Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 535
Filtrar
1.
Physiol Plant ; 176(2): e14272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566275

RESUMO

The Dehydration-Responsive Element Binding (DREB) subfamily of transcription factors plays crucial roles in plant abiotic stress response. Ammopiptanthus nanus (A. nanus) is an eremophyte exhibiting remarkable tolerance to environmental stress and DREB proteins may contribute to its tolerance to water deficit and low-temperature stress. In the present study, an A. nanus DREB A5 group transcription factor gene, AnDREB5.1, was isolated and characterized in terms of structure and function in abiotic stress tolerance. AnDREB5.1 protein is distributed in the nucleus, possesses transactivation capacity, and is capable of binding to DRE core cis-acting element. The transcription of AnDREB5.1 was induced under osmotic and cold stress. Tobacco seedlings overexpressing AnDREB5.1 displayed higher tolerance to cold stress, osmotic stress, and oxidative stress compared to wild-type tobacco (WT). Under osmotic and cold stress, overexpression of AnDREB5.1 increased antioxidant enzyme activity in tobacco leaves, inhibiting excessive elevation of ROS levels. Transcriptome sequencing analysis showed that overexpression of AnDREB5.1 raised the tolerance of transgenic tobacco seedlings to abiotic stress by regulating multiple genes, including antioxidant enzymes, transcription factors, and stress-tolerant related functional genes like NtCOR413 and NtLEA14. This study provides new evidence for understanding the potential roles of the DREB A5 subgroup members in plants.


Assuntos
Resposta ao Choque Frio , Fabaceae , Resposta ao Choque Frio/genética , Antioxidantes , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fabaceae/genética , Estresse Fisiológico/genética , Plântula/genética , Plântula/metabolismo , Nicotiana/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Temperatura Baixa
2.
Ecotoxicol Environ Saf ; 275: 116268, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569319

RESUMO

Legume-based rotation is commonly recognized for its mitigation efficiency of greenhouse gas (GHG) emissions. However, variations in GHG emission-associated metabolic functions during the legume-vegetable rotation process remain largely uncharacterized. Accordingly, a soybean-radish rotation field experiment was designed to clarify the responses of microbial communities and their GHG emission-associated functional metabolism through metagenomics. The results showed that the contents of soil organic carbon and total phosphorus significantly decreased during the soybean-radish process (P < 0.05), while soil total potassium content and bacterial richness and diversity significantly increased (P < 0.05). Moreover, the predominant bacterial phyla varied, with a decrease in the relative abundance of Proteobacteria and an increase in the relative abundance of Acidobacteria, Gemmatimonadetes, and Chloroflexi. Metagenomics clarified that bacterial carbohydrate metabolism substantially increased during the rotation process, whereas formaldehyde assimilation, methanogenesis, nitrification, and dissimilatory nitrate reduction decreased (P < 0.05). Specifically, the expression of phosphate acetyltransferase (functional methanogenesis gene, pta) and nitrate reductase gamma subunit (functional dissimilatory nitrate reduction gene, narI) was inhibited, indicating of low methane production and nitrogen metabolism. Additionally, the partial least squares path model revealed that the Shannon diversity index was negatively correlated with methane and nitrogen metabolism (P < 0.01), further demonstrating that the response of the soil bacterial microbiome responses are closely linked with GHG-associated metabolism during the soybean-radish rotation process. Collectively, our findings shed light on the responses of soil microbial communities to functional metabolism associated with GHG emissions and provide important insights to mitigate GHG emissions during the rotational cropping of legumes and vegetables.


Assuntos
Fabaceae , Gases de Efeito Estufa , Verduras/metabolismo , Fabaceae/genética , Fabaceae/metabolismo , Nitratos , Carbono , Solo , Metano/análise , Nitrogênio/metabolismo , Dióxido de Carbono/análise , Agricultura
3.
Genes (Basel) ; 15(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38540363

RESUMO

A-genome Arachis species (AA; 2n = 2x = 20) are commonly used as secondary germplasm sources in cultivated peanut breeding, Arachis hypogaea L. (AABB; 2n = 4x = 40), for the introgression of various biotic and abiotic stress resistance genes. Genome doubling is critical to overcoming the hybridization barrier of infertility that arises from ploidy-level differences between wild germplasm and cultivated peanuts. To develop improved genome doubling methods, four trials of various concentrations of the mitotic inhibitor treatments colchicine, oryzalin, and trifluralin were tested on the seedlings and seeds of three A-genome species, A. cardenasii, A. correntina, and A. diogoi. A total of 494 seeds/seedlings were treated in the present four trials, with trials 1 to 3 including different concentrations of the three chemical treatments on seedlings, and trial 4 focusing on the treatment period of 5 mM colchicine solution treatment of seeds. A small number of tetraploids were produced from the colchicine and oryzalin gel treatments of seedlings, but all these tetraploid seedlings reverted to diploid or mixoploid states within six months of treatment. In contrast, the 6-h colchicine solution treatment of seeds showed the highest tetraploid conversion rate (6-13% of total treated seeds or 25-40% of surviving seedlings), and the tetraploid plants were repeatedly tested as stable tetraploids. In addition, visibly and statistically larger leaves and flowers were produced by the tetraploid versions of these three species compared to their diploid versions. As a result, stable tetraploid plants of each A-genome species were produced, and a 5 mM colchicine seed treatment is recommended for A-genome and related wild Arachis species genome doubling.


Assuntos
Arachis , Dinitrobenzenos , Fabaceae , Sulfanilamidas , Arachis/genética , Tetraploidia , Genoma de Planta , Poliploidia , Melhoramento Vegetal , Fabaceae/genética , Colchicina/farmacologia
4.
Genetica ; 152(1): 51-61, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38381186

RESUMO

Chamaecrista is a Pantropical legume genus of the tribe Cassieae, which includes six other genera. In contrast to most of the other Cassieae genera, Chamaecrista shows significant variability in chromosome number (from 2n = 14 to 2n = 56), with small and morphologically similar chromosomes. Here, we performed a new cytomolecular analysis on chromosome number, genome size, and rDNA site distribution in a molecular phylogenetic perspective to interpret the karyotype trends of Chamaecrista and other two genera of Cassieae, seeking to understand their systematics and evolution. Our phylogenetic analysis revealed that Chamaecrista is monophyletic and can be divided into four major clades corresponding to the four sections of the genus. Chromosome numbers ranged from 2n = 14, 16 (section Chamaecrista) to 2n = 28 (sections Absus, Apoucouita, and Baseophyllum). The number of 5S and 35S rDNA sites varied between one and three pairs per karyotype, distributed on different chromosomes or in synteny, with no obvious phylogenetic significance. Our data allowed us to propose x = 7 as the basic chromosome number of Cassieae, which was changed by polyploidy generating x = 14 (sections Absus, Apoucouita, and Baseophyllum) and by ascending dysploidy to x = 8 (section Chamaecrista). The DNA content values supported this hypothesis, with the genomes of the putative tetraploids being larger than those of the putative diploids. We hypothesized that ascending dysploidy, polyploidy, and rDNA amplification/deamplification are the major events in the karyotypic diversification of Chamaecrista. The chromosomal marks characterized here may have cytotaxonomic potential in future studies.


Assuntos
Chamaecrista , Fabaceae , Filogenia , Chamaecrista/genética , Fabaceae/genética , Cromossomos de Plantas/genética , Genoma de Planta , Cariótipo , Poliploidia , DNA Ribossômico/genética
5.
Gene ; 909: 148311, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38401831

RESUMO

AmCIP is a dehydrin-like protein which involved in abiotic stress tolerance in xerophytes evergreen woody plant A. mongolicus. AmCIP could be induced in the cotyledon and radicle during cold acclimation. To further elucidate the regulation of the upstream region of the gene, we isolated and characterized the promoter of AmCIP. Herein, a 1115 bp 5'-flanking region of AmCIP genomic DNA was isolated and cloned by genome walking from A. mongolicus and the segment sequence was identified as "PrAmCIP" promoter. Analysis of the promoter sequence revealed the presences of some basic cis-acting elements, which were related to various environmental stresses and plant hormones. GUS histochemical staining of transgene tobacco showed that PrAmCIP was induced by 4℃, 55℃, NaCl, mannitol and ABA, whereas it could hardly drive GUS gene expression under normal conditions. Furthermore, we constructed three deletion fragments and genetically transformed them into Arabidopsis thaliana. GUS histochemical staining showed that the MYCATERD1 element of the CP7 fragment (-189 âˆ¼ -1) may be a key element in response to drought. In conclusion, we provide an inducible promoter, PrAmCIP, which can be applied to the development of transgenic plants for abiotic stresse tolerance.


Assuntos
Arabidopsis , Fabaceae , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Fabaceae/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
6.
Plant J ; 117(3): 729-746, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37932930

RESUMO

Stylo (Stylosanthes guianensis) is a tropical legume known for its exceptional tolerance to low phosphate (Pi), a trait believed to be linked to its high acid phosphatase (APase) activity. Previous studies have observed genotypic variations in APase activity in stylo; however, the gene encoding the crucial APase responsible for this variation remains unidentified. In this study, transcriptomic and proteomic analyses were employed to identify eight Pi starvation-inducible (PSI) APases belonging to the purple APase (PAP) family in the roots of stylo and seven in the leaves. Among these PSI-PAPs, SgPAP7 exhibited a significantly positive correlation in its expression levels with the activities of both internal APase and root-associated APase across 20 stylo genotypes under low-Pi conditions. Furthermore, the recombinant SgPAP7 displayed high catalytic activity toward adenosine 5'-diphosphate (ADP) and phosphoenolpyruvate (PEP) in vitro. Overexpression (OE) of SgPAP7 in Arabidopsis facilitated exogenous organic phosphorus utilization. Moreover, SgPAP7 OE lines showed lower shoot ADP and PEP levels than the wild type, implying that SgPAP7 is involved in the catabolism and recycling of endogenous ADP and PEP, which could be beneficial for plant growth in low-Pi soils. In conclusion, SgPAP7 is a key gene with a major role in stylo adaptation to low-Pi conditions by facilitating the utilization of both exogenous and endogenous organic phosphorus sources. It may also function as a PEP phosphatase involved in a glycolytic bypass pathway that minimizes the need for adenylates and Pi. Thus, SgPAP7 could be a promising target for improving tolerance of crops to low-Pi availability.


Assuntos
Arabidopsis , Fabaceae , Fabaceae/genética , Fabaceae/metabolismo , Multiômica , Proteômica , Fósforo/metabolismo , Verduras/metabolismo , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Arabidopsis/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Sci Rep ; 13(1): 22951, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135720

RESUMO

The genomic structures of Vigna hirtella Ridl. and Vigna trinervia (B.Heyne ex Wight & Arn.) Tateishi & Maxted, key ancestral species of the allotetraploid Vigna reflexo-pilosa var. glabra (Roxb.) N.Tomooka & Maxted, remain poorly understood. This study presents a comprehensive genomic comparison of these species to deepen our knowledge of their evolutionary trajectories. By comparing the genomic profiles of V. hirtella and V. trinervia with those of V. reflexo-pilosa, we investigate the complex genomic mechanisms underlying allopolyploid evolution within the genus Vigna. Comparison of the chloroplast genome revealed that V. trinervia is closely related to V. reflexo-pilosa. De novo assembly of the whole genome, followed by synteny analysis and Ks value calculations, confirms that V. trinervia is closely related to the A genome of V. reflexo-pilosa, and V. hirtella to its B genome. Furthermore, the comparative analyses reveal that V. reflexo-pilosa retains residual signatures of a previous polyploidization event, particularly evident in higher gene family copy numbers. Our research provides genomic evidence for polyploidization within the genus Vigna and identifies potential donor species of allotetraploid species using de novo assembly techniques. Given the Southeast Asian distribution of both V. hirtella and V. trinervia, natural hybridization between these species, with V. trinervia as the maternal ancestor and V. hirtella as the paternal donor, seems plausible.


Assuntos
Fabaceae , Vigna , Vigna/genética , Fabaceae/genética , Filogenia , Sintenia , Genoma de Planta
8.
J Appl Genet ; 64(4): 615-644, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37624461

RESUMO

Plant ATP-binding cassette (ABC) protein family is the largest multifunctional highly conserved protein superfamily that transports diverse substrates across biological membranes by the hydrolysis of ATP and is also the part of the several other biological processes like cellular detoxification, growth and development, stress biology, and signaling processes. In the agriculturally important legume crop Cajanus cajan, a genome-wide identification and characterization of the ABC gene family was carried out. A total of 159 ABC genes were identified that belong to eight canonical classes CcABCA to CcABCG and CcABCI based on the phylogenetic analysis. The number of genes was highest in CcABCG followed by CcABCC and CcABCB class. A total of 85 CcABC genes were found on 11 chromosomes and 74 were found on scaffold. Tandem duplication was the major driver of CcABC gene family expansion. The dN/dS ratio revealed the purifying selection. The phylogenetic analysis revealed class-specific eight superclades which reflect their functional importance. The largest clade was found to be CcABCG which reflects their functional significance. CcABC proteins were mainly basic in nature and found to be localized in the plasma membrane. The secondary structure prediction revealed the dominance of α-helix. The canonical transmembrane and nucleotide binding domain, signature motif LSSGQ, Walker A, Walker B region, and Q loop were also identified. A class-specific exon-intron pattern was also observed. In addition to core elements, different cis-acting regulatory elements like stress, hormone, and cellular responsive were also identified. Expression profiling of CcABC genes at various developmental stages of different anatomical tissues was performed and it was noticed that CcABCF3, CcABCF4, CcABCF5, CcABCG66, and CcABCI3 had the highest expression. The results of the current study endow us with the further functional analysis of Cajanus ABC in the future.


Assuntos
Cajanus , Fabaceae , Fabaceae/genética , Fabaceae/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Cajanus/genética , Cajanus/metabolismo , Filogenia , Verduras/metabolismo , Trifosfato de Adenosina/metabolismo
9.
Plant Genome ; 16(4): e20361, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37408143

RESUMO

Malnutrition is a major challenge globally, and groundnut is a highly nutritious self-pollinated legume crop blessed with ample genomic resources, including the routine deployment of genomic-assisted breeding. This study aimed to identify genomic regions and candidate genes for high iron (Fe) and zinc (Zn) content, utilizing a biparental mapping population (ICGV 00440 × ICGV 06040;). Genetic mapping and quantitative trait locus (QTL) analysis (474 mapped single-nucleotide polymorphism loci; 1536.33 cM) using 2 seasons of phenotypic data together with genotypic data identified 5 major main-effect QTLs for Fe content. These QTLs exhibited log-of-odds (LOD) scores ranging from 6.5 to 7.4, explaining phenotypic variation (PVE) ranging from 22% (qFe-Ah01) to 30.0% (qFe-Ah14). Likewise, four major main effect QTLs were identified for Zn content, with LOD score ranging from 4.4 to 6.8 and PVE ranging from 21.8% (qZn-Ah01) to 32.8% (qZn-Ah08). Interestingly, three co-localized major and main effect QTLs (qFe-Ah01, qZn-Ah03, and qFe-Ah11) were identified for both Fe and Zn contents. These genomic regions harbored key candidate genes, including zinc/iron permease transporter, bZIP transcription factor, and vacuolar iron transporter which likely play pivotal roles in the accumulation of Fe and Zn contents in seeds. The findings of this study hold potential for fine mapping and diagnostic marker development for high Fe and Zn contents in groundnut.


Assuntos
Fabaceae , Locos de Características Quantitativas , Zinco , Melhoramento Vegetal , Fabaceae/genética , Ferro
10.
Genes (Basel) ; 14(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37239389

RESUMO

Faba bean is an important legume crop consumed as a vegetable or snack food, and its green cotyledons could present an attractive color for consumers. A mutation in SGR causes stay-green in plants. In this study, vfsgr was identified from a green-cotyledon-mutant faba bean, SNB7, by homologous blast between the SGR of pea and the transcriptome of faba bean. Sequence analysis revealed that a SNP at position 513 of the CDS of VfSGR caused a pre-stop codon, resulting in a shorter protein in the green-cotyledon faba bean SNB7. A dCaps marker was developed according to the SNP that caused the pre-stop, and this marker was completely associated with the color of the cotyledon of faba bean. SNB7 stayed green during dark treatment, while the expression level of VfSGR increased during dark-induced senescence in the yellow-cotyledon faba bean HST. Transient expression of VfSGR in Nicotiana. benthamiana leaves resulted in chlorophyll degradation. These results indicate that vfsgr is the gene responsible for the stay-green of faba bean, and the dCaps marker developed in this study provides a molecular tool for the breeding of green-cotyledon faba beans.


Assuntos
Fabaceae , Vicia faba , Vicia faba/genética , Pisum sativum/genética , Melhoramento Vegetal , Fabaceae/genética , Transcriptoma
11.
Genes (Basel) ; 14(5)2023 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-37239443

RESUMO

The symbiotic fixation of atmospheric nitrogen (N) in root nodules of tropical legumes such as pigeonpea (Cajanus cajan) is a complex process, which is regulated by multiple genetic factors at the host plant genotype microsymbiont interface. The process involves multiple genes with various modes of action and is accomplished only when both organisms are compatible. Therefore, it is necessary to develop tools for the genetic manipulation of the host or bacterium towards improving N fixation. In this study, we sequenced the genome of a robust rhizobial strain, Rhizobium tropici '10ap3' that was compatible with pigeonpea, and we determined its genome size. The genome consisted of a large circular chromosome (6,297,373 bp) and contained 6013 genes of which 99.13% were coding sequences. However only 5833 of the genes were associated with proteins that could be assigned to specific functions. The genes for nitrogen, phosphorus and iron metabolism, stress response and the adenosine monophosphate nucleoside for purine conversion were present in the genome. However, the genome contained no common nod genes, suggesting that an alternative pathway involving a purine derivative was involved in the symbiotic association with pigeonpea.


Assuntos
Fabaceae , Rhizobium , Rhizobium/metabolismo , Fixação de Nitrogênio/genética , Genoma Bacteriano , Genes Bacterianos , Fabaceae/genética
12.
Int J Biol Macromol ; 241: 124569, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37100319

RESUMO

Stylo (Stylosanthes guianensis) is a tropical forage and cover crop that possesses low phosphate (Pi) tolerance traits. However, the mechanisms underlying its tolerance to low-Pi stress, particularly the role of root exudates, remain unclear. This study employed an integrated approach using physiological, biochemical, multi-omics, and gene function analyses to investigate the role of stylo root exudates in response to low-Pi stress. Widely targeted metabolomic analysis revealed that eight organic acids and one amino acid (L-cysteine) were significantly increased in the root exudates of Pi-deficient seedlings, among which tartaric acid and L-cysteine had strong abilities to dissolve insoluble-P. Furthermore, flavonoid-targeted metabolomic analysis identified 18 flavonoids that were significantly increased in root exudates under low-Pi conditions, mainly belonging to the isoflavonoid and flavanone subclasses. Additionally, transcriptomic analysis revealed that 15 genes encoding purple acid phosphatases (PAPs) had upregulated expression in roots under low-Pi conditions. Among them, SgPAP10 was characterized as a root-secreted phosphatase, and overexpression of SgPAP10 enhanced organic-P utilization by transgenic Arabidopsis. Overall, these findings provide detailed information regarding the importance of stylo root exudates in adaptation to low-Pi stress, highlighting the plant's ability to release Pi from organic-P and insoluble-P sources through root-secreted organic acids, amino acids, flavonoids, and PAPs.


Assuntos
Arabidopsis , Fabaceae , Fósforo/metabolismo , Cisteína/metabolismo , Multiômica , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Fabaceae/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Exsudatos e Transudatos
13.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902052

RESUMO

Peanut (Arachis hypogaea L.) is an important food and feed crop worldwide and is affected by various biotic and abiotic stresses. The cellular ATP levels decrease significantly during stress as ATP molecules move to extracellular spaces, resulting in increased ROS production and cell apoptosis. Apyrases (APYs) are the nucleoside phosphatase (NPTs) superfamily members and play an important role in regulating cellular ATP levels under stress. We identified 17 APY homologs in A. hypogaea (AhAPYs), and their phylogenetic relationships, conserved motifs, putative miRNAs targeting different AhAPYs, cis-regulatory elements, etc., were studied in detail. The transcriptome expression data were used to observe the expression patterns in different tissues and under stress conditions. We found that the AhAPY2-1 gene showed abundant expression in the pericarp. As the pericarp is a key defense organ against environmental stress and promoters are the key elements regulating gene expression, we functionally characterized the AhAPY2-1 promoter for its possible use in future breeding programs. The functional characterization of AhAPY2-1P in transgenic Arabidopsis plants showed that it effectively regulated GUS gene expression in the pericarp. GUS expression was also detected in flowers of transgenic Arabidopsis plants. Overall, these results strongly suggest that APYs are an important future research subject for peanut and other crops, and AhPAY2-1P can be used to drive the resistance-related genes in a pericarp-specific manner to enhance the defensive abilities of the pericarp.


Assuntos
Arabidopsis , Fabaceae , Arachis/genética , Apirase/genética , Filogenia , Arabidopsis/genética , Melhoramento Vegetal , Fabaceae/genética , Plantas Geneticamente Modificadas , Trifosfato de Adenosina , Regulação da Expressão Gênica de Plantas
14.
Appl Biochem Biotechnol ; 195(8): 5158-5179, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36853442

RESUMO

The major threat to mungbean (Vigna radiata L.) cultivation in the Indian subcontinent is yellow mosaic diseases (YMD), caused by Begomovirus containing bipartite genomes (DNA-A and DNA-B). In the current study, we address the epidemiology of begomoviruses infecting mungbean plants in three YMD hotspot regions of India. Full-length genomic components of the viruses from the symptomatic leaves were cloned by rolling circle amplification (RCA) and sequenced. Mungbean yellow mosaic virus (MYMV) was detected in Bihar and mungbean yellow mosaic India virus (MYMIV) in Assam and Orissa. Furthermore, we studied the population structure and genetic diversity of MYMV and MYMIV isolates of Vigna species reported to date from India. Interestingly, based on phylogenetics, we observed independent evolution of DNA-A and coevolution of DNA-B of MYMV and MYMIV. This finding is supported by the high mutation rate and recombination events in DNA-B, particularly in BV1 and BC1 genes over DNA-A, with high transition/transversion bias (R) for DNA-A over DNA-B. To investigate the effect of Begomovirus infection in plants, we constructed infectious clones (i.e. MYMV and MYMIV) and inoculated them to eight mungbean genotypes, cowpea (Vigna unguiculata L.) and tobacco (Nicotiana benthamiana) through agroinfiltration. The infected plants developed varying degrees of typical YMD symptoms. Based on the disease severity score and viral titre, mungbean genotypes were categorized as highly susceptible to MYMV (ML267) and MYMIV (K851) and immune to MYMV (PDM139, SML668) and MYMIV (Pusa Vishal). Conclusively, our findings may help prevent an epidemic of YMD in Vigna species and develop mungbean genotypes resistant to YMD via breeding programs.


Assuntos
Begomovirus , Fabaceae , Vigna , Begomovirus/genética , Epidemiologia Molecular , Hotspot de Doença , Fabaceae/genética , Índia , Doenças das Plantas
15.
New Phytol ; 237(3): 758-765, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36305214

RESUMO

Both mutualism and polyploidy are thought to influence invasion success in plants, but few studies have tested their joint effects. Mutualism can limit range expansion when plants cannot find a compatible partner in a novel habitat, or facilitate range expansion when mutualism increases a plant's niche breadth. Polyploids are also expected to have greater niche breadth because of greater self-compatibility and phenotypic plasticity, increasing invasion success. For 847 legume species, we compiled data from published sources to estimate ploidy, symbiotic status with rhizobia, specificity on rhizobia, and the number of introduced ranges. We found that diploid species have had limited spread around the globe regardless of whether they are symbiotic or how many rhizobia partners they can host. Polyploids, by contrast, have been successfully introduced to many new ranges, but interactions with rhizobia constrain their range expansion. In a hidden state model of trait evolution, we also found evidence of a high rate of re-diploidization in symbiotic legume lineages, suggesting that symbiosis and ploidy may interact at macroevolutionary scales. Overall, our results suggest that symbiosis with rhizobia limits range expansion when legumes are polyploid but not diploid.


Assuntos
Fabaceae , Rhizobium , Fabaceae/genética , Ecossistema , Poliploidia , Simbiose
16.
Plant Commun ; 4(1): 100422, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-35957520

RESUMO

Fabaceae is a large family of angiosperms with high biodiversity that contains a variety of economically important crops and model plants for the study of biological nitrogen fixation. Polyploidization events have been extensively studied in some Fabaceae plants, but the occurrence of new genes is still concealed, owing to a lack of genomic information on certain species of the basal clade of Fabaceae. Cercis chinensis (Cercidoideae) is one such species; it diverged earliest from Fabaceae and is essential for phylogenomic studies and new gene predictions in Fabaceae. To facilitate genomic studies on Fabaceae, we performed genome sequencing of C. chinensis and obtained a 352.84 Mb genome, which was further assembled into seven pseudochromosomes with 30 612 predicted protein-coding genes. Compared with other legume genomes, that of C. chinensis exhibits no lineage-specific polyploidization event. Further phylogenomic analyses of 22 legumes and 11 other angiosperms revealed that many gene families are lineage specific before and after the diversification of Fabaceae. Among them, dozens of genes are candidates for new genes that have evolved from intergenic regions and are thus regarded as de novo-originated genes. They differ significantly from established genes in coding sequence length, exon number, guanine-cytosine content, and expression patterns among tissues. Functional analysis revealed that many new genes are related to asparagine metabolism. This study represents an important advance in understanding the evolutionary pattern of new genes in legumes and provides a valuable resource for plant phylogenomic studies.


Assuntos
Fabaceae , Fabaceae/genética , Filogenia , Mapeamento Cromossômico , Sequência de Bases
17.
Curr Microbiol ; 80(1): 40, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36534172

RESUMO

This study aimed to evaluate the resilience of phytophysiognomies under influence of iron mining by assessing the occurrence, diversity, and symbiotic efficiency of native communities of nitrogen-fixing bacteria that nodulate leguminous plants (rhizobia) in soils of an area revegetated with grass after iron mining activities and in the phytophysiognomies in adjacent areas (Canga, Atlantic Forest, Cerrado, and Eucalyptus-planted forest). Experiments for capturing rhizobia through two species of promiscuous plants, siratro (Macroptilium atropurpureum) and cowpea (Vigna unguiculata), were conducted in a greenhouse. The rhizobial strains isolated were characterized phenotypically, genetically (16S rRNA sequencing and BOX-PCR fingerprinting), and regard symbiotic efficiency of biological nitrogen fixation (BNF) compared to mineral nitrogen and reference strains. Cowpea captured a higher density of rhizobia than siratro did. However, most of the strains captured by siratro had greater symbiotic efficiency. The revegetated area proved to be the community most efficient in N2 fixation and was also the most diverse, whereas Canga was the least diverse. For the two trap species, the predominant genus captured in the revegetated area and in the phytophysiognomies was Bradyrhizobium. The greater symbiotic efficiency and the high genetic diversity of the rhizobial community in the revegetated area indicate the effectiveness of the soil rehabilitation process. The revegetated area and the phytophysiognomies proved to harbor strains with high biotechnological potential. Results indicate that the high functional redundancy of this group of bacteria contributes to the resilience of these phytophysiognomies and the revegetated area.


Assuntos
Bradyrhizobium , Fabaceae , Rhizobium , Vigna , Ferro , RNA Ribossômico 16S/genética , Fabaceae/genética , Simbiose , Mineração , Filogenia , Nódulos Radiculares de Plantas/microbiologia
18.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232345

RESUMO

The evolution of chromosome number and ribosomal DNA (rDNA) loci number and localisation were studied in Onobrychis Mill. Diploid and tetraploid species, as well as two basic chromosome numbers, x = 7 and x = 8, were observed among analysed taxa. The chromosomal distribution of rDNA loci was presented here for the first time using fluorescence in situ hybridisation (FISH) with 5S and 35S rDNA probes. Onobrychis species showed a high polymorphism in the number and localisation of rDNA loci among diploids, whereas the rDNA loci pattern was very similar in polyploids. Phylogenetic relationships among the species, inferred from nrITS sequences, were used as a framework to reconstruct the patterns of basic chromosome number and rDNA loci evolution. Analysis of the evolution of the basic chromosome numbers allowed the inference of x = 8 as the ancestral number and the descending dysploidy and polyploidisation as the major mechanisms of the chromosome number evolution. Analyses of chromosomal patterns of rRNA gene loci in a phylogenetic context resulted in the reconstruction of one locus of 5S rDNA and one locus of 35S rDNA in the interstitial chromosomal position as the ancestral state in this genus.


Assuntos
Cromossomos de Plantas , Fabaceae , Cromossomos de Plantas/genética , DNA de Plantas/genética , DNA Ribossômico/genética , Evolução Molecular , Fabaceae/genética , Filogenia
19.
Arch Microbiol ; 204(10): 644, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163309

RESUMO

A Gram-stain-negative, orange, aerobic, non-motile, rod-shaped marine bacterium, designated as 2V75T, was isolated from the coastal sediment of Xiaoshi Island, Weihai, China. The strain 2V75T grew at 20-45 °C (optimum, 37 °C), from pH 7.0 to 9.0 (optimum, pH 7.0) and in the presence of 0.5-5% (w/v) NaCl (optimum, 3%). Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain 2V75T was affiliated to the genus Robiginitalea and had the highest sequence similarity with R. biformata KCTC 12146T (93.7%). The ANI values between strain 2V75T and R. biformata KCTC 12146T were 72.6%, respectively. The DNA G + C content was 54.8 mol%. MK-6 was the only respiratory quinone. Based on the phenotypic, phylogenetic and chemotaxonomic data, strain 2V75T should be classified as a novel species in the genus Robiginitalea, for which the name Robiginitalea marina is proposed. The type strain is 2V75T (= KCTC 92035T = MCCC 1H00484T).


Assuntos
Fabaceae , Flavobacteriaceae , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Fabaceae/genética , Ácidos Graxos/química , Sedimentos Geológicos/microbiologia , Filogenia , Quinonas , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Cloreto de Sódio
20.
Sheng Wu Gong Cheng Xue Bao ; 38(8): 2989-2998, 2022 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-36002426

RESUMO

To study the molecular mechanism of salt stress response of peanut small GTP binding protein gene AhRabG3f, a 1 914 bp promoter fragment upstream of the start codon of AhRabG3f gene (3f-P) from peanut was cloned. Subsequently, five truncated fragments (3f-P1-3f-P5) with lengths of 1 729, 1 379, 666, 510 and 179 bp were obtained through deletion at the 5' end, respectively. Plant expression vectors where these six promoter fragments were fused with the gus gene were constructed and transformed into tobacco by Agrobacterium-mediated method, respectively. GUS expression in transgenic tobacco and activity analysis were conducted. The gus gene expression can be detected in the transgenic tobacco harboring each promoter segment, among which the driving activity of the full-length promoter 3f-P was the weakest, while the driving activity of the promoter segment 3f-P3 was the strongest. Upon exposure of the transgenic tobacco to salt stress, the GUS activity driven by 3f-P, 3f-P1, 3f-P2 and 3f-P3 was 3.3, 1.2, 1.9 and 1.2 times compared to that of the transgenic plants without salt treatment. This suggests that the AhRabG3f promoter was salt-inducible and there might be positive regulatory elements between 3f-P and 3f-P3 in response to salt stress. The results of GUS activity driven by promoter fragments after salt treatment showed that elements included MYB and GT1 between 1 930 bp and 1 745 bp. Moreover, a TC-rich repeat between 682 bp and 526 bp might be positive cis-elements responsible for salt stress, and an MYC element between 1 395 bp and 682 bp might be a negative cis-element responsible for salt stress. This study may facilitate using the induced promoter to regulate the salt resistance of peanut.


Assuntos
Arachis , Fabaceae , Arachis/genética , Fabaceae/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica de Plantas , Glucuronidase/genética , Glucuronidase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Salino , Estresse Fisiológico/genética , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA