/fisiologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Neuropeptídeos/fisiologia , Animais , Aplysia , Técnicas de Cultura de Células , AMP Cíclico/fisiologia , GMP Cíclico/fisiologia , Eletrofisiologia , Inibidores Enzimáticos/farmacologia , FMRFamida/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Neuropeptídeos/farmacologia , Técnicas de Patch-Clamp
4.
Endocrinology ; 143(2): 411-9, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11796493

RESUMO

Neuropeptides similar to the molluscan cardioexcitatory Phe-Met-Arg-Phe-NH2 have been identified in several vertebrates and characterized by the RFa motif at their C terminus (RFa peptides). In this study, we sought to identify an amphibian hypothalamic RFa peptide that may regulate secretion of hormones by the anterior pituitary gland. An acid extract of bullfrog hypothalami was passed through C-18 reversed-phase cartridges, and then the retained material was subjected to HPLC, initially using a C-18 reversed-phase column. RFa immunoreactivity was measured in the eluted fractions by a dot immunoblot assay employing an antiserum raised against RFa. Immunoreactive fractions were subjected to further cation exchange and reversed-phase HPLC purification. The isolated peptide was a novel RFa peptide and shown to have the sequence Ser-Leu-Lys-Pro-Ala-Ala-Asn-Leu-Pro-Leu-Arg-Phe-NH2. The cell bodies and terminals containing this peptide were localized immunohistochemically in the suprachiasmatic nucleus and median eminence, respectively. This RFa peptide stimulated, in a dose-related way, the release of GH from cultured pituitary cells, its threshold concentration ranging between 10(-9) and 10(-8) M. This peptide did not have any appreciable effect on the secretion of PRL and gonadotropins. It was ascertained that the peptide was also effective in elevating the circulating GH level when administered systemically. Thus, the amphibian hypothalamus was revealed to contain a novel functional RFa peptide that stimulates GH release. This peptide was designated frog GH-releasing peptide.


Assuntos
FMRFamida/fisiologia , Hormônios Hipotalâmicos/fisiologia , Neuropeptídeos/fisiologia , Envelhecimento/fisiologia , Animais , Encéfalo/anatomia & histologia , Química Encefálica/fisiologia , Células Cultivadas , Cromatografia Líquida de Alta Pressão , FMRFamida/química , FMRFamida/isolamento & purificação , Hormônio Foliculoestimulante/metabolismo , Hormônio do Crescimento/sangue , Hormônio do Crescimento/metabolismo , Hormônios Hipotalâmicos/química , Hormônios Hipotalâmicos/isolamento & purificação , Sistema Hipotálamo-Hipofisário/anatomia & histologia , Sistema Hipotálamo-Hipofisário/metabolismo , Immunoblotting , Imuno-Histoquímica , Hormônio Luteinizante/metabolismo , Neuropeptídeos/química , Neuropeptídeos/isolamento & purificação , Adeno-Hipófise/metabolismo , Prolactina/metabolismo , Radioimunoensaio , Rana catesbeiana
5.
J Neurophysiol ; 82(3): 1339-51, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10482753

RESUMO

We observed fibers immunoreactive (IR) to serotonin (5-HT), the myomodulins (MMs), and FMRFamide on the I7-I10 complex in the marine mollusk Aplysia californica. The I7-I10 muscle complex, which produces radula opening, is innervated primarily by one motor neuron, B48. B48 is MM-IR and synthesizes authentic MM(A). When B48 is stimulated in a physiological manner, cAMP levels are increased in opener muscles. cAMP increases also are seen when the MMs are applied to opener muscles but are not seen with application of the B48 primary neurotransmitter acetylcholine (ACh). Possible physiological sources of 5-HT and FMRFamide are discussed. When modulators are applied to resting opener muscles, changes in membrane potential are observed. Specifically, 5-HT, MM(B), and low concentrations of MM(A) all depolarize muscle fibers. This depolarization is generally not sufficient to elicit myogenic activity in the absence of neural activity under "rest" conditions. However, if opener muscles are stretched beyond rest length, stretch- and modulator-induced depolarizations can summate and elicit contractions. This only occurs, however, if "depolarizing" modulators are applied alone. Thus other modulators (i.e., FMRFamide and high concentrations of MM(A)) hyperpolarize opener muscle fibers and can prevent depolarizing modulators from eliciting myogenic activity. All modulators tested affected parameters of motor neuron-elicited contractions of opener muscles. MM(B) and 5-HT increased contraction size over the range of concentrations tested, whereas MM(A) potentiated contractions when it was applied at lower concentrations but decreased contraction size at higher concentrations. FMRFamide decreased contraction size at all concentrations and did not affect relaxation rate. Additionally, the MMs and 5-HT increased muscle relaxation rate, decreased contraction latency, and decreased the rate at which tension was developed during motor neuron-elicited muscle contractions. Thus these modulators dramatically affect the ability of opener muscles to follow activity in the opener motor neuron B48. The possible physiological significance of these findings is discussed.


Assuntos
Músculos/fisiologia , Animais , Aplysia , AMP Cíclico/metabolismo , Eletrofisiologia , FMRFamida/metabolismo , FMRFamida/fisiologia , Potenciais da Membrana/fisiologia , Contração Muscular/fisiologia , Músculos/inervação , Músculos/metabolismo , Junção Neuromuscular/metabolismo , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Neuropeptídeos/fisiologia , Serotonina/metabolismo , Serotonina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA