Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Mol Biol ; 433(5): 166809, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33484718

RESUMO

Macroautophagy is a bulk degradation mechanism in eukaryotic cells. Efficiency of an essential step of this process in yeast, Atg8 lipidation, relies on the presence of Atg16, a subunit of the Atg12-Atg5-Atg16 complex acting as the E3-like enzyme in the ubiquitination-like reaction. A current view on the functional structure of Atg16 in the yeast S. cerevisiae comes from the two crystal structures that reveal the Atg5-interacting α-helix linked via a flexible linker to another α-helix of Atg16, which then assembles into a homodimer. This view does not explain the results of previous in vitro studies revealing Atg16-dependent deformations of membranes and liposome-binding of the Atg12-Atg5 conjugate upon addition of Atg16. Here we show that Atg16 acts as both a homodimerizing and peripheral membrane-binding polypeptide. These two characteristics are imposed by the two distinct regions that are disordered in the nascent protein. Atg16 binds to membranes in vivo via the amphipathic α-helix (amino acid residues 113-131) that has a coiled-coil-like propensity and a strong hydrophobic face for insertion into the membrane. The other protein region (residues 64-99) possesses a coiled-coil propensity, but not amphipathicity, and is dispensable for membrane anchoring of Atg16. This region acts as a Leu-zipper essential for formation of the Atg16 homodimer. Mutagenic disruption in either of these two distinct domains renders Atg16 proteins that, in contrast to wild type, completely fail to rescue the autophagy-defective phenotype of atg16Δ cells. Together, the results of this study yield a model for the molecular mechanism of Atg16 function in macroautophagy.


Assuntos
Proteína 12 Relacionada à Autofagia/química , Proteína 5 Relacionada à Autofagia/química , Família da Proteína 8 Relacionada à Autofagia/química , Proteínas Relacionadas à Autofagia/química , Membrana Celular/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Autofagia/genética , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/deficiência , Proteínas Relacionadas à Autofagia/genética , Sítios de Ligação , Membrana Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Lipossomos/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
2.
Rev. bras. parasitol. vet ; 30(1): e017020, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1156227

RESUMO

Abstract Autophagy plays an important role in maintaining cell homeostasis through degradation of denatured proteins and other biological macromolecules. In recent years, many researchers focus on mechanism of autophagy in apicomplexan parasites, but little was known about this process in avian coccidia. In our present study. The cloning, sequencing and characterization of autophagy-related gene (Etatg8) were investigated by quantitative real-time PCR (RT-qPCR), western blotting (WB), indirect immunofluorescence assays (IFAs) and transmission electron microscopy (TEM), respectively. The results have shown 375-bp ORF of Etatg8, encoding a protein of 124 amino acids in E. tenella, the protein structure and properties are similar to other apicomplexan parasites. RT-qPCR revealed Etatg8 gene expression during four developmental stages in E. tenella, but their transcriptional levels were significantly higher at the unsporulated oocysts stage. WB and IFA showed that EtATG8 was lipidated to bind the autophagosome membrane under starvation or rapamycin conditions, and aggregated in the cytoplasm of sporozoites and merozoites, however, the process of autophagosome membrane production can be inhibited by 3-methyladenine. In conclusion, we found that E. tenella has a conserved autophagy mechanism like other apicomplexan parasites, and EtATG8 can be used as a marker for future research on autophagy targeting avian coccidia.


Resumo A autofagia desempenha um papel importante na manutenção da homeostase celular através da degradação de proteínas desnaturadas e outras macromoléculas biológicas. Nos últimos anos, muitos pesquisadores se concentraram no mecanismo da autofagia em parasitas apicomplexos, mas pouco se sabe sobre esse processo na coccidia aviária. No presente estudo, a clonagem, sequenciamento e caracterização de gene relacionado à autofagia Etatg8 foram investigados pela PCR quantitativa em tempo real (RT-qPCR), mancha ocidental (WB), ensaios indiretos de imunofluorescência (IFAs) e microscopia eletrônica de transmissão (TEM), respectivamente. Os resultados mostraram que o gene Etatg8 de E. tenella possui uma ORF de 375 bp, codificando uma proteína de 124 aminoácidos com estrutura e propriedades semelhantes à de outros apicomplexos. RT-qPCR revelou que Etatg8 é expresso durante os quatro estágios de desenvolvimento de E. tenella. Entretanto, seus níveis transcricionais foram significativamente mais elevados na fase de oocisto não esporulados. Os ensaios de manchas ocidental (WB) e de imunofluorescência (IFA) mostraram que a proteína EtATG8 foi lipidada para ligar-se à membrana do autofagossomo sob condições de deficiência nutritiva (em presença de rapamicina) e se agregar no citoplasma de esporozoítas e merozoítas. No entanto, o processo de produção de membrana do autofagossomo pode ser inibido por um inibidor de autofagia (3-meetiladeninatiladenina, 3-MA). Em conclusão, foi demonstrado que E. tenella tem um mecanismo de autofagia conservado, semelhante ao de outros parasitas apicomplexos, e que EtATG8 pode ser usado como um marcador para futuras pesquisas sobre autofagia direcionada à coccidiose aviária.


Assuntos
Animais , Autofagia/fisiologia , Doenças das Aves/parasitologia , Galinhas/parasitologia , Eimeria tenella/fisiologia , Coccidiose/veterinária , Família da Proteína 8 Relacionada à Autofagia/química , Autofagia/genética , Doenças das Aves/prevenção & controle , Marcadores Genéticos/fisiologia , China , Reação em Cadeia da Polimerase , Eimeria tenella/genética , Clonagem Molecular/métodos , Coccidiose/prevenção & controle , Oocistos/isolamento & purificação , Oocistos/fisiologia , Esporozoítos/isolamento & purificação , Esporozoítos/fisiologia , Microscopia Eletrônica de Transmissão , Merozoítos/isolamento & purificação , Merozoítos/fisiologia , Família da Proteína 8 Relacionada à Autofagia/genética
4.
Cells ; 9(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882854

RESUMO

Autophagy is a common name for a number of catabolic processes, which keep the cellular homeostasis by removing damaged and dysfunctional intracellular components. Impairment or misbalance of autophagy can lead to various diseases, such as neurodegeneration, infection diseases, and cancer. A central axis of autophagy is formed along the interactions of autophagy modifiers (Atg8-family proteins) with a variety of their cellular counter partners. Besides autophagy, Atg8-proteins participate in many other pathways, among which membrane trafficking and neuronal signaling are the most known. Despite the fact that autophagy modifiers are well-studied, as the small globular proteins show similarity to ubiquitin on a structural level, the mechanism of their interactions are still not completely understood. A thorough analysis and classification of all known mechanisms of Atg8-protein interactions could shed light on their functioning and connect the pathways involving Atg8-proteins. In this review, we present our views of the key features of the Atg8-proteins and describe the basic principles of their recognition and binding by interaction partners. We discuss affinity and selectivity of their interactions as well as provide perspectives for discovery of new Atg8-interacting proteins and therapeutic approaches to tackle major human diseases.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/química , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Autofagia/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Sequência de Bases , Homeostase/fisiologia , Humanos , Ligação de Hidrogênio , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta
5.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331330

RESUMO

Autophagy is an important process by which pathogens and damaged or unused organelles are eliminated. The role of autophagy in development and the immune response to pathogens is well established. Autophagy-related protein 8 (Atg8) is involved in the formation of the autophagosome and, with the help of the serine protease Atg4, mediates the delivery of both vesicles and the autophagosome to the vacuole. Here, we cloned the Aedes albopictus autophagy-related protein 8 (AaAtg8) gene and characterized its role in the innate immunity of the mosquito against microbial infections. AaAtg8 is comprised of an open reading frame (ORF) region of 357 bp encoding a polypeptide of 118 amino acid residues. A domain analysis of AaAtg8 revealed an Atg8 ubiquitin-like domain, Atg7/Atg4 interaction sites, and peptide binding sites. The AaAtg8 mRNA expression was high in the Malpighian tubules and heads of both sugar-fed and blood-fed adult female mosquitoes. The expression level of AaAtg8 mRNA increased in the midgut and abdominal carcass following being challenged with Listeria monocytogenes. To investigate the role of AaAtg8 in the innate immune responses of Ae. albopictus, AaAtg8 gene-silenced adult mosquitoes were challenged by injection or by being fed microorganisms in blood. High mortality rates were observed in mosquitoes in which AaAtg8 was silenced after challenges of microorganisms to the host by blood feeding. This suggests that Atg8-autophagy plays a critical role in the gut immunity in Ae. albopictus.


Assuntos
Aedes/genética , Aedes/imunologia , Família da Proteína 8 Relacionada à Autofagia/genética , Interações Hospedeiro-Patógeno , Imunidade nas Mucosas/genética , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Sequência de Aminoácidos , Animais , Família da Proteína 8 Relacionada à Autofagia/química , Sequência de Bases , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunomodulação/genética , RNA Mensageiro/genética
6.
Autophagy ; 16(2): 239-255, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982432

RESUMO

Autophagy is a conserved adaptive cellular pathway essential to maintain a variety of physiological functions. Core components of this machinery are the six human Atg8 orthologs that initiate formation of appropriate protein complexes. While these proteins are routinely used as indicators of autophagic flux, it is presently not possible to discern their individual biological functions due to our inability to predict specific binding partners. In our attempts towards determining downstream effector functions, we developed a computational pipeline to define structural determinants of human Atg8 family members that dictate functional diversity. We found a clear evolutionary separation between human LC3 and GABARAP subfamilies and also defined a novel sequence motif responsible for their specificity. By analyzing known protein structures, we observed that functional modules or microclusters reveal a pattern of intramolecular network, including distinct hydrogen bonding of key residues (F52/Y49; a subset of HP2) that may directly modulate their interaction preferences. Multiple molecular dynamics simulations were performed to characterize how these proteins interact with a common protein binding partner, PLEKHM1. Our analysis showed remarkable differences in binding modes via intrinsic protein dynamics, with PLEKHM1-bound GABARAP complexes showing less fluctuations and higher number of contacts. We further mapped 373 genomic variations and demonstrated that distinct cancer-related mutations are likely to lead to significant structural changes. Our findings present a quantitative framework to establish factors underlying exquisite specificity of human Atg8 proteins, and thus facilitate the design of precise modulators.Abbreviations: Atg: autophagy-related; ECs: evolutionary constraints; GABARAP: GABA type A receptor-associated protein; HsAtg8: human Atg8; HP: hydrophobic pocket; KBTBD6: kelch repeat and BTB domain containing 6; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MD: molecular dynamics; HIV-1 Nef: human immunodeficiency virus type 1 negative regulatory factor; PLEKHM1: pleckstrin homology and RUN domain containing M1; RMSD: root mean square deviation; SQSTM1/p62: sequestosome 1; WDFY3/ALFY: WD repeat and FYVE domain containing 3.


Assuntos
Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Família da Proteína 8 Relacionada à Autofagia/química , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Sítios de Ligação , Evolução Molecular , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Mutação/genética , Neoplasias/genética , Ligação Proteica , Relação Estrutura-Atividade
7.
Autophagy ; 16(2): 256-270, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30990354

RESUMO

Short linear motifs, known as LC3-interacting regions (LIRs), interact with mactoautophagy/autophagy modifiers (Atg8/LC3/GABARAP proteins) via a conserved universal mechanism. Typically, this includes the occupancy of 2 hydrophobic pockets on the surface of Atg8-family proteins by 2 specific aromatic and hydrophobic residues within the LIR motifs. Here, we describe an alternative mechanism of Atg8-family protein interaction with the non-canonical UBA5 LIR, an E1-like enzyme of the ufmylation pathway that preferentially interacts with GABARAP but not LC3 proteins. By solving the structures of both GABARAP and GABARAPL2 in complex with the UBA5 LIR, we show that in addition to the binding to the 2 canonical hydrophobic pockets (HP1 and HP2), a conserved tryptophan residue N-terminal of the LIR core sequence binds into a novel hydrophobic pocket on the surface of GABARAP proteins, which we term HP0. This mode of action is unique for UBA5 and accompanied by large rearrangements of key residues including the side chains of the gate-keeping K46 and the adjacent K/R47 in GABARAP proteins. Swapping mutations in LC3B and GABARAPL2 revealed that K/R47 is the key residue in the specific binding of GABARAP proteins to UBA5, with synergetic contributions of the composition and dynamics of the loop L3. Finally, we elucidate the physiological relevance of the interaction and show that GABARAP proteins regulate the localization and function of UBA5 on the endoplasmic reticulum membrane in a lipidation-independent manner.Abbreviations: ATG: AuTophaGy-related; EGFP: enhanced green fluorescent protein; GABARAP: GABA-type A receptor-associated protein; ITC: isothermal titration calorimetry; KO: knockout; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NMR: nuclear magnetic resonance; RMSD: root-mean-square deviation of atomic positions; TKO: triple knockout; UBA5: ubiquitin like modifier activating enzyme 5.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Membranas Intracelulares/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Enzimas Ativadoras de Ubiquitina/química , Enzimas Ativadoras de Ubiquitina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose/química , Família da Proteína 8 Relacionada à Autofagia/química , Família da Proteína 8 Relacionada à Autofagia/genética , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Lisina/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Modelos Moleculares , Mutação/genética , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
8.
PLoS Biol ; 17(7): e3000373, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31329577

RESUMO

Autophagy-related protein 8 (ATG8) is a highly conserved ubiquitin-like protein that modulates autophagy pathways by binding autophagic membranes and a number of proteins, including cargo receptors and core autophagy components. Throughout plant evolution, ATG8 has expanded from a single protein in algae to multiple isoforms in higher plants. However, the degree to which ATG8 isoforms have functionally specialized to bind distinct proteins remains unclear. Here, we describe a comprehensive protein-protein interaction resource, obtained using in planta immunoprecipitation (IP) followed by mass spectrometry (MS), to define the potato ATG8 interactome. We discovered that ATG8 isoforms bind distinct sets of plant proteins with varying degrees of overlap. This prompted us to define the biochemical basis of ATG8 specialization by comparing two potato ATG8 isoforms using both in vivo protein interaction assays and in vitro quantitative binding affinity analyses. These experiments revealed that the N-terminal ß-strand-and, in particular, a single amino acid polymorphism-underpins binding specificity to the substrate PexRD54 by shaping the hydrophobic pocket that accommodates this protein's ATG8-interacting motif (AIM). Additional proteomics experiments indicated that the N-terminal ß-strand shapes the broader ATG8 interactor profiles, defining interaction specificity with about 80 plant proteins. Our findings are consistent with the view that ATG8 isoforms comprise a layer of specificity in the regulation of selective autophagy pathways in plants.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/metabolismo , Autofagia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Família da Proteína 8 Relacionada à Autofagia/química , Família da Proteína 8 Relacionada à Autofagia/genética , Imunoprecipitação/métodos , Espectrometria de Massas/métodos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/classificação , Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Conformação Proteica em Folha beta , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteômica/métodos , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
9.
Biochem J ; 476(3): 449-465, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30642888

RESUMO

Selective autophagy has emerged as an important mechanism by which eukaryotic cells control the abundance of specific proteins. This mechanism relies on cargo recruitment to autophagosomes by receptors that bind to both the ubiquitin-like AUTOPHAGY8 (ATG8) protein through ATG8-interacting motifs (AIMs) and to the cargo to be degraded. In plants, two autophagy cargo receptors, ATG8-interacting protein 1 (ATI1) and 2 (ATI2), were identified early on, but their molecular properties remain poorly understood. Here, we show that ATI1 and ATI2 are transmembrane proteins with long N-terminal intrinsically disordered regions (IDRs). The N-terminal IDRs contain the functional AIMs, and we use nuclear magnetic resonance spectroscopy to directly observe the disorder-order transition of the AIM upon ATG8 binding. Our analyses also show that the IDRs of ATI1 and ATI2 are not equivalent, because ATI2 has properties of a fully disordered polypeptide, while ATI1 has properties more consistent with a collapsed pre-molten globule-like conformation, possibly as a consequence of a higher content of π-orbital-containing amino acid residues. Finally, we show that a sizable fraction of ATI2, but not ATI1, is phosphorylated in planta.


Assuntos
Proteínas de Arabidopsis/química , Família da Proteína 8 Relacionada à Autofagia/química , Proteínas Intrinsicamente Desordenadas/química , Proteínas de Transporte Vesicular/química , Motivos de Aminoácidos , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Domínios Proteicos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
10.
Biochemistry ; 58(7): 1010-1018, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30624906

RESUMO

Site-selective lysine post-translational modifications such as acetylation, methylation, hydroxylation, and isopeptide formation mediate the precise control of important signaling events in cells with unmistakable accuracy. This unparalleled site selectivity (modification of a single lysine in a particular protein in the proteome) is still a challenge for non-enzymatic protein reactions; the difficulty lies in the differentiation of the lysine ε-amino group from other reactive groups and in the precise pinpointing of one particular lysine ε-amino group out of many other lysine ε-amino groups and the N-terminal amine of the protein that have similar chemical reactivity. Here, we have explored proximal lysine conjugation reactions through peptide-guided fluorodinitrobenzene, isothiocyanate, and phenyl ester reactions and have validated the site-specific targeting of the ε-amino group of one single lysine in natural proteins that contain multiple lysine residues. This precise site selectivity is a result of the proximity-induced reactivity guided by a specific protein-peptide interaction: the binding interaction preorganizes an amine-reactive group in the peptide and one of the lysine side chain ε-amino groups of the protein into close proximity, thereby confining the reactivity to a selected area of the target protein. The binding-guide lysine reactions were first examined on an SH3 domain and then tested on several ubiquitin-like proteins such as SUMO, Atg8 protein family, plant ATG8, and mammalian LC3 proteins that contain at least seven lysine residues on the surface. Exquisite site selectivity was confirmed in all of the proteins tested. A set of amine reactions were tested for their feasibility in the site-selective lysine reaction. Selected amine-reactive groups were optimized, and the reaction sites on the LC3 protein were confirmed by mass spectrometry.


Assuntos
Lisina/química , Domínios e Motivos de Interação entre Proteínas , Família da Proteína 8 Relacionada à Autofagia/química , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Sítios de Ligação , Proteína Tirosina Quinase CSK , Dinitrofluorbenzeno/química , Células HeLa , Humanos , Lisina/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteína SUMO-1/química , Proteína SUMO-1/metabolismo , Domínios de Homologia de src , Quinases da Família src/química , Quinases da Família src/metabolismo
11.
Methods Mol Biol ; 1880: 149-161, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30610694

RESUMO

The mammalian ATG8 proteins (LC3A-C/GABARAP, GABARAPL1, and GABARAPL2) are small ubiquitin-like proteins critically involved in macroautophagy. Their processed C-termini are posttranslationally conjugated to a phosphatidylethanolamine moiety, enabling their insertion into the lipid bilayers of both the inner and outer membranes of the forming autophagosomes. The ATG8s bind a diverse selection of proteins including cargo receptors for selective autophagy, members of the core autophagy machinery, and other proteins involved in formation, transport, and maturation (fusion to lysosomes) of autophagosomes. Protein binding to the ATG8s is in most cases mediated by short, conserved sequence motifs known as LC3-interacting regions (LIRs). Here, we present a protocol for identifying putative LIR motifs in a whole protein sequence using peptide arrays generated by SPOT synthesis on nitrocellulose membranes. The use of two-dimensional peptide arrays allows for further identification of specific residues critical for LIR binding.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/metabolismo , Peptídeos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose , Autofagia , Família da Proteína 8 Relacionada à Autofagia/química , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Peptídeos/química , Análise Serial de Proteínas/métodos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/metabolismo
12.
Biochem Biophys Res Commun ; 508(2): 521-526, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30503495

RESUMO

Autophagy, a system for the bulk degradation of intracellular components, is essential for homeostasis and the healthy physiology and development of cells and tissues. Its deregulation is associated with human disease. Thus, methods to modulate autophagic activity are critical for analysis of its role in mammalian cells and tissues. Here we report a method to inhibit autophagy using a mutant variant of the protein ATG7, a ubiquitin E1-like enzyme essential for autophagosome formation. During autophagy, ATG7 activates the conjugation of LC3 (ATG8) with phosphatidylethanolamine (PE) and ATG12 with ATG5. Human ATG7 interactions with LC3 or ATG12 require a thioester bond involving the ATG7 cysteine residue at position 572. We generated TetOff cells expressing mutant ATG7 protein carrying a serine substitution of this critical cysteine residue (ATG7C572S). Because ATG7C572S forms stable intermediate complexes with LC3 or ATG12, its expression resulted in a strong blockage of the ATG-conjugation system and suppression of autophagosome formation. Consequently, ATG7C572S mutant protein can be used as an inhibitor of autophagy.


Assuntos
Proteína 12 Relacionada à Autofagia/química , Proteína 7 Relacionada à Autofagia/química , Família da Proteína 8 Relacionada à Autofagia/química , Autofagia/efeitos dos fármacos , Autofagossomos/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/química , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/farmacologia , Células Cultivadas , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/farmacologia , Fosfatidiletanolaminas/química
13.
Open Biol ; 8(10)2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355753

RESUMO

Autophagy is an intracellular clearance pathway that delivers cytoplasmic contents to the lysosome for degradation. It plays a critical role in maintaining protein homeostasis and providing nutrients under conditions where the cell is starved. It also helps to remove damaged organelles and misfolded or aggregated proteins. Thus, it is not surprising that defects in this pathway are associated with a variety of pathological conditions, such as neurodegeneration, cancer and infection. Pharmacological upregulation of autophagy is considered a promising therapeutic strategy for the treatment of neurodegenerative and infectious diseases. Studies in knockout mice have demonstrated that autophagy is essential for nervous system function, and data from invertebrate and vertebrate models suggest that the efficiency of autophagic processes generally declines with age. However, much of our understanding of the intracellular regulation of autophagy comes from in vitro studies, and there is a paucity of knowledge about how this process is regulated within different tissues and during the processes of ageing and disease. Here, we review the available tools to probe these questions in vivo within vertebrate model systems. We discuss how these tools have been used to date and consider future avenues of research.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/metabolismo , Autofagia/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Lisossomos/metabolismo , Vertebrados/fisiologia , Fatores Etários , Animais , Família da Proteína 8 Relacionada à Autofagia/química , Linhagem Celular , Doenças Transmissíveis/metabolismo , Proteínas de Fluorescência Verde/química , Humanos , Modelos Biológicos , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo
14.
J Biol Chem ; 293(47): 18378-18386, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30282803

RESUMO

The retroviral restriction factor tripartite motif-containing 5α (Trim5α) acts during the early postentry stages of the retroviral life cycle to block infection by a broad range of retroviruses, disrupting reverse transcription and integration. The mechanism of this restriction is poorly understood, but it has recently been suggested to involve recruitment of components of the autophagy machinery, including members of the mammalian autophagy-related 8 (ATG8) family involved in targeting proteins to the autophagosome. To better understand the molecular details of this interaction, here we utilized analytical ultracentrifugation to characterize the binding of six ATG8 isoforms and determined the crystal structure of the Trim5α Bbox coiled-coil region in complex with one member of the mammalian ATG8 proteins, autophagy-related protein LC3 B (LC3B). We found that Trim5α binds all mammalian ATG8s and that, unlike the typical LC3-interacting region (LIR) that binds to mammalian ATG8s through a ß-strand motif comprising approximately six residues, LC3B binds to Trim5α via the α-helical coiled-coil region. The orientation of the structure demonstrated that LC3B could be accommodated within a Trim5α assembly that can bind the retroviral capsid. However, mutation of the binding interface does not affect retroviral restriction. Comparison of the typical linear ß-strand LIR with our atypical helical LIR reveals a conservation of the presentation of residues that are required for the interaction with LC3B. This observation expands the range of LC3B-binding proteins to include helical binding motifs and demonstrates a link between Trim5α and components of the autophagosome.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Infecções por HIV/metabolismo , HIV/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Motivos de Aminoácidos , Fatores de Restrição Antivirais , Autofagia , Família da Proteína 8 Relacionada à Autofagia/química , Família da Proteína 8 Relacionada à Autofagia/genética , Proteínas de Transporte/genética , HIV/genética , Infecções por HIV/genética , Infecções por HIV/fisiopatologia , Infecções por HIV/virologia , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Ligação Proteica , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
15.
J Mol Biol ; 430(3): 249-257, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29237558

RESUMO

Atg8 is a unique ubiquitin-like protein that is covalently conjugated with a phosphatidylethanolamine through reactions similar to ubiquitination and plays essential roles in autophagy. Atg7 is the E1 enzyme for Atg8, and it activates the C-terminal Gly116 of Atg8 using ATP. Here, we report the crystal structure of Atg8 bound to the C-terminal domain of Atg7 in an unprecedented mode. Atg8 neither contacts with the central ß-sheet nor binds to the catalytic site of Atg7, both of which were observed in previously reported Atg7-Atg8 structures. Instead, Atg8 binds to the C-terminal α-helix and crossover loop, thereby changing the autoinhibited conformation of the crossover loop observed in the free Atg7 structure into a short helix and a disordered loop. Mutational analyses suggested that this interaction mode is important for the activation reaction. We propose that Atg7 recognizes Atg8 through multiple steps, which would be necessary to induce a conformational change in Atg7 that is optimal for the activation reaction.


Assuntos
Proteína 7 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Proteína 7 Relacionada à Autofagia/química , Família da Proteína 8 Relacionada à Autofagia/química , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
16.
Fungal Biol ; 121(9): 785-797, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28800850

RESUMO

Autophagy is involved in cellular development and the maintenance of viability under nutrient deprivation in a wide range of eukaryotes. A filamentous ascomycete Bipolaris maydis, responsible for southern corn leaf blight, is also studied as a model fungus for sexual reproduction in filamentous ascomycetes that form filiform ascospores. In order to clarify the roles of autophagy in various stages of the life cycle of B. maydis, we constructed null mutants of BmATG8, an orthologue of the Saccharomyces cerevisiae autophagy gene ATG8 in B. maydis. Deletion of BmATG8 impaired localization of cytosolic components to the vacuole under nitrogen starvation, suggesting that autophagy was deficient in the null mutants. Additionally, fluorescent microscopic observations on a eGFP-fused BmATG8 expressing strain showed that BmATG8 is associated with autophagy-related structures. In vegetative growth, ΔBmATG8 strains showed a reduction in conidiation and aerial mycelial growth. Interestingly, the mutant conidia indicated loss of the germination rate under starvation conditions and affected longevity. However, germinated mutant conidia were still capable of infecting the host plant via appressoria. In sexual reproduction, ascospores with ΔBmATG8 genetic background were aborted. Our results revealed that autophagy plays a crucial role in the function of conidia, not in host infection via appressoria in B. maydis. In addition, conservation of the importance of autophagy in ascospore development is suggested among ascomycetes including species that form bitunicate ascus.


Assuntos
Ascomicetos/genética , Família da Proteína 8 Relacionada à Autofagia/genética , Autofagia/genética , Mutação com Perda de Função , Sequência de Aminoácidos , Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/fisiologia , Família da Proteína 8 Relacionada à Autofagia/química , Farmacorresistência Fúngica , Deleção de Genes , Vetores Genéticos , Mutação com Perda de Função/genética , Substâncias Luminescentes , Proteínas Luminescentes , Micélio/crescimento & desenvolvimento , Plasmídeos , Reprodução , Alinhamento de Sequência , Esporos Fúngicos/fisiologia , Estreptotricinas/farmacologia , Proteína Vermelha Fluorescente
17.
SLAS Discov ; 22(4): 338-347, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26993319

RESUMO

Autophagy is an evolutionarily conserved homeostasis process through which aggregated proteins or damaged organelles are enveloped in a double-membrane structure called an autophagosome and then digested in a lysosome-dependent manner. Growing evidence suggests that malfunction of autophagy contributes to the pathogenesis of a variety of diseases, including cancer, viral infection, and neurodegeneration. However, autophagy is a complicated process, and understanding of the relevance of autophagy to disease is limited by lack of specific and potent autophagy modulators. ATG4B, a Cys-protease that cleaves ATG8 family proteins, such as LC3B, is a key protein in autophagosome formation and maturation process. A novel time-resolved fluorescence resonance energy transfer (TR-FRET) assay measuring protease activity of ATG4B was developed, validated, and adapted into a high-throughput screening (HTS) format. HTS was then conducted with a Roche focus library of 57,000 compounds. After hit confirmation and a counterscreen to filter out fluorescence interference compounds, 267 hits were confirmed, constituting a hit rate of 0.49%. Furthermore, among 65 hits with an IC50 < 50 µM, one compound mimics the LC3 peptide substrate (-TFG-). Chemistry modification based on this particular hit gave preliminary structure activity relationship (SAR) resulting in a compound with a 10-fold increase in potency. This compound forms a stable covalent bond with Cys74 of ATG4B in a 1:1 ratio as demonstrated by liquid chromatography/tandem mass spectrometry (LC/MS/MS). Furthermore, this compound displayed cellular ATG4B inhibition activity. Overall, the novel TR-FRET ATG4B protease assay plus counterscreen assay provides a robust platform to identify ATG4B inhibitors, which would help to elucidate the mechanism of the autophagy pathway and offer opportunities for drug discovery.


Assuntos
Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Autofagia/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência/métodos , Ensaios de Triagem em Larga Escala , Proteínas Associadas aos Microtúbulos/química , Inibidores de Proteases/farmacologia , Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/química , Proteínas Relacionadas à Autofagia/química , Cisteína Endopeptidases/química , Bases de Dados de Produtos Farmacêuticos , Genes Reporter , Células HEK293 , Humanos , Luciferases/genética , Luciferases/metabolismo , Inibidores de Proteases/química , Proteólise/efeitos dos fármacos , Relação Estrutura-Atividade , Especificidade por Substrato , Fatores de Tempo
18.
Autophagy ; 12(12): 2386-2403, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27764541

RESUMO

The phospholipid cardiolipin (CL) has been proposed to play a role in selective mitochondrial autophagy, or mitophagy. CL externalization to the outer mitochondrial membrane would act as a signal for the human Atg8 ortholog subfamily, MAP1LC3 (LC3). The latter would mediate both mitochondrial recognition and autophagosome formation, ultimately leading to removal of damaged mitochondria. We have applied quantitative biophysical techniques to the study of CL interaction with various Atg8 human orthologs, namely LC3B, GABARAPL2 and GABARAP. We have found that LC3B interacts preferentially with CL over other di-anionic lipids, that CL-LC3B binding occurs with positive cooperativity, and that the CL-LC3B interaction relies only partially on electrostatic forces. CL-induced increased membrane fluidity appears also as an important factor helping LC3B to bind CL. The LC3B C terminus remains exposed to the hydrophilic environment after protein binding to CL-enriched membranes. In intact U87MG human glioblastoma cells rotenone-induced autophagy leads to LC3B translocation to mitochondria and subsequent delivery of mitochondria to lysosomes. We have also observed that GABARAP, but not GABARAPL2, interacts with CL in vitro. However neither GABARAP nor GABARAPL2 were translocated to mitochondria in rotenone-treated U87MG cells. Thus the various human Atg8 orthologs might play specific roles in different autophagic processes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Autofagia , Cardiolipinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitofagia , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose , Autofagia/efeitos dos fármacos , Família da Proteína 8 Relacionada à Autofagia/química , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Dronabinol/farmacologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Associadas aos Microtúbulos/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Mitofagia/efeitos dos fármacos , Pressão , Ligação Proteica/efeitos dos fármacos , Rotenona/farmacologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
19.
Autophagy ; 12(11): 2054-2068, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27540766

RESUMO

Autophagy is important for degradation and recycling of intracellular components. In a diversity of genera and species, orthologs and paralogs of the yeast Atg4 and Atg8 proteins are crucial in the biogenesis of double-membrane autophagosomes that carry the cellular cargoes to vacuoles and lysosomes. Although many plant genome sequences are available, the ATG4 and ATG8 sequence analysis is limited to some model plants. We identified 28 ATG4 and 116 ATG8 genes from the available 18 different plant genome sequences. Gene structures and protein domain sequences of ATG4 and ATG8 are conserved in plant lineages. Phylogenetic analyses classified ATG8s into 3 subgroups suggesting divergence from the common ancestor. The ATG8 expansion in plants might be attributed to whole genome duplication, segmental and dispersed duplication, and purifying selection. Our results revealed that the yeast Atg4 processes Arabidopsis ATG8 but not human LC3A (HsLC3A). In contrast, HsATG4B can process yeast and plant ATG8s in vitro but yeast and plant ATG4s cannot process HsLC3A. Interestingly, in Nicotiana benthamiana plants the yeast Atg8 is processed compared to HsLC3A. However, HsLC3A is processed when coexpressed with HsATG4B in plants. Molecular modeling indicates that lack of processing of HsLC3A by plant and yeast ATG4 is not due to lack of interaction with HsLC3A. Our in-depth analyses of ATG4 and ATG8 in the plant lineage combined with results of cross-kingdom ATG8 processing by ATG4 further support the evolutionarily conserved maturation of ATG8. Broad ATG8 processing by HsATG4B and lack of processing of HsLC3A by yeast and plant ATG4s suggest that the cross-kingdom ATG8 processing is determined by ATG8 sequence rather than ATG4.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Autofagia/genética , Cisteína Proteases/genética , Filogenia , Processamento de Proteína Pós-Traducional/genética , Ubiquitina/genética , Sequência de Aminoácidos , Família da Proteína 8 Relacionada à Autofagia/química , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/metabolismo , Duplicação Gênica/genética , Genes de Plantas , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência do Ácido Nucleico , Nicotiana/metabolismo , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA