Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 321(3): L555-L565, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34261337

RESUMO

Patients with cystic fibrosis (CF) have defective macrophage phagocytosis and efferocytosis. Several reports demonstrate that neutrophil elastase (NE), a major inflammatory protease in the CF airway, impairs macrophage phagocytic function. To date, NE-impaired macrophage phagocytic function has been attributed to cleavage of cell surface receptors or opsonins. We applied an unbiased proteomic approach to identify other potential macrophage targets of NE protease activity that may regulate phagocytic function. Using the murine macrophage cell line, RAW 264.7, human blood monocyte-derived macrophages, and primary alveolar macrophages from Cftr-null and wild-type littermate mice, we demonstrated that NE exposure blocked phagocytosis of Escherichia coli bio-particles. We performed liquid chromatography-tandem mass spectroscopy (LC-MS/MS) proteomic analysis of the conditioned media from RAW264.7 treated either with active NE or inactive (boiled) NE as a control. Out of 840 proteins identified in the conditioned media, active NE upregulated 142 proteins and downregulated 211 proteins. NE released not only cell surface proteins into the media but also cytoskeletal, mitochondrial, cytosolic, and nuclear proteins that were detected in the conditioned media. At least 32 proteins were associated with the process of phagocytosis including 11 phagocytic receptors [including lipoprotein receptor-related protein 1 (LRP1)], 7 proteins associated with phagocytic cup formation, and 14 proteins involved in phagocytic maturation (including calpain-2) and phagolysosome formation. NE had a broad effect on the proteome required for regulation of all stages of phagocytosis and phagolysosome formation. Furthermore, the NE sheddome/secretome included proteins from other macrophage cellular domains, suggesting that NE may globally regulate macrophage structure and function.


Assuntos
Elastase de Leucócito/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Fagocitose , Fagossomos/metabolismo , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Feminino , Humanos , Elastase de Leucócito/genética , Lisossomos/genética , Lisossomos/patologia , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Mutantes , Fagossomos/genética , Fagossomos/patologia , Células RAW 264.7
2.
Biomed Pharmacother ; 139: 111582, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33895525

RESUMO

BACKGROUND: Shenmai Injection (SMI) has been widely used in the treatment of cardiovascular diseases and can reduce side effects when combined with chemotherapy drugs. However, the potential protective mechanism of SMI on the cardiotoxicity caused by anthracyclines has not been clear. METHODS: We used network pharmacology methods to collect the compound components in SMI and myocardial injury targets, constructed a 'drug-disease' target interaction network relationship diagram, and screened the core targets to predict the potential mechanism of SMI in treating cardiotoxicity of anthracyclines. In addition, the rat model of doxorubicin cardiotoxicity was induced by injecting doxorubicin through the tail vein. The rats were randomized in the model group, miR-30a agomir group, SMI low-dose group, SMI high-dose group,and the control group. The cardiac ultrasound was used to evaluate the structure and function of the rat heart. HE staining was used to observe the pathological changes of the rat myocardium. Transmission electron microscopy was used to observe myocardial autophagosomes. The expression of miR-30a and Beclin 1 mRNA in the rat myocardium was detected by RT-qPCR. Western Blot detected the expression of LC3-II/LC3-I and p62 protein. RESULTS: The network pharmacological analysis found that SMI could act synergistically through multiple targets and multiple pathways, which might exert a myocardial protective effect through PI3K-Akt signaling pathways and cancer microRNAs. In vivo, compared with the control group, the treatment group could improve the cardiac structure and function, and reduce myocardial pathological damage and the number of autophagosomes. The expression of miR-30a in the myocardium of rats in miR-30a agomir group and SMI group increased (P < 0.01),Beclin 1 mRNA was decreased (P < 0.01),LC3-Ⅱ/LC3-I protein was decreased (P < 0.01 or P < 0.05),and p62 protein was increased (P < 0.01 or P < 0.05). CONCLUSIONS: SMI has the characteristics of multi-component, multi-target, and multi-pathway. It can inhibit myocardial excessive autophagy by regulating the expression of miR-30a/Beclin 1 and alleviate the myocardial injury induced by doxorubicin.


Assuntos
Proteína Beclina-1/efeitos dos fármacos , Doxorrubicina/antagonistas & inibidores , Doxorrubicina/toxicidade , Medicamentos de Ervas Chinesas/farmacologia , MicroRNAs/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Cardiotoxicidade/prevenção & controle , Combinação de Medicamentos , Medicamentos de Ervas Chinesas/administração & dosagem , Ecocardiografia , Masculino , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Miocárdio/patologia , Proteína Oncogênica v-akt/efeitos dos fármacos , Fagossomos/patologia , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
3.
Exp Neurol ; 333: 113430, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32745471

RESUMO

High-capacity mitochondrial calcium (Ca2+) uptake by the mitochondrial Ca2+ uniporter (MCU) is strategically positioned to support the survival and remyelination of axons in multiple sclerosis (MS) by undocking mitochondria, buffering Ca2+ and elevating adenosine triphosphate (ATP) synthesis at metabolically stressed sites. Respiratory chain deficits in MS are proposed to metabolically compromise axon survival and remyelination by suppressing MCU activity. In support of this hypothesis, clinical scores, mitochondrial dysfunction, myelin loss, axon damage and inflammation were elevated while remyelination was blocked in neuronal MCU deficient (Thy1-MCU Def) mice relative to Thy1 controls subjected to experimental autoimmune encephalomyelitis (EAE). At the first sign of walking deficits, mitochondria in EAE/Thy1 axons showed signs of activation. By contrast, cytoskeletal damage, fragmented mitochondria and large autophagosomes were seen in EAE/Thy1-MCU Def axons. As EAE severity increased, EAE/Thy1 axons were filled with massively swollen mitochondria with damaged cristae while EAE/Thy1-MCU Def axons were riddled with late autophagosomes. ATP concentrations and mitochondrial gene expression were suppressed while calpain activity, autophagy-related gene mRNA levels and autophagosome marker (LC3) co-localization in Thy1-expressing neurons were elevated in the spinal cords of EAE/Thy1-MCU Def compared to EAE/Thy1 mice. These findings suggest that MCU inhibition contributes to axonal damage that drives MS progression.


Assuntos
Canais de Cálcio/deficiência , Encefalomielite Autoimune Experimental/patologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/deficiência , Bainha de Mielina/patologia , Neurônios/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Autofagia/genética , Axônios/patologia , Canais de Cálcio/genética , Transtornos Neurológicos da Marcha/genética , Transtornos Neurológicos da Marcha/patologia , Expressão Gênica/genética , Masculino , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Dilatação Mitocondrial , Fagossomos/patologia , Medula Espinal/patologia
4.
Exp Cell Res ; 392(1): 112013, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32320683

RESUMO

Apoptotic cell death frequently occurs in human cancer tissues including oral squamous cell carcinoma (SCC), wherein apoptotic tumor cells are phagocytosed not only by macrophages but also by neighboring tumor cells. We previously reported that the engulfment of apoptotic SCC cells by neighboring SCC cells frequently occurs at the invading front. Therefore, we hypothesized that the phagocytosis of these apoptotic cells by tumor cells contributes to disease progression. Herein, using cultured oral SCC cells, we aimed to confirm whether tumor cells actually phagocytose apoptotic cells and to examine whether cellular activities are regulated by the phagocytosis of apoptotic cells. Co-culture experiments showed that living cells could ingest apoptotic cells into phagolysosomes. NSC23766, an inhibitor of Rac1, which is a key regulator of phagocytic cup formation in professional phagocytes, dramatically suppressed the phagocytosis of apoptotic cells by living cells. Additionally, cell migration and the secretion of DKK1, a tumor-promoting protein, were enhanced by co-culture with apoptotic cells, whereas NSC23766 inhibited these effects. These results show that tumor cells can actively phagocytose apoptotic neighbors in a Rac1-dependent manner and that such activity increases their migration. The regulation of apoptotic cell phagocytosis thus represents new directions for therapeutic intervention for oral cancer.


Assuntos
Apoptose/genética , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/patologia , Fagocitose/genética , Proteínas rac1 de Ligação ao GTP/fisiologia , Aminoquinolinas/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Células Cultivadas , Progressão da Doença , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Neoplasias Bucais/genética , Fagócitos/efeitos dos fármacos , Fagócitos/fisiologia , Fagocitose/efeitos dos fármacos , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Fagossomos/patologia , Pirimidinas/farmacologia , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores
5.
J Immunol ; 204(5): 1345-1361, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31969389

RESUMO

Aggregation of α-synuclein (αSN) is an important histological feature of Parkinson disease. Recent studies showed that the release of misfolded αSN from human and rodent neurons is relevant to the progression and spread of αSN pathology. Little is known, however, about the mechanisms responsible for clearance of extracellular αSN. This study found that human complement receptor (CR) 4 selectively bound fibrillar αSN, but not monomeric species. αSN is an abundant protein in the CNS, which potentially could overwhelm clearance of cytotoxic αSN species. The selectivity of CR4 toward binding fibrillar αSN consequently adds an important αSN receptor function for maintenance of brain homeostasis. Based on the recently solved structures of αSN fibrils and the known ligand preference of CR4, we hypothesize that the parallel monomer stacking in fibrillar αSN creates a known danger-associated molecular pattern of stretches of anionic side chains strongly bound by CR4. Conformational change in the receptor regulated tightly clearance of fibrillar αSN by human monocytes. The induced change coupled concomitantly with phagolysosome formation. Data mining of the brain transcriptome in Parkinson disease patients supported CR4 as an active αSN clearance mechanism in this disease. Our results associate an important part of the innate immune system, namely complement receptors, with the central molecular mechanisms of CNS protein aggregation in neurodegenerative disorders.


Assuntos
Integrina alfaXbeta2 , Macrófagos , Doença de Parkinson , Fagossomos , Agregação Patológica de Proteínas , alfa-Sinucleína , Humanos , Integrina alfaXbeta2/química , Integrina alfaXbeta2/genética , Integrina alfaXbeta2/imunologia , Macrófagos/imunologia , Macrófagos/patologia , Doença de Parkinson/genética , Doença de Parkinson/imunologia , Doença de Parkinson/patologia , Fagossomos/química , Fagossomos/genética , Fagossomos/imunologia , Fagossomos/patologia , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/imunologia , Agregação Patológica de Proteínas/patologia , Estrutura Quaternária de Proteína , alfa-Sinucleína/química , alfa-Sinucleína/genética , alfa-Sinucleína/imunologia
6.
Front Immunol ; 11: 600033, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391268

RESUMO

Studies have endeavored to understand the cause for impaired antimicrobial killing by neutrophils of people with cystic fibrosis (PWCF). The aim of this study was to focus on the bacterial phagosome. Possible alterations in degranulation of cytoplasmic granules and changes in pH were assessed. Circulating neutrophils were purified from PWCF (n = 28), PWCF receiving ivacaftor therapy (n = 10), and healthy controls (n = 28). Degranulation was assessed by Western blot analysis and flow cytometry. The pH of phagosomes was determined by use of BCECF-AM-labelled Staphylococcus aureus or SNARF labelled Candida albicans. The antibacterial effect of all treatments tested was determined by colony forming units enumeration. Bacterial killing by CF and healthy control neutrophils were found to differ (p = 0.0006). By use of flow cytometry and subcellular fractionation the kinetics of intraphagosomal degranulation were found to be significantly altered in CF phagosomes, as demonstrated by increased primary granule CD63 (p = 0.0001) and myeloperoxidase (MPO) content (p = 0.03). In contrast, decreased secondary and tertiary granule CD66b (p = 0.002) and decreased hCAP-18 and MMP-9 (p = 0.02), were observed. After 8 min phagocytosis the pH in phagosomes of neutrophils of PWCF was significantly elevated (p = 0.0001), and the percentage of viable bacteria was significantly increased compared to HC (p = 0.002). Results demonstrate that the recorded alterations in phagosomal pH generate suboptimal conditions for MPO related peroxidase, and α-defensin and azurocidine enzymatic killing of Staphylococcus aureus and Pseudomonas aeruginosa. The pattern of dysregulated MPO degranulation (p = 0.02) and prolonged phagosomal alkalinization in CF neutrophils were normalized in vivo following treatment with the ion channel potentiator ivacaftor (p = 0.04). Our results confirm that alterations of circulating neutrophils from PWCF are corrected by CFTR modulator therapy, and raise a question related to possible delayed proton channel activity in CF.


Assuntos
Candida albicans/imunologia , Degranulação Celular/imunologia , Fibrose Cística/imunologia , Neutrófilos/imunologia , Fagossomos/imunologia , Staphylococcus aureus/imunologia , Adulto , Fibrose Cística/microbiologia , Fibrose Cística/patologia , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Neutrófilos/microbiologia , Neutrófilos/patologia , Fagossomos/microbiologia , Fagossomos/patologia
7.
J Clin Invest ; 130(2): 655-661, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31647784

RESUMO

Tuberculosis (TB) remains a major infectious disease worldwide. TB treatment displays a biphasic bacterial clearance, in which the majority of bacteria clear within the first month of treatment, but residual bacteria remain nonresponsive to treatment and eventually may become resistant. Here, we have shown that Mycobacterium tuberculosis was taken up by mesenchymal stem cells (MSCs), where it established dormancy and became highly nonresponsive to isoniazid, a major constituent of directly observed treatment short course (DOTS). Dormant M. tuberculosis induced quiescence in MSCs and promoted their long-term survival. Unlike macrophages, where M. tuberculosis resides in early-phagosomal compartments, in MSCs the majority of bacilli were found in the cytosol, where they promoted rapid lipid synthesis, hiding within lipid droplets. Inhibition of lipid synthesis prevented dormancy and sensitized the organisms to isoniazid. Thus, we have established that M. tuberculosis gains dormancy in MSCs, which serve as a long-term natural reservoir of dormant M. tuberculosis. Interestingly, in the murine model of TB, induction of autophagy eliminated M. tuberculosis from MSCs, and consequently, the addition of rapamycin to an isoniazid treatment regimen successfully attained sterile clearance and prevented disease reactivation.


Assuntos
Morte Celular Autofágica , Reprogramação Celular , Células-Tronco Mesenquimais , Mycobacterium tuberculosis , Tuberculose , Animais , Modelos Animais de Doenças , Humanos , Lipídeos/biossíntese , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/microbiologia , Células-Tronco Mesenquimais/patologia , Camundongos , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Fagossomos/metabolismo , Fagossomos/microbiologia , Fagossomos/patologia , Tuberculose/metabolismo , Tuberculose/patologia
8.
J Cell Biol ; 218(9): 3039-3059, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31337623

RESUMO

The spirochete Borrelia burgdorferi, the causative agent of Lyme disease, is internalized by macrophages and processed in phagolysosomes. Phagosomal compaction, a crucial step in phagolysosome maturation, is driven by contact of Rab5a-positive vesicles with the phagosomal coat. We show that the sorting nexin SNX3 is transported with Rab5a vesicles and that its PX domain enables vesicle-phagosome contact by binding to PI(3)P in the phagosomal coat. Moreover, the C-terminal region of SNX3 recruits galectin-9, a lectin implicated in protein and membrane recycling, which we identify as a further regulator of phagosome compaction. SNX3 thus forms a hub for two distinct vesicle populations, constituting a convergence point for the endosomal recycling machinery, to contribute to phagosome maturation and intracellular processing of borreliae. These data also suggest that the helical shape of B. burgdorferi itself, providing sites of high curvature and thus local PI(3)P enrichment at phagosomes, may be one of the driving elements underlying the efficient elimination of spirochetes by immune cells.


Assuntos
Borrelia burgdorferi/metabolismo , Galectinas/metabolismo , Doença de Lyme/metabolismo , Monócitos , Fagossomos , Fosfatos de Fosfatidilinositol/metabolismo , Nexinas de Classificação/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Humanos , Doença de Lyme/patologia , Monócitos/metabolismo , Monócitos/microbiologia , Monócitos/patologia , Fagossomos/metabolismo , Fagossomos/microbiologia , Fagossomos/patologia
9.
J Immunol Methods ; 468: 55-60, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30880262

RESUMO

Antibody-based therapeutics are powerful tools to treat disease. While their mechanism of action (MOA) always involves binding to a specific target via the Fab region of the antibody, the induction of effector functions through the Fc region of the antibody is equally important for antibody therapeutics designed to deplete tumor cells. By binding of the Fc region to Fc gamma receptors (FcγRs) on the surface of immune cells or complement factors, antibody therapeutics exert effector functions such as antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), both of which induce target cell death and aid in the efficacy of treatment. Another major Fc effector function is antibody-dependent cellular phagocytosis (ADCP). ADCP is the mechanism by which antibody-opsonized target cells activate the FcγRs on the surface of macrophages to induce phagocytosis, resulting in internalization and degradation of the target cell through phagosome acidification. ADCP has been implicated as a major MOA of several biologics, but this activity is difficult to measure in in vitro. Most assays measure the association of target cells and macrophages; however, co-localization can represent cell attachment rather than internalization. Here, we describe the development of a novel method to accurately measure ADCP activity. By labeling target cells with a pH sensitive dye that only fluoresces in mature phagosomes, the ADCP activity of antibody therapeutics can be accurately quantitated via flow cytometry.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos Imunológicos/farmacologia , Citotoxicidade Imunológica/efeitos dos fármacos , Citometria de Fluxo , Corantes Fluorescentes/metabolismo , Macrófagos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Fagocitose/efeitos dos fármacos , Fagossomos/efeitos dos fármacos , Rituximab/farmacologia , Anticorpos Monoclonais Humanizados/metabolismo , Linhagem Celular Tumoral , Glicosilação , Humanos , Concentração de Íons de Hidrogênio , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Fagossomos/imunologia , Fagossomos/metabolismo , Fagossomos/patologia , Receptores de IgG/metabolismo , Rituximab/metabolismo
10.
Proc Natl Acad Sci U S A ; 115(40): 10118-10123, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30217896

RESUMO

Intestinal epithelial cells (IECs) play a key role in regulating immune responses and controlling infection. However, the direct role of IECs in restricting pathogens remains incompletely understood. Here, we provide evidence that IL-22 primed intestinal organoids derived from healthy human induced pluripotent stem cells (hIPSCs) to restrict Salmonella enterica serovar Typhimurium SL1344 infection. A combination of transcriptomics, bacterial invasion assays, and imaging suggests that IL-22-induced antimicrobial activity is driven by increased phagolysosomal fusion in IL-22-pretreated cells. The antimicrobial phenotype was absent in hIPSCs derived from a patient harboring a homozygous mutation in the IL10RB gene that inactivates the IL-22 receptor but was restored by genetically complementing the IL10RB deficiency. This study highlights a mechanism through which the IL-22 pathway facilitates the human intestinal epithelium to control microbial infection.


Assuntos
Células Epiteliais/imunologia , Células-Tronco Pluripotentes Induzidas/imunologia , Interleucinas/imunologia , Mucosa Intestinal/imunologia , Fagossomos/imunologia , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/microbiologia , Células-Tronco Pluripotentes Induzidas/patologia , Subunidade beta de Receptor de Interleucina-10/genética , Subunidade beta de Receptor de Interleucina-10/imunologia , Subunidade alfa de Receptor de Interleucina-21/genética , Subunidade alfa de Receptor de Interleucina-21/imunologia , Interleucinas/genética , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Fagossomos/genética , Fagossomos/microbiologia , Fagossomos/patologia , Infecções por Salmonella/genética , Infecções por Salmonella/patologia , Salmonella typhimurium/genética , Interleucina 22
11.
Autophagy ; 14(11): 1928-1942, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30165781

RESUMO

CASP4/caspase-11-dependent inflammasome activation is important for the clearance of various Gram-negative bacteria entering the host cytosol. Additionally, CASP4 modulates the actin cytoskeleton to promote the maturation of phagosomes harboring intracellular pathogens such as Legionella pneumophila but not those enclosing nonpathogenic bacteria. Nevertheless, this non-inflammatory role of CASP4 regarding the trafficking of vacuolar bacteria remains poorly understood. Macroautophagy/autophagy, a catabolic process within eukaryotic cells, is also implicated in the elimination of intracellular pathogens such as Burkholderia cenocepacia. Here we show that CASP4-deficient macrophages exhibit a defect in autophagosome formation in response to B. cenocepacia infection. The absence of CASP4 causes an accumulation of the small GTPase RAB7, reduced colocalization of B. cenocepacia with LC3 and acidic compartments accompanied by increased bacterial replication in vitro and in vivo. Together, our data reveal a novel role of CASP4 in regulating autophagy in response to B. cenocepacia infection.


Assuntos
Autofagossomos/metabolismo , Autofagia/genética , Infecções Bacterianas/imunologia , Burkholderia cenocepacia/imunologia , Caspases/fisiologia , Animais , Autofagossomos/microbiologia , Autofagia/imunologia , Infecções Bacterianas/genética , Infecções Bacterianas/metabolismo , Infecções por Burkholderia/genética , Infecções por Burkholderia/imunologia , Infecções por Burkholderia/metabolismo , Burkholderia cenocepacia/metabolismo , Caspases/genética , Caspases Iniciadoras , Células Cultivadas , Escherichia coli/imunologia , Escherichia coli/metabolismo , Inflamassomos/genética , Inflamassomos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagossomos/genética , Fagossomos/metabolismo , Fagossomos/microbiologia , Fagossomos/patologia
12.
Biochem Biophys Res Commun ; 503(4): 2690-2697, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30100066

RESUMO

Optineurin (OPTN) mutations are linked to glaucoma pathology and E50K mutation shows massive cell death in photoreceptor cells and retinal ganglion cells. However, little is known about E50K-mediated mitochondrial dysfunction in photoreceptor cell degeneration. We here show that overexpression of E50K expression triggered BDNF deficiency, leading to Bax activation in RGC-5 cells. BDNF deficiency induced mitochondrial dysfunction by decreasing mitochondrial maximal respiration and reducing intracellular ATP level in RGC-5 cells. However, BDNF deficiency did not alter mitochondrial dynamics. Also, BDNF deficiency resulted in LC3-mediated mitophagosome formation in RGC-5 cells. These results strongly suggest that E50K-mediated BDNF deficiency plays a critical role in compromised mitochondrial function in glaucomatous photoreceptor cell degeneration.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Fator de Transcrição TFIIIA/genética , Proteína X Associada a bcl-2/genética , Trifosfato de Adenosina/biossíntese , Substituição de Aminoácidos , Animais , Fator Neurotrófico Derivado do Encéfalo/deficiência , Linhagem Celular , Regulação da Expressão Gênica , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/patologia , Mutação , Fosforilação Oxidativa , Fagossomos/metabolismo , Fagossomos/patologia , Células Fotorreceptoras de Vertebrados/patologia , Ratos , Transdução de Sinais , Fator de Transcrição TFIIIA/metabolismo , Proteína X Associada a bcl-2/metabolismo
13.
PLoS One ; 13(8): e0201747, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30071097

RESUMO

Leishmania parasites cause a set of neglected tropical diseases with considerable public health impact, the leishmaniases, which are often fatal if left untreated. Since current treatments for the leishmaniases exhibit high toxicity, low efficacy and prohibitive prices, many laboratories throughout the world are engaged in research for the discovery of novel chemotherapeutics. This entails the necessity of screening large numbers of compounds against the clinically relevant form of the parasite, the obligatory intracellular amastigote, a procedure that in many laboratories is still carried out by manual inspection. To overcome this well-known bottleneck in Leishmania drug development, several studies have recently attempted to automate this process. Here we implemented an image-based high content triage assay for Leishmania which has the added advantages of using primary macrophages instead of macrophage cell lines and of enabling identification of active compounds against parasite species developing both in small individual phagolysosomes (such as L. infantum) and in large communal vacuoles (such as L. amazonensis). The automated image analysis protocol is made available for IN Cell Analyzer systems, and, importantly, also for the open-source CellProfiler software, in this way extending its implementation to any laboratory involved in drug development as well as in other aspects of Leishmania research requiring analysis of in vitro infected macrophages.


Assuntos
Leishmania/citologia , Leishmaniose/diagnóstico por imagem , Macrófagos/parasitologia , Microscopia , Reconhecimento Automatizado de Padrão/métodos , Anfotericina B/farmacologia , Animais , Antiprotozoários/farmacologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Fêmur , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos Endogâmicos BALB C , Microscopia/métodos , Fagossomos/efeitos dos fármacos , Fagossomos/parasitologia , Fagossomos/patologia , Software , Tíbia , Vacúolos/efeitos dos fármacos , Vacúolos/parasitologia , Vacúolos/patologia
14.
Tuberculosis (Edinb) ; 111: 67-70, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30029917

RESUMO

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) complex remains a deadly infectious disease worldwide. Mtb is an intracellular pathogen, and autophagy is an essential component of the immune response leading to TB clearance. Anti-TB treatment is based on classical isoniazid (INH) and rifampicin (RIF), but also new drugs, such as linezolid (LNZ) and bedaquiline (BDQ). However, little is known about these antibiotics' impact on Mtb intra-macrophagic behavior independent of their impact on host cells. We explored the effect of mycobacterial pre-treatment with these four antibiotics on the intra-macrophagic Mtb survival and trafficking, thanks to bacterial counts and microscopy confocal imaging. Our results showed that INH and BDQ impaired Mtb phagosome escape, RIF increased autolysosome formation, and LNZ and BDQ improved autophagy activation and efficacy. These data suggest that antibiotics favoring autophagy activation (LNZ and BDQ) may allowed better Mtb clearance by macrophages and could provide basis for future anti-TB strategies.


Assuntos
Antituberculosos/farmacologia , Autofagia/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Fagossomos/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Diarilquinolinas/farmacologia , Interações Hospedeiro-Patógeno , Humanos , Isoniazida/farmacologia , Linezolida/farmacologia , Macrófagos/microbiologia , Macrófagos/patologia , Mycobacterium tuberculosis/patogenicidade , Fagossomos/microbiologia , Fagossomos/patologia , Rifampina/farmacologia , Tuberculose/microbiologia , Tuberculose/patologia , Células U937
15.
J Immunol ; 201(5): 1421-1433, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30037848

RESUMO

Phagosome maturation is an important innate defense mechanism of macrophages against bacterial infections. The mycobacterial secretory protein kinase G (PknG), a serine/threonine kinase, is known to block phagosome-lysosome (P-L) fusion, and the kinase activity of PknG appears to be crucial for this. However, the detail mechanisms are not well understood. In the current study, we demonstrate that PknG of Mycobacterium sp interacts with the human Rab GTPase protein, Rab7l1, but not with other Rab proteins as well as factors like Rabaptin, Rabex5, PI3K3, Mon1a, Mon1b, early endosome autoantigen 1, and LAMP2 that are known to play crucial roles in P-L fusion. The Rab7l1 protein is shown to play a role in P-L fusion during mycobacterial infection, and its absence promotes survival of bacilli inside macrophages. PknG was found to be translocated to the Golgi complex where it interacted with GDP-bound Rab7l1 and blocked transition of inactive Rab7l1-GDP to active Rab7l1-GTP, resulting in inhibition of recruitment of Rab7l1-GTP to bacilli-containing phagosomes, and these processes are dependent on the kinase activity of PknG. Localization of Rab7l1-GTP to phagosomes was found to be critical for the subsequent recruitment of other phago-lysosomal markers like early endosome autoantigen 1, Rab7, and LAMP2 during infection. Thus, by interfering with the Rab7l1 signaling process, PknG prevents P-L fusion and favors bacterial survival inside human macrophages. This study highlights a novel role of Rab7l1 in the phagosomal maturation process and hints at unique strategies of mycobacteria used to interfere with Rab7l1 function to favor its survival inside human macrophages.


Assuntos
Proteínas de Bactérias/imunologia , Proteínas Quinases Dependentes de GMP Cíclico/imunologia , Lisossomos/imunologia , Macrófagos/imunologia , Mycobacterium/imunologia , Fagocitose , Fagossomos/imunologia , Transdução de Sinais/imunologia , Proteínas de Bactérias/genética , Proteínas Quinases Dependentes de GMP Cíclico/genética , Células HEK293 , Humanos , Lisossomos/genética , Lisossomos/microbiologia , Macrófagos/microbiologia , Macrófagos/patologia , Fusão de Membrana/imunologia , Mycobacterium/genética , Fagossomos/genética , Fagossomos/microbiologia , Fagossomos/patologia , Células THP-1 , Proteínas rab de Ligação ao GTP , Proteínas rab1 de Ligação ao GTP
16.
PLoS Pathog ; 14(6): e1007144, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29906292

RESUMO

Cryptococcus neoformans is a facultative intracellular pathogen and its interaction with macrophages is a key event determining the outcome of infection. Urease is a major virulence factor in C. neoformans but its role during macrophage interaction has not been characterized. Consequently, we analyzed the effect of urease on fungal-macrophage interaction using wild-type, urease-deficient and urease-complemented strains of C. neoformans. The frequency of non-lytic exocytosis events was reduced in the absence of urease. Urease-positive C. neoformans manifested reduced and delayed intracellular replication with fewer macrophages displaying phagolysosomal membrane permeabilization. The production of urease was associated with increased phagolysosomal pH, which in turn reduced growth of urease-positive C. neoformans inside macrophages. Interestingly, the ure1 mutant strain grew slower in fungal growth medium which was buffered to neutral pH (pH 7.4). Mice inoculated with macrophages carrying urease-deficient C. neoformans had lower fungal burden in the brain than mice infected with macrophages carrying wild-type strain. In contrast, the absence of urease did not affect survival of yeast when interacting with amoebae. Because of the inability of the urease deletion mutant to grow on urea as a sole nitrogen source, we hypothesize urease plays a nutritional role involved in nitrogen acquisition in the environment. Taken together, our data demonstrate that urease affects fitness within the mammalian phagosome, promoting non-lytic exocytosis while delaying intracellular replication and thus reducing phagolysosomal membrane damage, events that could facilitate cryptococcal dissemination when transported inside macrophages. This system provides an example where an enzyme involved in nutrient acquisition modulates virulence during mammalian infection.


Assuntos
Encéfalo/patologia , Criptococose/patologia , Cryptococcus neoformans/enzimologia , Macrófagos/patologia , Fagossomos/patologia , Urease/metabolismo , Virulência , Animais , Encéfalo/enzimologia , Encéfalo/microbiologia , Células Cultivadas , Criptococose/microbiologia , Feminino , Concentração de Íons de Hidrogênio , Macrófagos/enzimologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Fagossomos/enzimologia , Urease/genética , Fatores de Virulência/metabolismo
17.
Neurourol Urodyn ; 37(8): 2414-2424, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29797356

RESUMO

AIMS: To explore whether autophagy plays a role in the remodeling of bladder smooth muscle cells (SMCs) in children with neurogenic lower urinary tract dysfunction (NLUTD), we investigated the effect of autophagy in NLUTD in the paediatric population. METHODS: Bladder biopsies were taken from children with NLUTD and healthy donors as controls. Samples were labeled with the SMC markers calponin, smoothelin, and the autophagy proteins LC3, ATG5, and Beclin1. The contractile ability of bladder derived SMCs was investigated. RESULTS: ATG5 gene and protein was upregulated in NLUTD muscle tissue compared to normal bladder. NLUTD muscle exhibited a punctated immunostaining pattern for LC3 in a subset of the SMCs, confirming the accumulation of autophagosomes. Pronounced elevation of ATG5 in the SMC in NLUTD tissue was associated with a downregulation of the key contractile proteins smoothelin and calponin. Pharmacological blocking of autophagy completely stopped the cells growth in normal bladder SMCs. Inhibition of autophagy in the NLUTD SMCs, with already elevated levels of ATG5, resulted in a reduction of ATG5 protein expression to the basal level found in normal controls. CONCLUSIONS: Our study suggests that autophagy is an important factor affecting the remodeling of SMCs and the alteration of functionality in bladder smooth muscle tissue in the NLUTD. Since autophagy can be influenced by oral medication, this finding might lead to novel strategies preventing the deterioration of NLUTD muscle.


Assuntos
Autofagia , Sintomas do Trato Urinário Inferior/fisiopatologia , Músculo Liso/fisiopatologia , Bexiga Urinaria Neurogênica/fisiopatologia , Autofagia/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/biossíntese , Proteína 5 Relacionada à Autofagia/genética , Biópsia , Criança , Feminino , Expressão Gênica , Humanos , Sintomas do Trato Urinário Inferior/genética , Masculino , Músculo Liso/efeitos dos fármacos , Fagossomos/patologia , Bexiga Urinaria Neurogênica/genética
18.
Methods Mol Biol ; 1765: 167-175, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29589307

RESUMO

Autophagy protects colorectal cancer cells against therapeutic intervention. Autophagy is a continuous process, and autophagic flux requires both autophagosome synthesis and their subsequent degradation at lysosomes. Hence, cells with elevated autophagic flux display both rapid autophagosome generation and degradation. Here, we describe an immunoblot protocol coupled to pharmaceutical inhibition of autophagosome clearance to monitor autophagic flux levels between colorectal cancer cell lines.


Assuntos
Autofagia/efeitos dos fármacos , Western Blotting/métodos , Técnicas de Cultura de Células/métodos , Neoplasias Colorretais/patologia , Western Blotting/instrumentação , Técnicas de Cultura de Células/instrumentação , Linhagem Celular Tumoral , Humanos , Lipopeptídeos/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia , Macrolídeos/farmacologia , Proteínas Associadas aos Microtúbulos/análise , Proteínas Associadas aos Microtúbulos/metabolismo , Fagossomos/metabolismo , Fagossomos/patologia
19.
Neurochem Int ; 117: 174-187, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28532681

RESUMO

Parkinsonian-like motor deficits in Huntington's Disease (HD) patients are associated with abnormal dopamine neurotransmission in the striatum. Dopamine metabolism leads to the formation of oxidized dopamine quinones that exacerbates mitochondrial dysfunction with production of reactive oxygen species (ROS) that eventually lead to neuronal cell death. We have previously shown that dopamine-induced oxidative stress triggers apoptotic cell death in dopaminergic neuroblastoma SH-SY5Y cells hyper-expressing the mutant polyQ Huntingtin (polyQ-Htt) protein. Dopamine toxicity was paralleled by impaired autophagy clearance of the polyQ-Htt aggregates. In this study, we found that Dopamine affects the stability and function of ATG4, a redox-sensitive cysteine-protein involved in the processing of LC3, a key step in the formation of autophagosomes. Resveratrol, a dietary polyphenol with anti-oxidant and pro-autophagic properties, has shown neuroprotective potential in HD. Yet the molecular mechanism through which Resveratrol can protect HD cells against DA is not known. Here, we show that Resveratrol prevents the generation of ROS, restores the level of ATG4, allows the lipidation of LC3, facilitates the degradation of polyQ-Htt aggregates and protects the cells from Dopamine toxicity. The present findings provide a mechanistic explanation of the neuroprotective activity of Resveratrol and support its inclusion in a therapeutic regimen to slow down HD progression.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/efeitos dos fármacos , Cisteína Endopeptidases/metabolismo , Dopamina/toxicidade , Proteína Huntingtina/biossíntese , Fármacos Neuroprotetores/farmacologia , Fagossomos/efeitos dos fármacos , Resveratrol/farmacologia , Antioxidantes/farmacologia , Autofagia/fisiologia , Linhagem Celular Tumoral , Humanos , Proteína Huntingtina/genética , Mutação/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fagossomos/metabolismo , Fagossomos/patologia
20.
Biochem Biophys Res Commun ; 464(4): 975-981, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26188509

RESUMO

Obstructive sleep apnea syndrome (OSAS) is usually associated with multiple cardiovascular disorders, including myocardial hypertrophy. Melatonin protects the heart from damaging conditions. However, whether melatonin alleviates heart damage induced by chronic intermittent hypoxia (CIH) is unknown. We investigated the melatonin-induced protective role of AMPK-regulated autophagy in the myocardium by exposing rats to CIH and treating them with melatonin or saline daily for six weeks. In vivo, CIH induced significant myocardial hypertrophy; this trend was strikingly reversed by melatonin. Moreover, AMPK activation and autophagy was enhanced, and the number of autophagosomes increased. CIH induced apoptosis of cardiomyocytes; this was significantly mitigated by melatonin. In vitro, CIH induced hypertrophic changes in cardiomyocytes; this effect was significantly reversed by melatonin. Autophagy decreased after AMPK inhibition, and we found that autophagy was required for the protective function of melatonin. Our results suggest that melatonin ameliorates cardiac hypertrophy caused by CIH by inducing autophagy via the AMPK pathway and by autophagy-regulated apoptosis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Cardiomegalia/prevenção & controle , Hipóxia/complicações , Melatonina/farmacologia , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Animais , Cardiomegalia/enzimologia , Cardiomegalia/etiologia , Cardiotônicos/farmacologia , Linhagem Celular , Doença Crônica , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Humanos , Masculino , Melatonina/fisiologia , Microscopia Eletrônica de Transmissão , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Fagossomos/efeitos dos fármacos , Fagossomos/patologia , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Apneia Obstrutiva do Sono/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA