Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
1.
Autophagy ; 16(2): 289-312, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30990365

RESUMO

Although cocaine exposure has been shown to potentiate neuroinflammation by upregulating glial activation in the brain, the role of mitophagy in this process remains an enigma. In the present study, we sought to examine the role of impaired mitophagy in cocaine-mediated activation of microglia and to determine the ameliorative potential of superoxide dismutase mimetics in this context. Our findings demonstrated that exposure of mouse primary microglial cells (mPMs) to cocaine resulted in decreased mitochondrial membrane potential, that was accompanied by increased expression of mitophagy markers, PINK1 and PRKN. Exposure of microglia to cocaine also resulted in increased expression of DNM1L and OPTN with a concomitant decrease in the rate of mitochondrial oxygen consumption as well as impaired mitochondrial functioning. Additionally, in the presence of cocaine, microglia also exhibited upregulated expression of autophagosome markers, BECN1, MAP1LC3B-II, and SQSTM1. Taken together, these findings suggested diminished mitophagy flux and accumulation of mitophagosomes in the presence of cocaine. These findings were further confirmed by imaging techniques such as transmission electron microscopy and confocal microscopy. Cocaine-mediated activation of microglia was further monitored by assessing the expression of the microglial marker (ITGAM) and the inflammatory cytokine (Tnf, Il1b, and Il6) mRNAs. Pharmacological, as well as gene-silencing approaches aimed at blocking both the autophagy/mitophagy and SIGMAR1 expression, underscored the role of impaired mitophagy in cocaine-mediated activation of microglia. Furthermore, superoxide dismutase mimetics such as TEMPOL and MitoTEMPO were shown to alleviate cocaine-mediated impaired mitophagy as well as microglial activation.Abbreviations: 3-MA: 3-methyladenine; Δψm: mitochondrial membrane potential; ACTB: actin, beta; AIF1: allograft inflammatory factor 1; ATP: adenosine triphosphate; BAF: bafilomycin A1; BECN1: beclin 1, autophagy related; CNS: central nervous system; DNM1L: dynamin 1 like; DMEM: Dulbecco modified Eagle medium; DAPI: 4,6-Diamidino-2-phenylindole; DRD2: dopamine receptor D2; ECAR: extracellular acidification rate; FBS: fetal bovine serum; FCCP: Trifluoromethoxy carbonylcyanide phenylhydrazone; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; IL1B: interleukin 1, beta; IL6: interleukin 6; ITGAM: integrin subunit alpha M; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; mPMs: mouse primary microglial cells; MRC: maximal respiratory capacity; NFKB: nuclear factor kappa B; NLRP3: NLR family pyrin domain containing 3; NTRK2: neurotrophic receptor tyrosine kinase 2; OCR: oxygen consumption rate; OPTN: optineurin; PBS: phosphate buffered saline; PINK1: PTEN induced putative kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; siRNA: small interfering RNA; SQSTM1: sequestosome 1; TNF: tumor necrosis factor.


Assuntos
Cocaína/efeitos adversos , Microglia/patologia , Mitocôndrias/patologia , Mitofagia , Superóxido Dismutase/metabolismo , Animais , Autofagia , Proteína Beclina-1/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Óxidos N-Cíclicos , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Inativação Gênica , Mediadores da Inflamação/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/ultraestrutura , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Mitofagia/efeitos dos fármacos , Modelos Biológicos , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores sigma/metabolismo , Transdução de Sinais , Regulação para Cima/efeitos dos fármacos
2.
Nat Cell Biol ; 21(11): 1357-1369, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31659275

RESUMO

αMß2 integrin (complement receptor 3) is a major receptor for phagocytosis in macrophages. In other contexts, integrins' activities and functions are mechanically linked to actin dynamics through focal adhesions. We asked whether mechanical coupling of αMß2 integrin to the actin cytoskeleton mediates phagocytosis. We found that particle internalization was driven by formation of Arp2/3 and formin-dependent actin protrusions that wrapped around the particle. Focal complex-like adhesions formed in the phagocytic cup that contained ß2 integrins, focal adhesion proteins and tyrosine kinases. Perturbation of talin and Syk demonstrated that a talin-dependent link between integrin and actin and Syk-mediated recruitment of vinculin enable force transmission to target particles and promote phagocytosis. Altering target mechanical properties demonstrated more efficient phagocytosis of stiffer targets. Thus, macrophages use tyrosine kinase signalling to build a mechanosensitive, talin- and vinculin-mediated, focal adhesion-like molecular clutch, which couples integrins to cytoskeletal forces to drive particle engulfment.


Assuntos
Macrófagos/imunologia , Mecanotransdução Celular , Fagocitose/imunologia , Quinase Syk/genética , Talina/genética , Vinculina/genética , Citoesqueleto de Actina/imunologia , Citoesqueleto de Actina/ultraestrutura , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/imunologia , Actinas/genética , Actinas/imunologia , Animais , Matriz Extracelular/imunologia , Matriz Extracelular/metabolismo , Adesões Focais/imunologia , Adesões Focais/ultraestrutura , Forminas/genética , Forminas/imunologia , Regulação da Expressão Gênica , Humanos , Antígeno de Macrófago 1/genética , Antígeno de Macrófago 1/imunologia , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Microesferas , Fagossomos/imunologia , Fagossomos/ultraestrutura , Poliestirenos , Cultura Primária de Células , Células RAW 264.7 , Quinase Syk/imunologia , Células THP-1 , Talina/imunologia , Vinculina/imunologia
3.
Elife ; 82019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31612854

RESUMO

Antibodies are a key resource in biomedical research yet there are no community-accepted standards to rigorously characterize their quality. Here we develop a procedure to validate pre-existing antibodies. Human cell lines with high expression of a target, determined through a proteomics database, are modified with CRISPR/Cas9 to knockout (KO) the corresponding gene. Commercial antibodies against the target are purchased and tested by immunoblot comparing parental and KO. Validated antibodies are used to definitively identify the most highly expressing cell lines, new KOs are generated if needed, and the lines are screened by immunoprecipitation and immunofluorescence. Selected antibodies are used for more intensive procedures such as immunohistochemistry. The pipeline is easy to implement and scalable. Application to the major ALS disease gene C9ORF72 identified high-quality antibodies revealing C9ORF72 localization to phagosomes/lysosomes. Antibodies that do not recognize C9ORF72 have been used in highly cited papers, raising concern over previously reported C9ORF72 properties.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico , Anticorpos Monoclonais/química , Proteína C9orf72/genética , Demência Frontotemporal/diagnóstico , Imuno-Histoquímica/normas , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Anticorpos Monoclonais/classificação , Anticorpos Monoclonais/imunologia , Biomarcadores/metabolismo , Proteína C9orf72/imunologia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Demência Frontotemporal/genética , Demência Frontotemporal/imunologia , Demência Frontotemporal/metabolismo , Edição de Genes , Expressão Gênica , Células HEK293 , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteoblastos/metabolismo , Osteoblastos/ultraestrutura , Fagossomos/genética , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Células RAW 264.7
4.
Nat Cell Biol ; 21(10): 1234-1247, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31570833

RESUMO

Phosphoinositides have a pivotal role in the maturation of nascent phagosomes into microbicidal phagolysosomes. Following degradation of their contents, mature phagolysosomes undergo resolution, a process that remains largely uninvestigated. Here we studied the role of phosphoinositides in phagolysosome resolution. Phosphatidylinositol-4-phosphate (PtdIns(4)P), which is abundant in maturing phagolysosomes, was depleted as they tubulated and resorbed. Depletion was caused, in part, by transfer of phagolysosomal PtdIns(4)P to the endoplasmic reticulum, a process mediated by oxysterol-binding protein-related protein 1L (ORP1L), a RAB7 effector. ORP1L formed discrete tethers between the phagolysosome and the endoplasmic reticulum, resulting in distinct regions with alternating PtdIns(4)P depletion and enrichment. Tubules emerged from PtdIns(4)P-rich regions, where ADP-ribosylation factor-like protein 8B (ARL8B) and SifA- and kinesin-interacting protein/pleckstrin homology domain-containing family M member 2 (SKIP/PLEKHM2) accumulated. SKIP binds preferentially to monophosphorylated phosphoinositides, of which PtdIns(4)P is most abundant in phagolysosomes, contributing to their tubulation. Accordingly, premature hydrolysis of PtdIns(4)P impaired SKIP recruitment and phagosome resolution. Thus, resolution involves phosphoinositides and tethering of phagolysosomes to the endoplasmic reticulum.


Assuntos
Retículo Endoplasmático/metabolismo , Monócitos/metabolismo , Fagossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Receptores de Esteroides/genética , Transdução de Sinais , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Animais , Sistemas CRISPR-Cas , Retículo Endoplasmático/ultraestrutura , Edição de Genes , Regulação da Expressão Gênica , Humanos , Camundongos , Monócitos/ultraestrutura , Fagocitose , Fagossomos/ultraestrutura , Cultura Primária de Células , Proteólise , Células RAW 264.7 , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Esteroides/antagonistas & inibidores , Receptores de Esteroides/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
5.
EMBO Rep ; 20(10): e47911, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31441223

RESUMO

Iron overload, a common clinical occurrence, is implicated in the metabolic syndrome although the contributing pathophysiological mechanisms are not fully defined. We show that prolonged iron overload results in an autophagy defect associated with accumulation of dysfunctional autolysosomes and loss of free lysosomes in skeletal muscle. These autophagy defects contribute to impaired insulin-stimulated glucose uptake and insulin signaling. Mechanistically, we show that iron overload leads to a decrease in Akt-mediated repression of tuberous sclerosis complex (TSC2) and Rheb-mediated mTORC1 activation on autolysosomes, thereby inhibiting autophagic-lysosome regeneration. Constitutive activation of mTORC1 or iron withdrawal replenishes lysosomal pools via increased mTORC1-UVRAG signaling, which restores insulin sensitivity. Induction of iron overload via intravenous iron-dextran delivery in mice also results in insulin resistance accompanied by abnormal autophagosome accumulation, lysosomal loss, and decreased mTORC1-UVRAG signaling in muscle. Collectively, our results show that chronic iron overload leads to a profound autophagy defect through mTORC1-UVRAG inhibition and provides new mechanistic insight into metabolic syndrome-associated insulin resistance.


Assuntos
Autofagia , Resistência à Insulina , Sobrecarga de Ferro/patologia , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular , Ferro/farmacologia , Quelantes de Ferro/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Modelos Biológicos , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo
6.
PLoS Pathog ; 15(6): e1007812, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31220187

RESUMO

While considered solely an extracellular pathogen, increasing evidence indicates that Pseudomonas aeruginosa encounters intracellular environment in diverse mammalian cell types, including macrophages. In the present study, we have deciphered the intramacrophage fate of wild-type P. aeruginosa PAO1 strain by live and electron microscopy. P. aeruginosa first resided in phagosomal vacuoles and subsequently could be detected in the cytoplasm, indicating phagosomal escape of the pathogen, a finding also supported by vacuolar rupture assay. The intracellular bacteria could eventually induce cell lysis, both in a macrophage cell line and primary human macrophages. Two bacterial factors, MgtC and OprF, recently identified to be important for survival of P. aeruginosa in macrophages, were found to be involved in bacterial escape from the phagosome as well as in cell lysis caused by intracellular bacteria. Strikingly, type III secretion system (T3SS) genes of P. aeruginosa were down-regulated within macrophages in both mgtC and oprF mutants. Concordantly, cyclic di-GMP (c-di-GMP) level was increased in both mutants, providing a clue for negative regulation of T3SS inside macrophages. Consistent with the phenotypes and gene expression pattern of mgtC and oprF mutants, a T3SS mutant (ΔpscN) exhibited defect in phagosomal escape and macrophage lysis driven by internalized bacteria. Importantly, these effects appeared to be largely dependent on the ExoS effector, in contrast with the known T3SS-dependent, but ExoS independent, cytotoxicity caused by extracellular P. aeruginosa towards macrophages. Moreover, this macrophage damage caused by intracellular P. aeruginosa was found to be dependent on GTPase Activating Protein (GAP) domain of ExoS. Hence, our work highlights T3SS and ExoS, whose expression is modulated by MgtC and OprF, as key players in the intramacrophage life of P. aeruginosa which allow internalized bacteria to lyse macrophages.


Assuntos
Proteínas de Bactérias/biossíntese , Regulação para Baixo , Regulação Bacteriana da Expressão Gênica , Macrófagos/microbiologia , Pseudomonas aeruginosa , Sistemas de Secreção Tipo III/metabolismo , ADP Ribose Transferases/genética , ADP Ribose Transferases/metabolismo , Animais , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Linhagem Celular , Humanos , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Camundongos , Mutação , Fagossomos/microbiologia , Fagossomos/ultraestrutura , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Sistemas de Secreção Tipo III/genética
7.
Dev Cell ; 50(4): 397-410.e3, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31231039

RESUMO

Phagocytosis, the engulfment of particulate matter, requires the coordinated polymerization of F-actin; however, the nature and dynamics of the F-actin structures generated during the process are incompletely defined. Using super-resolution microscopy, we observed the formation of podosome-like structures during Fc receptor-mediated phagocytosis. Unlike conventional podosomes, these structures are short lived and vectorial, expanding radially from the sites where phagocytic targets are initially engaged. The expanding ring of podosome-like structures requires the localized formation of PtdIns(3,4,5)P3. Concomitantly, the initial podosome-like structures disappear from the center of the phagocytic cup, enabling membrane bending around the target. This coordinated disappearance is mediated by localized hydrolysis of PtdIns(4,5)P2 at the center of the cup. Interference reflection microscopy revealed that the podosome-like structures attach tightly to the target, facilitating the progressive engagement and activation of phagocytic receptors, creating a diffusion barrier and serving as support for the extension of exploratory lamellipodia that probe the target surface.


Assuntos
Actinas/genética , Fagocitose/genética , Fagossomos/genética , Podossomos/genética , Actinas/ultraestrutura , Feminino , Humanos , Integrinas/genética , Masculino , Microscopia de Fluorescência , Microscopia de Interferência , Monócitos , Fagossomos/ultraestrutura , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/genética , Fosfatidilinositóis/metabolismo , Podossomos/ultraestrutura , Pseudópodes/genética , Pseudópodes/ultraestrutura , Receptores Fc/genética , Propriedades de Superfície
8.
Dev Cell ; 49(1): 77-88.e7, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30880002

RESUMO

Phagocytic immune cells such as microglia can engulf and process pathogens and dying cells with high efficiency while still maintaining their dynamic behavior and morphology. Effective intracellular processing of ingested cells is likely to be crucial for microglial function, but the underlying cellular mechanisms are poorly understood. Using both living fish embryos and mammalian macrophages, we show that processing depends on the shrinkage and packaging of phagosomes into a unique cellular compartment, the gastrosome, with distinct molecular and ultra-structural characteristics. Loss of the transporter Slc37a2 blocks phagosomal shrinkage, resulting in the expansion of the gastrosome and the dramatic bloating of the cell. This, in turn, affects the ability of microglia to phagocytose and migrate toward brain injuries. Thus, this work identifies a conserved crucial step in the phagocytic pathway of immune cells and provides a potential entry point for manipulating their behavior in development and disease.


Assuntos
Antiporters/genética , Macrófagos/metabolismo , Proteínas de Membrana Transportadoras/genética , Microglia/metabolismo , Fagossomos/ultraestrutura , Animais , Apoptose/genética , Compartimento Celular/genética , Células HeLa , Humanos , Macrófagos/ultraestrutura , Camundongos , Microglia/ultraestrutura , Neurônios/metabolismo , Neurônios/ultraestrutura , Fagócitos/ultraestrutura , Fagocitose/genética , Fagossomos/genética , Células RAW 264.7 , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
9.
Autophagy ; 15(8): 1356-1375, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30774023

RESUMO

SIRT3 (sirtuin 3), a mitochondrial protein deacetylase, maintains respiratory function, but its role in the regulation of innate immune defense is largely unknown. Herein, we show that SIRT3 coordinates mitochondrial function and macroautophagy/autophagy activation to promote anti-mycobacterial responses through PPARA (peroxisome proliferator activated receptor alpha). SIRT3 deficiency enhanced inflammatory responses and mitochondrial dysfunction, leading to defective host defense and pathological inflammation during mycobacterial infection. Antibody-mediated depletion of polymorphonuclear neutrophils significantly increased protection against mycobacterial infection in sirt3-/- mice. In addition, mitochondrial oxidative stress promoted excessive inflammation induced by Mycobacterium tuberculosis infection in sirt3-/- macrophages. Notably, SIRT3 was essential for the enhancement of PPARA, a key regulator of mitochondrial homeostasis and autophagy activation in the context of infection. Importantly, overexpression of either PPARA or TFEB (transcription factor EB) in sirt3-/- macrophages recovered antimicrobial activity through autophagy activation. Furthermore, pharmacological activation of SIRT3 enhanced antibacterial autophagy and functional mitochondrial pools during mycobacterial infection. Finally, the levels of SIRT3 and PPARA were downregulated and inversely correlated with TNF (tumor necrosis factor) levels in peripheral blood mononuclear cells from tuberculosis patients. Collectively, these data demonstrate a previously unappreciated function of SIRT3 in orchestrating mitochondrial and autophagic functions to promote antimycobacterial responses. Abbreviations: Ab: antibody; BCG: M. bovis Bacillus Calmette-Guérin; Baf-A1: bafilomycin A1; BMDMs: bone marrow-derived macrophages; CFU: colony forming unit; CXCL5: C-X-C motif chemokine ligand 5; EGFP: enhanced green fluorescent protein; ERFP: enhanced red fluorescent protein; FOXO3: forkhead box O3; HC: healthy controls; H&E: haematoxylin and eosin; HKL: honokiol; IHC: immunohistochemistry; IL1B: interleukin 1 beta; IL6: interleukin 6; IL12B: interleukin 12B; MDMs: monocyte-derived macrophages; MMP: mitochondrial membrane potential; Mtb: Mycobacterium tuberculosis; PBMC: peripheral blood mononuclear cells; PBS: phosphate buffered saline; PMN: polymorphonuclear neutrophil; PPARA: peroxisome proliferator activated receptor alpha; ROS: reactive oxygen species; SIRT3: sirtuin 3; TB: tuberculosis; TEM: transmission electron microscopy; TFEB: transcription factor EB; TNF: tumor necrosis factor.


Assuntos
Antibacterianos/metabolismo , Autofagia , Mitocôndrias/metabolismo , Mycobacterium/metabolismo , Sirtuína 3/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Feminino , Homeostase , Humanos , Inflamação/patologia , Pulmão/microbiologia , Pulmão/patologia , Pulmão/ultraestrutura , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Macrófagos/microbiologia , Macrófagos/ultraestrutura , Masculino , Pessoa de Meia-Idade , Mitocôndrias/ultraestrutura , Mycobacterium/ultraestrutura , Neutrófilos/patologia , Estresse Oxidativo , PPAR alfa/metabolismo , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Sirtuína 3/deficiência , Tuberculose/sangue , Tuberculose/microbiologia , Tuberculose/patologia , Fator de Necrose Tumoral alfa/metabolismo
10.
Front Immunol ; 10: 125, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30766538

RESUMO

Mycobacterium abscessus complex (MAB) is a rapidly growing mycobacterium(RGM) whose clinical significance as an emerging human pathogen has been increasing worldwide. It has two types of colony morphology, a smooth (S) type, producing high glycopeptidolipid (GPL) content, and a rough (R) type, which produces low levels of GPLs and is associated with increased virulence. However, the mechanism responsible for their difference in virulence is poorly known. By ultrastructural examination of murine macrophages infected, we found that MAB-R strains could replicate more actively in the macrophage phagosome than the S variants and that they could escape into cytosol via phagosomal rupture. The cytosolic access of MAB-R strains via phagosomal rupture led to enhanced Type I interferon (IFN) production and cell death, which resulted in their cell-to-cell spreading. This behavior can provide an additional niche for the survival of MAB-R strains. In addition, we found that their enhancement of cell death mediated cell spreading are dependent on Type I IFN signaling via comparison of wild-type and IFNAR1 knockout mice. In conclusion, our data indicated that a transition of MAB-S strains into MAB-R variants increased their virulence via enhanced Type I IFN production, which led to enhanced survival in infected macrophage via cell death mediated cell-to-cell spreading. This result provides not only a novel insight into the difference in virulence between MAB-R and -S variants but also hints to their treatment strategy.


Assuntos
Interferon Tipo I/metabolismo , Macrófagos/imunologia , Infecções por Mycobacterium não Tuberculosas/imunologia , Mycobacterium abscessus/fisiologia , Fagossomos/ultraestrutura , Animais , Morte Celular , Linhagem Celular , Humanos , Evasão da Resposta Imune , Macrófagos/microbiologia , Macrófagos/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Mycobacterium não Tuberculosas/transmissão , Mycobacterium abscessus/patogenicidade , Fagossomos/microbiologia , Receptor de Interferon alfa e beta/genética , Transdução de Sinais , Especificidade da Espécie , Virulência
11.
Nat Commun ; 9(1): 4184, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305619

RESUMO

Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the brain; however, the roles of GABA in antimicrobial host defenses are largely unknown. Here we demonstrate that GABAergic activation enhances antimicrobial responses against intracellular bacterial infection. Intracellular bacterial infection decreases GABA levels in vitro in macrophages and in vivo in sera. Treatment of macrophages with GABA or GABAergic drugs promotes autophagy activation, enhances phagosomal maturation and antimicrobial responses against mycobacterial infection. In macrophages, the GABAergic defense is mediated via macrophage type A GABA receptor (GABAAR), intracellular calcium release, and the GABA type A receptor-associated protein-like 1 (GABARAPL1; an Atg8 homolog). Finally, GABAergic inhibition increases bacterial loads in mice and zebrafish in vivo, suggesting that the GABAergic defense plays an essential function in metazoan host defenses. Our study identified a previously unappreciated role for GABAergic signaling in linking antibacterial autophagy to enhance host innate defense against intracellular bacterial infection.


Assuntos
Autofagia , Infecções Bacterianas/metabolismo , Infecções Bacterianas/patologia , Interações Hospedeiro-Patógeno , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo , Adenilato Quinase/metabolismo , Animais , Antibacterianos/farmacologia , Autofagia/efeitos dos fármacos , Cálcio/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Receptores de GABA/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Nat Commun ; 9(1): 3333, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127354

RESUMO

Mucormycosis is a life-threatening respiratory fungal infection predominantly caused by Rhizopus species. Mucormycosis has incompletely understood pathogenesis, particularly how abnormalities in iron metabolism compromise immune responses. Here we show how, as opposed to other filamentous fungi, Rhizopus spp. establish intracellular persistence inside alveolar macrophages (AMs). Mechanistically, lack of intracellular swelling of Rhizopus conidia results in surface retention of melanin, which induces phagosome maturation arrest through inhibition of LC3-associated phagocytosis. Intracellular inhibition of Rhizopus is an important effector mechanism, as infection of immunocompetent mice with swollen conidia, which evade phagocytosis, results in acute lethality. Concordantly, AM depletion markedly increases susceptibility to mucormycosis. Host and pathogen transcriptomics, iron supplementation studies, and genetic manipulation of iron assimilation of fungal pathways demonstrate that iron restriction inside macrophages regulates immunity against Rhizopus. Our findings shed light on the pathogenetic mechanisms of mucormycosis and reveal the role of macrophage-mediated nutritional immunity against filamentous fungi.


Assuntos
Interações Hospedeiro-Patógeno , Ferro/metabolismo , Pulmão/microbiologia , Macrófagos Alveolares/metabolismo , Rhizopus/fisiologia , Animais , Parede Celular/metabolismo , Regulação da Expressão Gênica , Macrófagos Alveolares/ultraestrutura , Melaninas/metabolismo , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Modelos Biológicos , Mucormicose/genética , Mucormicose/microbiologia , Mucormicose/patologia , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Rhizopus/crescimento & desenvolvimento , Esporos Fúngicos/fisiologia
13.
Autophagy ; 14(9): 1596-1619, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29966509

RESUMO

While the advent of combination antiretroviral therapy (cART) has dramatically increased the life expectancy of HIV-1 infected individuals, paradoxically, however, the prevalence of HIV-1-associated neurocognitive disorders is on the rise. Based on the premise that the cytotoxic HIV-1 protein, transactivator of transcription (TAT), a known activator of glial cells that is found to persist in the central nervous system (CNS) despite cART, we sought to explore the role of defective mitophagy in HIV-1 TAT-mediated microglial activation. Our results demonstrated that exposure of mouse primary microglia to HIV-1 TAT resulted in cellular activation involving altered mitochondrial membrane potential that was accompanied by accumulation of damaged mitochondria. Exposure of microglia to HIV-1 TAT resulted in increased expression of mitophagy signaling proteins, such as PINK1, PRKN, and DNM1L, with a concomitant increase in the formation of autophagosomes, as evidenced by increased expression of BECN1 and MAP1LC3B-II. Intriguingly, exposure of cells to HIV-1 TAT also resulted in increased expression of SQSTM1, signifying thereby a possible blockade of the mitophagy flux, leading, in turn, to the accumulation of mitophagosomes. Interestingly, HIV-1 TAT-mediated activation of microglia was associated with decreased rate of extracellular acidification and mitochondrial oxygen consumption and increased expression of proinflammatory cytokines, such as Tnf, Il1b, and Il6. HIV-1 TAT-mediated defective mitophagy leading to microglial activation was further validated in vivo in the brains of HIV-1 transgenic rats. In conclusion, HIV-1 TAT activates microglia by increasing mitochondrial damage via defective mitophagy. ABBREVIATIONS: 3-MA: 3-methyladenine; Δψm: mitochondrial membrane potential; ACTB: actin, beta; AIF1: allograft inflammatory factor 1; ATP: adenosine triphosphate; BAF: bafilomycin A1; BECN1: beclin 1, autophagy related; cART: combined antiretroviral therapy; CNS: central nervous system; DNM1L: dynamin 1 like; DMEM: Dulbecco modified Eagle medium; DAPI: 4,6-diamidino-2-phenylindole ; ECAR: extracellular acidification rate; FBS: fetal bovine serum; FCCP: trifluoromethoxy carbonylcyanide phenylhydrazone; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HAND: HIV-1-associated neurocognitive disorders; HIV-1 TAT: human immunodeficiency virus-1 transactivator of transcription; IL1B: interleukin 1, beta; IL6: interleukin 6; ITGAM: integrin subunit alpha M; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; mPMs: mouse primary microglial cells; MRC: maximal respiratory capacity; mt-CO1: mitochondrially encoded cytochrome c oxidase; mt-ND6: mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 6; NFKB1: nuclear factor kappa B subunit 1; NLRP3: NLR family pyrin domain containing 3; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; PINK1: PTEN induced putative kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; siRNA: small interfering RNA; SQSTM1: sequestosome 1; TNF: tumor necrosis factor.


Assuntos
Produtos do Gene tat/farmacologia , HIV-1/química , Microglia/metabolismo , Mitocôndrias/patologia , Mitofagia/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Citocinas/metabolismo , Metabolismo Energético/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/ultraestrutura , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Modelos Biológicos , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Proteínas Quinases/metabolismo , Ratos Transgênicos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
14.
Toxicol Pathol ; 46(5): 564-573, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29806545

RESUMO

There was a significant increase in the incidence of retinal degeneration in F344/N rats chronically exposed to Kava kava extract (KKE) in National Toxicology Program (NTP) bioassay. A retrospective evaluation of these rat retinas indicated a similar spatial and morphological alteration as seen in light-induced retinal degeneration in albino rats. Therefore, it was hypothesized that KKE has a potential to exacerbate the light-induced retinal degeneration. To investigate the early mechanism of retinal degeneration, we conducted a 90-day F344/N rat KKE gavage study at doses of 0 and 1.0 g/kg (dose which induced retinal degeneration in the 2-year NTP rat KKE bioassay). The morphological evaluation indicated reduced number of phagosomes in the retinal pigment epithelium (RPE) of the superior retina. Transcriptomic alterations related to retinal epithelial homeostasis and melatoninergic signaling were observed in microarray analysis. Phagocytosis of photoreceptor outer segment by the underlying RPE is essential to maintain the homeostasis of the photoreceptor layer and is regulated by melatonin signaling. Therefore, reduced photoreceptor outer segment disc shedding and subsequent lower number of phagosomes in the RPE and alterations in the melatonin pathway may have contributed to the increased incidences of retinal degeneration observed in F344/N rats in the 2-year KKE bioassay.


Assuntos
Kava/química , Fagocitose/efeitos dos fármacos , Fagossomos/efeitos dos fármacos , Extratos Vegetais/toxicidade , Degeneração Retiniana/induzido quimicamente , Pigmentos da Retina/metabolismo , Animais , Masculino , Fagossomos/ultraestrutura , Extratos Vegetais/isolamento & purificação , Ratos Endogâmicos F344 , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/ultraestrutura , Transcriptoma/efeitos dos fármacos
15.
Cell Death Dis ; 9(2): 105, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367621

RESUMO

Premature senescence is a key process in the progression of diabetic nephropathy (DN). Premature senescence of renal tubular epithelial cells (RTEC) in DN may result from the accumulation of damaged mitochondria. Mitophagy is the principal process that eliminates damaged mitochondria through PTEN-induced putative kinase 1 (PINK1)-mediated recruitment of optineurin (OPTN) to mitochondria. We aimed to examine the involvement of OPTN in mitophagy regulation of cellular senescence in RTEC in the context of DN. In vitro, the expression of senescence markers P16, P21, DcR2, SA-ß-gal, SAHF, and insufficient mitophagic degradation marker (mitochondrial P62) in mouse RTECs increased after culture in 30 mM high-glucose (HG) conditions for 48 h. Mitochondrial fission/mitophagy inhibitor Mdivi-1 significantly enhanced RTEC senescence under HG conditions, whereas autophagy/mitophagy agonist Torin1 inhibited cell senescence. MitoTempo inhibited HG-induced mitochondrial reactive oxygen species and cell senescence with or without Mdivi-1. The expression of PINK1 and OPTN, two regulatory factors for mitophagosome formation, decreased significantly after HG stimulation. Overexpression of PINK1 did not enhance mitophagosome formation under HG conditions. OPTN silencing significantly inhibited HG-induced mitophagosome formation, and overexpression of OPTN relieved cellular senescence through promoting mitophagy. In clinical specimens, renal OPTN expression was gradually decreased with increased tubulointerstitial injury scores. OPTN-positive renal tubular cells did not express senescence marker P16. OPTN expression also negatively correlated with serum creatinine levels, and positively correlated with eGFR. Thus, OPTN-mediated mitophagy plays a crucial regulatory role in HG-induced RTEC senescence in DN. OPTN may, therefore, be a potential antisenescence factor in DN.


Assuntos
Senescência Celular , Citoproteção , Nefropatias Diabéticas/patologia , Células Epiteliais/patologia , Proteínas do Olho/metabolismo , Túbulos Renais/patologia , Mitofagia , Fator de Transcrição TFIIIA/metabolismo , Animais , Proteínas de Ciclo Celular , Progressão da Doença , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Glucose/toxicidade , Humanos , Proteínas de Membrana Transportadoras , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
16.
Environ Toxicol ; 32(11): 2371-2378, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28722333

RESUMO

Embelin is an active ingredient of traditional herbal remedies for cancer and other diseases. Recently, it has been suggested that autophagy may play an important role in cancer therapy. However, little data are available regarding the role of autophagy in oral cancers. Therefore, we conducted this study to examine whether Embelin modulates autophagy in Ca9-22. Our results showed that Embelin had anticancer activity against the Ca9-22 human tongue squamous cell, and we observed that autophagic vacuoles were formed by MDC and AO. We also analyzed Embelin-treated Ca9-22 cells for the presence of biochemical markers and found that it directly affected the conversion of LC3-II, the degradation of p62/SQSTM1, full-length cleavage formation of ATG5-ATG12 complex and Beline-1, and caspase activation. Rescue experiments using an autophagy inhibitor showed Embelin-induced cell death in Ca9-22, confirming that autophagy acts as a pro-death signal. Furthermore, Embelin exhibited anticancer activity against Ca9-22 via both autophagy and apoptosis. These findings suggest that Embelin may potentially contribute to oral cancer treatment and provide useful information for the development of a new therapeutic agent.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Benzoquinonas/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias da Língua/tratamento farmacológico , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Fagossomos/ultraestrutura
17.
Biomed Res Int ; 2017: 3178794, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28377926

RESUMO

Breast cancer (BC) is the most common cause of cancer-related death worldwide. Although platinum-based drugs (PBDs) are effective anticancer agents, responsive patients eventually become resistant. While resistance of some cancers to PBDs has been explored, the cellular responses of BC cells are not studied yet. Therefore, we aim to assess the differential effects of PBDs on BC ultrastructure. Three representative cells were treated with different concentrations and timing of Cisplatin, Carboplatin, and Oxaliplatin. Changes on cell surface and ultrastructure were detected by scanning (SEM) and transmission electron microscope (TEM). In SEM, control cells were semiflattened containing microvilli with extending lamellipodia while treated ones were round with irregular surface and several pores, indicating drug entry. Prolonged treatment resembled distinct apoptotic features such as shrinkage, membrane blebs, and narrowing of lamellipodia with blunt microvilli. TEM detected PBDs' deposits that scattered among cellular organelles inducing structural distortion, lumen swelling, chromatin condensation, and nuclear fragmentation. Deposits were attracted to fat droplets, explained by drug hydrophobic properties, while later they were located close to cell membrane, suggesting drug efflux. Phagosomes with destructed organelles and deposits were detected as defending mechanism. Understanding BC cells response to PBDs might provide new insight for an effective treatment.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fagossomos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Carboplatina/administração & dosagem , Linhagem Celular Tumoral/ultraestrutura , Cisplatino/administração & dosagem , Feminino , Humanos , Microscopia Eletrônica de Transmissão , Compostos Organoplatínicos/administração & dosagem , Oxaliplatina , Fagossomos/ultraestrutura
18.
Mol Cell Endocrinol ; 448: 1-20, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28237721

RESUMO

Lipotoxicity of pancreatic ß-cells is the pathological manifestation of obesity-linked type II diabetes. We intended to determine the cytoprotective effect of kaempferol on pancreatic ß-cells undergoing apoptosis in palmitic acid (PA)-stressed condition. The data showed that kaempferol treatment increased cell viability and anti-apoptotic activity in PA-stressed RIN-5F cells and murine pancreatic islets. Furthermore, kaempferol's ability to instigate autophagy was illustrated by MDC-LysoTracker red staining and TEM analysis which corroborated well with the observed increase in LC3 puncta and LC3-II protein expressions along with the concomitant decline in p62 expression. Apart from this, the data showed that kaempferol up/down-regulates AMPK/mTOR phosphorylation respectively. Subsequently, upon inhibition of AMPK phosphorylation by AMPK inhibitors, kaempferol-mediated autophagy was abolished which further led to the decline in ß-cell survival. Such observations collectively lead to the conclusion that, kaempferol exerts its cytoprotective role against lipotoxicity by activation of autophagy via AMPK/mTOR pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Quempferóis/farmacologia , Ácido Palmítico/toxicidade , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose/genética , Autofagia/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Separação Celular , Sobrevivência Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Modelos Biológicos , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Substâncias Protetoras/farmacologia , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
19.
Autophagy ; 12(11): 2213-2229, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27635674

RESUMO

Autophagy is considered primarily a cell survival process, although it can also lead to cell death. However, the factors that dictate the shift between these 2 opposite outcomes remain largely unknown. In this work, we used Δ9-tetrahydrocannabinol (THC, the main active component of marijuana, a compound that triggers autophagy-mediated cancer cell death) and nutrient deprivation (an autophagic stimulus that triggers cytoprotective autophagy) to investigate the precise molecular mechanisms responsible for the activation of cytotoxic autophagy in cancer cells. By using a wide array of experimental approaches we show that THC (but not nutrient deprivation) increases the dihydroceramide:ceramide ratio in the endoplasmic reticulum of glioma cells, and this alteration is directed to autophagosomes and autolysosomes to promote lysosomal membrane permeabilization, cathepsin release and the subsequent activation of apoptotic cell death. These findings pave the way to clarify the regulatory mechanisms that determine the selective activation of autophagy-mediated cancer cell death.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Ceramidas/farmacologia , Lisossomos/metabolismo , Neoplasias/patologia , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dronabinol/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Humanos , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Lisossomos/efeitos dos fármacos , Lisossomos/ultraestrutura , Modelos Biológicos , Permeabilidade , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Esfingolipídeos/biossíntese
20.
Traffic ; 17(9): 961-2, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27510703

RESUMO

Cover legend: Macrophages phagocytosing RFP-labeled E.coli. GFP-APPL2 labels the phagosomal membrane. Image produced by N. Condon. See Yeo et al. Traffic 2016; 17(9):1014-1026. Read the full article on doi:10.1111/tra.12415.


Assuntos
Escherichia coli/imunologia , Membranas Intracelulares/ultraestrutura , Macrófagos/ultraestrutura , Fagocitose , Fagossomos/ultraestrutura , Proteínas de Fluorescência Verde , Membranas Intracelulares/imunologia , Proteínas Luminescentes , Macrófagos/imunologia , Fagossomos/imunologia , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA