RESUMO
Aim: Our previous results suggest that phenyl/naphthylacetyl pentanoic acid derivatives may exhibit dual MMP-2 and HDAC8 inhibitory activities and show effective cytotoxic properties. Methodology: Here, 13 new compounds (C1-C13) were synthesized and characterized. Along with these new compounds, 16 previously reported phenyl/napthylacetyl pentanoic acid derivatives (C14-C29) were biologically evaluated. Results: Compounds C6 and C27 showed good cytotoxicity against leukemia cell line Jurkat E6.1. The mechanisms of cytotoxicity of these compounds were confirmed by DNA deformation assay and reactive oxygen species assay. MMP-2 and HDAC8 expression assays suggested the dual inhibiting property of these two compounds. These findings were supported by results of molecular docking studies. In silico pharmacokinetic properties showed compounds C6 and C27 have high gastrointestinal absorption. Conclusion: This study highlights the action of phenyl/naphthylacetyl pentanoic acid derivatives as anticancer agents.
Assuntos
Antineoplásicos/síntese química , Simulação de Acoplamento Molecular , Ácidos Pentanoicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Família 2 do Citocromo P450/antagonistas & inibidores , Família 2 do Citocromo P450/metabolismo , Dano ao DNA/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Expressão Gênica/efeitos dos fármacos , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Relação Estrutura-AtividadeRESUMO
Epidemiological studies have shown that head and neck cancer (HNC) is a complex multistage process that in part involves exposure to a combination of carcinogens and the capacity of certain drug-metabolising enzymes including cytochrome P450 (CYP) to detoxify or activate such carcinogens. In this study, CYP1A1, CYP1B1 and CYP2W1 expression in HNC was correlated with potential as target for duocarmycin prodrug activation and selective therapy. In the HNC cell lines, elevated expression was shown at the gene level for CYP1A1 and CYP1B1 whereas CYP2W1 was hardly detected. However, CYP2W1 was expressed in FaDu and Detroit-562 xenografts and in a cohort of human HNC samples. Functional activity was measured in Fadu and Detroit-562 cells using P450-Glo™ assay. Antiproliferative results of duocarmycin prodrugs ICT2700 and ICT2706 revealed FaDu and Detroit-562 as the most sensitive HNC cell lines. Administration of ICT2700 in vivo using a single dose of ICT2700 (150 mg/kg) showed preferential inhibition of small tumour growth (mean size of 60 mm3) in mice bearing FaDu xenografts. Significantly, our findings suggest a potential targeted therapeutic approach to manage HNCs by exploiting intratumoural CYP expression for metabolic activation of duocarmycin-based prodrugs such as ICT2700.
Assuntos
Antineoplásicos/farmacologia , Citocromo P-450 CYP1A1/antagonistas & inibidores , Citocromo P-450 CYP1B1/antagonistas & inibidores , Família 2 do Citocromo P450/antagonistas & inibidores , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Estudos de Coortes , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1/metabolismo , Família 2 do Citocromo P450/metabolismo , Feminino , Neoplasias de Cabeça e Pescoço/patologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Camundongos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Pirróis/farmacologia , Pirróis/uso terapêutico , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Cytochrome P450 (CYP) epoxygenases have been considered the main producers of epoxyeicosatrienoic acids (EETs) through the oxidation of arachidonic acid (AA). EETs display various biological properties, notably their powerful anti-inflammatory activities. In the brain, EETs have proven to be neuroprotective and to improve neuroinflammation. However, it is known that inflammation could modify CYP expression. We have previously reported that an inflammatory process in astrocytes is able to down-regulate CYP2J3 and CYP2C11 mRNA, protein levels, and activity (Navarro-Mabarak et al., 2019). In this work, we evaluated the effect of neuroinflammation in protein expression of CYP epoxygenases in the brain. Neuroinflammation was induced by the intraperitoneal administration of LPS (1 mg/kg) to male Wistar rats and was corroborated by IL-6, GFAP, and Iba-1 protein levels in the cortex over time. CYP2J3 and CYP2C11 protein levels were also evaluated in the cortex after 6, 12, 24, 48, and 72 h of LPS treatment. Our results show for the first time that neuroinflammation is able to downregulate CYP2J3 and CYP2C11 protein expression in the brain cortex.
Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Encéfalo/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Família 2 do Citocromo P450/metabolismo , Regulação para Baixo/fisiologia , Mediadores da Inflamação/metabolismo , Esteroide 16-alfa-Hidroxilase/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Encéfalo/efeitos dos fármacos , Família 2 do Citocromo P450/antagonistas & inibidores , Regulação para Baixo/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Masculino , Ratos , Ratos Wistar , Esteroide 16-alfa-Hidroxilase/antagonistas & inibidoresRESUMO
BACKGROUND: Lung cancer (LC) is one of the leading causes of death worldwide, which highlights the urgent need for better therapies. Peroxisome proliferator-activated nuclear receptor alpha (PPARα), known as a key nuclear transcription factor involved in glucose and lipid metabolism, has been also implicated in endothelial proliferation and angiogenesis. However, the effects and potential mechanisms of the novel PPARα ligand, AVE8134, on LC growth and progression remain unclear. METHODS: A subcutaneous tumour was established in mice by injecting TC-1 lung tumour cells (~ 1 × 106 cells) into their shaved left flank. These mice were treated with three different PPARα ligands: AVE8134 (0.025% in drinking water), Wyeth-14,643 (0.025%), or Bezafibrate (0.3%). Tumour sizes and metastasis between treated and untreated mice were then compared by morphology and histology, and the metabolites of arachidonic acid (AA) were detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Inhibition of either Cyp2c44 expression by genetic disruption or cyclooxygenase (COX) activity by indomethacin was used to test the mechanisms by which AVE8134 affects tumour growth. RESULTS: The pharmacodynamics effects of AVE8134, Wyeth-14,643, and Bezafibrate on lipids control were similar. However, their effects on tumour suppression were different. Eicosanoid profile analysis showed that all PPARα ligands reduced the production of AA-derived epoxyeicosatrienoic acids (EETs) and increased the hydroxyl product, 11-hydroxyeicosatetraenoic acids (11-HETE). Moreover, increased 11-HETE promoted endothelial proliferation, angiogenesis, and subsequent tumour deterioration in a dose-dependent manner possibly via activating the AKT/extracellular signal-regulated kinase (ERK) pathway. The increased 11-HETE partly neutralized the benefits provided by the Cyp2c44-EETs system inhibited by PPARα ligands in tumour-bearing mice. AVE8134 treatment worsened the tumour phenotype in Cyp2c44 knockout mice, indicating that AVE8134 has contradictory effects on tumour growth. The COX inhibitor indomethacin strengthened the inhibitory actions of AVE8134 on tumour growth and metastasis by inhibiting the 11-HETE production in vivo and in vitro. CONCLUSION: In this study, we found that the degrees of inhibition on LC growth and metastasis by PPARα ligands depended on their bidirectional regulation on EETs and 11-HETE. Considering their safety and efficacy, the novel PPARα ligand, AVE8134, is a potentially ideal anti-angiogenesis drug for cancer treatment when jointly applied with the COX inhibitor indomethacin.
Assuntos
Antineoplásicos/uso terapêutico , Benzoatos/uso terapêutico , Inibidores de Ciclo-Oxigenase/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Oxazóis/uso terapêutico , PPAR alfa/agonistas , Animais , Bezafibrato/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Família 2 do Citocromo P450/antagonistas & inibidores , Família 2 do Citocromo P450/genética , Família 2 do Citocromo P450/metabolismo , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Eicosanoides/análise , Eicosanoides/metabolismo , Indometacina/uso terapêutico , Neoplasias Pulmonares/irrigação sanguínea , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Metástase Neoplásica , Neovascularização Patológica , Pirimidinas/uso terapêutico , Resultado do Tratamento , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The inhibitory effect of new chemical entities on rat liver P450 marker activities was investigated in a functional approach towards drug development. Treatment of colorectal cancer (CRC) and chemoprevention using salicylic acid has gained a lot of attention, mainly in the prevention of the onset of colon cancer. Thus, an in vitro inhibitory effect of salicylic acid on rat CYP2C11 activity was examined by using high performance liquid chromatography (HPLC). High performance liquid chromatography analysis of a CYP2C11 assay was developed on a reversed phase C18 column (SUPELCO 25 cm × 4.6 mm × 5 µm) at 243 nm using 32% phosphate buffer (pH 3.36) and 68% methanol as a mobile phase. The CYP2C11 assay showed good linearity for all components (R2 > 0.999). Substrates and metabolites were found to be stable for up to 72 hours. Additionally, the method demonstrated good reproducibility, intra- and inter-day precision (<15%), acceptable recovery and accuracy (80%-120%), and low detection (1.3501 µM and 3.2757 µM) and quantitation limit values (4.914 µM and 9.927 µM) for 16α-hydroxytestosterone and testosterone, respectively. Salicylic acid acts reversibly as a noncompetitive (weak) inhibitor with Ki = 84.582 ± 2.67 µM (concentration of inhibitor to cause 50% inhibition of original enzyme activity (IC50) = 82.70 ± 2.67 µM) for CYP2C11 enzyme activity. This indicates a low potential to cause toxicity and drug-drug interactions.
Assuntos
Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Inibidores das Enzimas do Citocromo P-450/farmacologia , Família 2 do Citocromo P450/antagonistas & inibidores , Fígado/efeitos dos fármacos , Ácido Salicílico/farmacologia , Esteroide 16-alfa-Hidroxilase/antagonistas & inibidores , Animais , Hidrocarboneto de Aril Hidroxilases/química , Catálise , Cromatografia Líquida de Alta Pressão , Inibidores das Enzimas do Citocromo P-450/química , Família 2 do Citocromo P450/química , Desenvolvimento de Medicamentos , Humanos , Fígado/enzimologia , Ratos , Ácido Salicílico/química , Esteroide 16-alfa-Hidroxilase/químicaRESUMO
Human hepatic cytochromes P450 (CYP) are integral to xenobiotic metabolism. CYP2B6 is a major catalyst of biotransformation of environmental toxicants, including polybrominated diphenyl ethers (PBDEs). CYP2B substrates tend to contain halogen atoms, but the biochemical basis for this selectivity and for species specific determinants of metabolism has not been identified. Spectral binding titrations and inhibition studies were performed to investigate interactions of rat CYP2B1, rabbit CYP2B4, and CYP2B6 with a series of phenoxyaniline (POA) congeners that are analogues of PBDEs. For most congeners, there was a <3-fold difference between the spectral binding constants (KS) and IC50 values. In contrast, large discrepancies between these values were observed for POA and 3-chloro-4-phenoxyaniline. CYP2B1 was the enzyme most sensitive to POA congeners, so the Val-363 residue from that enzyme was introduced into CYP2B4 or CYP2B6. This substitution partially altered the protein-ligand interaction profiles to make them more similar to that of CYP2B1. Addition of cytochrome P450 oxidoreductase (POR) to titrations of CYP2B6 with POA or 2'4'5'TCPOA decreased the affinity of both ligands for the enzyme. Addition of cytochrome b5 to a recombinant enzyme system containing POR and CYP2B6 increased the POA IC50 value and decreased the 2'4'5'TCPOA IC50 value. Overall, the inconsistency between KS and IC50 values for POA versus 2'4'5'TCPOA is largely due to the effects of redox partner binding. These results provide insight into the biochemical basis of binding of diphenyl ethers to human CYP2B6 and changes in CYP2B6-mediated metabolism that are dependent on POA congener and redox partner identity.
Assuntos
Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Citocromo P-450 CYP2B1/antagonistas & inibidores , Citocromo P-450 CYP2B6/efeitos dos fármacos , Inibidores das Enzimas do Citocromo P-450/farmacologia , Éteres Difenil Halogenados/farmacologia , Alquilação/efeitos dos fármacos , Substituição de Aminoácidos , Compostos de Anilina , Animais , Hidrocarboneto de Aril Hidroxilases/química , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Derivados de Benzeno/farmacologia , Citocromo P-450 CYP2B1/química , Citocromo P-450 CYP2B1/genética , Citocromo P-450 CYP2B1/metabolismo , Citocromo P-450 CYP2B6/química , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2B6/metabolismo , Inibidores do Citocromo P-450 CYP2B6/metabolismo , Inibidores do Citocromo P-450 CYP2B6/farmacologia , Inibidores das Enzimas do Citocromo P-450/metabolismo , Família 2 do Citocromo P450/antagonistas & inibidores , Família 2 do Citocromo P450/química , Família 2 do Citocromo P450/genética , Família 2 do Citocromo P450/metabolismo , Citocromos b5/metabolismo , Poluentes Ambientais/metabolismo , Éteres Difenil Halogenados/metabolismo , Humanos , Hidrocarbonetos Halogenados/metabolismo , Concentração Inibidora 50 , Estrutura Molecular , Mutagênese Sítio-Dirigida , NADPH Oxidases/metabolismo , Oxirredução , Coelhos , Ratos , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Especificidade por SubstratoRESUMO
Vitamin D metabolism was studied in primary human dermal fibroblasts with focus on drug-mediated gene regulation related to adverse side effects of antiretroviral drugs used in HIV therapy. The fibroblasts expressed mRNA for cytochrome P450 (CYP) enzymes catalysing bioactivating (CYP2R1, CYP27A1 and CYP27B1) and catabolic reactions (CYP24A1). The cells produced both 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3 . The results demonstrate that primary dermal fibroblasts have an active vitamin D3 -metabolizing system. High incidence of low bone mineral density is a concern for HIV-infected patients treated with antiretroviral drugs. Osteomalacia and severe vitamin D deficiency have been reported. We investigated whether drug-mediated gene regulation could be a possible mechanism behind these adverse drug effects. Fibroblasts were treated with different drugs used in HIV therapy, and the 1α,25-dihydroxyvitamin D3 levels and relative mRNA levels for crucial enzymes were determined. Efavirenz, stavudine and ritonavir significantly down-regulated the bioactivating CYP2R1 and up-regulated the catabolic CYP24A1. The drugs reduced bioactivating enzyme activities and cellular levels of 1α,25-dihydroxyvitamin D3 . The current results indicate that effects on gene expression may lead to disturbed vitamin D metabolism and decreased cellular levels of active vitamin D3 . The data are consistent with the impaired bone health in patients treated with certain antiretroviral drugs.
Assuntos
Fármacos Anti-HIV/farmacologia , Colecalciferol/metabolismo , Colestanotriol 26-Mono-Oxigenase/metabolismo , Família 2 do Citocromo P450/metabolismo , Derme/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Vitamina D3 24-Hidroxilase/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Adolescente , Adulto , Alcinos , Benzoxazinas/farmacologia , Calcifediol/metabolismo , Calcitriol/antagonistas & inibidores , Calcitriol/metabolismo , Células Cultivadas , Colestanotriol 26-Mono-Oxigenase/antagonistas & inibidores , Colestanotriol 26-Mono-Oxigenase/genética , Ciclopropanos , Família 2 do Citocromo P450/antagonistas & inibidores , Família 2 do Citocromo P450/genética , Derme/citologia , Derme/metabolismo , Feminino , Humanos , Masculino , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Ritonavir/farmacologia , Estavudina/farmacologia , Vitamina D3 24-Hidroxilase/química , Vitamina D3 24-Hidroxilase/genética , Adulto JovemRESUMO
Sunitinib (SUN) is a multi-targeted tyrosine kinase inhibitor that was recently approved for the treatment of gastrointestinal tract and renal cancers. To date, very little is known about the effects of SUN on the expression of hepatic and renal xenobiotic-metabolizing enzymes (XMEs) and transporters. The present study was designed to investigate the capacity of chronic SUN treatment to modulate the mRNA and protein expression levels of phase I cytochrome P450 (CYP), phase II conjugating enzymes, and phase III transporters in rat liver and kidneys. For this purpose, SUN (25, 50 and 100 mg/kg) was injected IP into Wistar albino rats for 4 weeks; thereafter, the mRNA and protein expression levels of several XMEs and transporters were determined by RT-PCR and Western blot analysis, respectively. Real-time PCR analysis showed that SUN significantly induced the hepatic and renal CYP1A1, 1A2, 1B1, 2E1 and 4F4, whereas it inhibited CYP2C11 and 4A2. Furthermore, SUN specifically induced renal, but not hepatic, CYP2J3 and 3A2, while it induced only hepatic CYP4A1. With regard to phase II, SUN induced hepatic GSTA1 and UGT1A and renal NQO1 and UGT1A mRNA levels, whereas it inhibited renal GST1A expression. On the other hand, both renal and hepatic P-gp, MRP2 and BCRP transporters were significantly induced by SUN at the mRNA and protein expression levels. Importantly, these differential effects were associated with changes in oxidative stress genes and lipid peroxidation levels. In conclusion, SUN can serve as XME and transporters modulator, which potentially may counteract the efficacy of the treatment, adverse reactions and drug interactions in SUN treatment.
Assuntos
Indóis/farmacologia , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Pirróis/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Família 2 do Citocromo P450/antagonistas & inibidores , Família 2 do Citocromo P450/genética , Família 2 do Citocromo P450/metabolismo , Família 4 do Citocromo P450/genética , Família 4 do Citocromo P450/metabolismo , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Rim/enzimologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/enzimologia , Masculino , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Esteroide 16-alfa-Hidroxilase/antagonistas & inibidores , Esteroide 16-alfa-Hidroxilase/genética , Esteroide 16-alfa-Hidroxilase/metabolismo , Sunitinibe , Transcriptoma , Xenobióticos/metabolismoRESUMO
Among CYPs, CYP2A sub-family is well known for its function to metabolise xenobiotics. CYP2A includes three members: CYP2A6, CYP2A7 and CYP2A13. Of these three proteins, structure and function of CYP2A6 and CYP2A13 are widely studied, whereas very little study has been carried out on CYP2A7. In the initial in vitro studies on CYP2A7, full protein in its active form could not be expressed. The exact structure and function of CYP2A7 is still not revealed. However, up-regulation of CYP2A7 has been reported in malignant oesophageal cells and colon cancer cells. In the present study, we generated the structure of CYP2A7 protein. The modelled proteins were validated and subjected to molecular docking analyses. The energy and RMSD calculations demonstrated that the protein is highly conserved in nature, i.e., the protein is not much flexible. Here the ligand molecules of NCI Diversity Set II from the ZINC database against the active site of the CYP2A7 protein were screened. Five compounds that possess good inhibitory activity against CYP2A7 active site were identified. The top ranking molecule (ZINC01572309) has a minimum energy score of -12.0 kcal/Mol. This compound is thus a good starting point for further development of strong inhibitors. Our in silico approach could help in better structural and functional analysis of CYP2A7. Apart from structural description of CYP2A7, elaboration of binding sites for inhibitors provides us with an opportunity to utilise binding pockets in targeted inactivation of this protein for further research.