Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.275
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Radiat Res ; 65(3): 303-314, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38637316

RESUMO

Angiosarcoma is a rare refractory soft-tissue tumor with a poor prognosis and is treated by radiotherapy. The fibroblast growth factor 1 (FGF1) mutant, with enhanced thermostability due to several substituted amino acids, inhibits angiosarcoma cell metastasis, yet the mechanism of action is unclear. This study aims to clarify the FGF1 mutant mechanism of action using ISOS-1 mouse angiosarcoma cells. The wild-type FGF1 or FGF1 mutant was added to ISOS-1 cells and cultured, evaluating cell numbers over time. The invasive and migratory capacity of ISOS-1 cells was assessed by transwell analysis. ISOS-1 cell radiosensitivity was assessed by colony formation assay after X-ray irradiation. To examine whether mitogen-activated protein kinase (MEK) inhibitor counteracts the FGF1 mutant effects, a combination of MEK inhibitor and FGF1 mutant was added to ISOS-1 cells and cultured. The FGF1 mutant was observed to inhibit ISOS-1 cell proliferation, invasion and migration by sustained FGF1 signaling activation. A MEK inhibitor suppressed the FGF1 mutant-induced inhibition of proliferation, invasion and migration of ISOS-1 cells. Furthermore, the FGF1 mutant enhanced radiosensitivity of ISOS-1 cells, but MEK inhibition suppressed the increased radiosensitivity. In addition, we found that the FGF1 mutant strongly inhibits actin polymerization, suggesting that actin cytoskeletal dynamics are closely related to ISOS-1 cell radiosensitivity. Overall, this study demonstrated that in ISOS-1 cells, the FGF1 mutant inhibits proliferation, invasion and migration while enhancing radiosensitivity through sustained activation of the MEK-mediated signaling pathway.


Assuntos
Movimento Celular , Proliferação de Células , Fator 1 de Crescimento de Fibroblastos , Hemangiossarcoma , Sistema de Sinalização das MAP Quinases , Invasividade Neoplásica , Tolerância a Radiação , Animais , Camundongos , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Fator 1 de Crescimento de Fibroblastos/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Hemangiossarcoma/patologia , Hemangiossarcoma/metabolismo , Hemangiossarcoma/radioterapia
2.
Nanoscale ; 16(17): 8352-8360, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563277

RESUMO

Detection and characterization of protein-protein interactions are essential for many cellular processes, such as cell growth, tissue repair, drug delivery, and other physiological functions. In our research, we have utilized emerging solid-state nanopore sensing technology, which is highly sensitive to better understand heparin and fibroblast growth factor 1 (FGF-1) protein interactions at a single-molecule level without any modifications. Understanding the structure and behavior of heparin-FGF-1 complexes at the single-molecule level is very important. An abnormality in their formation can lead to life-threatening conditions like tumor growth, fibrosis, and neurological disorders. Using a controlled dielectric breakdown pore fabrication approach, we have characterized individual heparin and FGF-1 (one of the 22 known FGFs in humans) proteins through the fabrication of 17 ± 1 nm nanopores. Compared to heparin, the positively charged heparin-binding domains of some FGF-1 proteins translocationally react with the pore walls, giving rise to a distinguishable second peak with higher current blockade. Additionally, we have confirmed that the dynamic FGF-1 is stabilized upon binding with heparin-FGF-1 at the single-molecule level. The larger current blockades from the complexes relative to individual heparin and the FGF-1 recorded during the translocation ensure the binding of heparin-FGF-1 proteins, forming binding complexes with higher excluded volumes. Taken together, we demonstrate that solid-state nanopores can be employed to investigate the properties of individual proteins and their complex interactions, potentially paving the way for innovative medical therapies and advancements.


Assuntos
Fator 1 de Crescimento de Fibroblastos , Heparina , Nanoporos , Ligação Proteica , Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/metabolismo , Heparina/química , Heparina/metabolismo , Humanos
3.
Int J Biol Sci ; 20(5): 1669-1687, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481813

RESUMO

Direct tubular injury caused by several medications, especially chemotherapeutic drugs, is a common cause of AKI. Inhibition or loss of cyclin-dependent kinase 12 (CDK12) triggers a transcriptional elongation defect that results in deficiencies in DNA damage repair, producing genomic instability in a variety of cancers. Notably, 10-25% of individuals developed AKI after treatment with a CDK12 inhibitor, and the potential mechanism is not well understood. Here, we found that CDK12 was downregulated in the renal tubular epithelial cells in both patients with AKI and murine AKI models. Moreover, tubular cell-specific knockdown of CDK12 in mice enhanced cisplatin-induced AKI through promotion of genome instability, apoptosis, and proliferative inhibition, whereas CDK12 overexpression protected against AKI. Using the single molecule real-time (SMRT) platform on the kidneys of CDK12RTEC+/- mice, we found that CDK12 knockdown targeted Fgf1 and Cast through transcriptional elongation defects, thereby enhancing genome instability and apoptosis. Overall, these data demonstrated that CDK12 knockdown could potentiate the development of AKI by altering the transcriptional elongation defect of the Fgf1 and Cast genes, and more attention should be given to patients treated with CDK12 inhibitors to prevent AKI.


Assuntos
Injúria Renal Aguda , Fator 1 de Crescimento de Fibroblastos , Humanos , Camundongos , Animais , Fator 1 de Crescimento de Fibroblastos/genética , Quinases Ciclina-Dependentes/genética , Rim , Injúria Renal Aguda/induzido quimicamente , Instabilidade Genômica
4.
Cells ; 13(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474378

RESUMO

BACKGROUND: Diabetic foot ulcers (DFU) pose a significant health risk in diabetic patients, with insufficient revascularization during wound healing being the primary cause. This study aimed to assess microvessel sprouting and wound healing capabilities using vascular endothelial growth factor (VEGF-A) and a modified fibroblast growth factor (FGF1). METHODS: An ex vivo aortic ring rodent model and an in vivo wound healing model in diabetic mice were employed to evaluate the microvessel sprouting and wound healing capabilities of VEGF-A and a modified FGF1 both as monotherapies and in combination. RESULTS: The combination of VEGF-A and FGF1 demonstrated increased vascular sprouting in the ex vivo mouse aortic ring model, and topical administration of a combination of VEGF-A and FGF1 mRNAs formulated in lipid nanoparticles (LNPs) in mouse skin wounds promoted faster wound closure and increased neovascularization seven days post-surgical wound creation. RNA-sequencing analysis of skin samples at day three post-wound creation revealed a strong transcriptional response of the wound healing process, with the combined treatment showing significant enrichment of genes linked to skin growth. CONCLUSION: f-LNPs encapsulating VEGF-A and FGF1 mRNAs present a promising approach to improving the scarring process in DFU.


Assuntos
Diabetes Mellitus Experimental , Pé Diabético , Humanos , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator 1 de Crescimento de Fibroblastos , Neovascularização Fisiológica/fisiologia , Cicatrização/fisiologia , Modelos Animais de Doenças
5.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542166

RESUMO

Diabetic retinopathy (DR) severely affects vision in individuals with diabetes. High glucose (HG) induces oxidative stress in retinal cells, a key contributor to DR development. Previous studies suggest that fibroblast growth factor-1 (FGF-1) can mitigate hyperglycemia and protect tissues from HG-induced damage. However, the specific effects and mechanisms of FGF-1 on DR remain unclear. In our study, FGF-1-pretreated adult retinal pigment epithelial (ARPE)-19 cells were employed to investigate. Results indicate that FGF-1 significantly attenuated HG-induced oxidative stress, including reactive oxygen species, DNA damage, protein carbonyl content, and lipid peroxidation. FGF-1 also modulated the expression of oxidative and antioxidative enzymes. Mechanistic investigations showed that HG induced high endoplasmic reticulum (ER) stress and upregulated specific proteins associated with apoptosis. FGF-1 effectively alleviated ER stress, reduced apoptosis, and restored autophagy through the adenosine monophosphate-activated protein kinase/mammalian target of the rapamycin signaling pathway. We observed that the changes induced by HG were dose-dependently reversed by FGF-1. Higher concentrations of FGF-1 (5 and 10 ng/mL) exhibited increased effectiveness in mitigating HG-induced damage, reaching statistical significance (p < 0.05). In conclusion, our study underscores the promising potential of FGF-1 as a safeguard against DR. FGF-1 emerges as a formidable intervention, attenuating oxidative stress, ER stress, and apoptosis, while concurrently promoting autophagy. This multifaceted impact positions FGF-1 as a compelling candidate for alleviating retinal cell damage in the complex pathogenesis of DR.


Assuntos
Retinopatia Diabética , Fator 1 de Crescimento de Fibroblastos , Humanos , Fator 1 de Crescimento de Fibroblastos/farmacologia , Fator 1 de Crescimento de Fibroblastos/metabolismo , Carbonilação Proteica , Epitélio Pigmentado da Retina/metabolismo , Estresse Oxidativo , Apoptose , Estresse do Retículo Endoplasmático , Autofagia , Retinopatia Diabética/metabolismo , Glucose/toxicidade , Glucose/metabolismo , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo
6.
Cells ; 13(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38391921

RESUMO

FGF9 is a potent mitogen and survival factor, but FGF9 protein levels are generally low and restricted to a few adult organs. Aberrant expression of FGF9 usually results in cancer. However, the mechanism of FGF9 action has not been fully established. Previous studies showed that FGF1 and FGF2 directly bind to integrin αvß3, and this interaction is critical for signaling functions (FGF-integrin crosstalk). FGF1 and FGF2 mutants defective in integrin binding were defective in signaling, whereas the mutants still bound to FGFR suppressed angiogenesis and tumor growth, indicating that they act as antagonists. We hypothesize that FGF9 requires direct integrin binding for signaling. Here, we show that docking simulation of the interaction between FGF9 and αvß3 predicted that FGF9 binds to the classical ligand-binding site of αvß3. We show that FGF9 bound to integrin αvß3 and generated FGF9 mutants in the predicted integrin-binding interface. An FGF9 mutant (R108E) was defective in integrin binding, activating FRS2α and ERK1/2, inducing DNA synthesis, cancer cell migration, and invasion in vitro. R108E suppressed DNA synthesis and activation of FRS2α and ERK1/2 induced by WT FGF9 (dominant-negative effect). These findings indicate that FGF9 requires direct integrin binding for signaling and that R108E has potential as an antagonist to FGF9 signaling.


Assuntos
Integrina alfaVbeta3 , Mitógenos , Integrina alfaVbeta3/metabolismo , Ligantes , Fator 1 de Crescimento de Fibroblastos , Fator 2 de Crescimento de Fibroblastos , DNA
7.
Aging (Albany NY) ; 16(1): 322-347, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38189813

RESUMO

BACKGROUND: MicroRNA-221-3p (miR-221-3p) facilitates the advancement of breast cancer (BC) through the induction of epithelial-mesenchymal transition (EMT). Our research aimed to utilize bioinformatics to discover possible EMT-related target genes (ETGs) of miR-221-3p and examine their roles in breast cancer. METHODS: We employed bioinformatics techniques to identify ten key ETGs of miR-221-3p. Subsequently, we conducted an extensive analysis of both miR-221-3p and the ten ETGs, including clinical significance and immune characteristics. RESULTS: The expression of miR-221-3p was notably higher in Basal-like BC compared to other subtypes and adjacent normal tissue. Our pathway analysis suggested that miR-221-3p might regulate EMT through the MAPK signaling pathway by targeting its ETGs. Among the ETGs, seven core genes (EGFR, IGF1, KDR, FGF2, KIT, FGFR1, and FGF1) exhibited downregulation in BC. Conversely, ERBB2, SDC1, and MMP14 showed upregulation in BC and displayed potential diagnostic value. The analysis of prognostication indicated that increased levels of SDC1 and MMP14 were correlated with an unfavorable prognosis, whereas elevated expression of KIT was associated with a more favorable prognosis. The infiltration of various immune cells and the expression of immune checkpoint genes (ICGs) exhibited positive correlations with most ETGs and miR-221-3p. SDC1 exhibited a greater tumor mutational burden (TMB) score, while ERBB2, KDR, FGF2, KIT, FGFR1, and FGF1 showed lower TMB scores. Furthermore, decreased ERBB2 and KDR expression levels were correlated with elevated microsatellite instability (MSI) scores. Elevated expression of ETGs was linked to decreased mRNA stemness indices (mRNAsi), whereas miR-221-3p displayed the opposite pattern. Most ETGs and miR-221-3p expression exhibited a negative correlation with IC50 values for drugs. Among the ETGs, amplification was the most significant genetic alteration, except for IGF1. CONCLUSION: In conclusion, miR-221-3p acts as a unique indicator for Basal-like BC. The examination revealed ten essential ETGs of miR-221-3p, some of which show potential as diagnostic and prognostic markers. The in-depth examination of these ten ETGs and miR-221-3p indicates their participation in the development of BC, emphasizing their promise as innovative targets for therapy in BC patients.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , MicroRNAs/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Metaloproteinase 14 da Matriz/genética , Linhagem Celular Tumoral , Relevância Clínica , Fator 1 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Movimento Celular/genética
8.
ACS Appl Mater Interfaces ; 16(2): 1969-1984, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38181175

RESUMO

Exosomes possess several inherent properties that make them ideal for biomedical applications, including robust stability, biocompatibility, minimal immunogenicity, and the ability to cross biological barriers. These natural nanoparticles have recently been developed as drug delivery vesicles. To do so, therapeutic molecules must be efficiently loaded into exosomes first. Very recently, we developed a cell-penetrating peptide (CPP)-based platform for loading of nucleic acids and small molecules into exosomes by taking advantage of the membrane-penetration power of CPPs. Here, we extended this simple but effective platform by loading a protein cargo into exosomes isolated from either mesenchymal stem cells from three different sources or two different cancer cell lines. The protein cargo is a fusion protein YARA-FGF1-GFP through the covalent conjugation of a model CPP called YARA to human fibroblast growth factor 1 (FGF1) and green fluorescence protein (GFP). Loading of YARA-FGF1-GFP into exosomes was time-dependent and reached a maximum of about 1600 YARA-FGF1-GFP molecules in each exosome after 16 h. The ladened exosomes were effectively internalized by mammalian cells, and subsequently, the loaded protein cargo YARA-FGF1-GFP was delivered intracellularly. In comparison to YARA, YARA-FGF1-GFP, the unloaded exosomes, and the exosomes loaded with YARA, the exosomes loaded with YARA-FGF1-GFP substantially promoted the migration, proliferation, and invasion capabilities of mouse and human fibroblasts, which are important factors for wound repair. The work extended our CPP-based exosomal cargo loading platform and established a foundation for developing novel wound-healing therapies using exosomes loaded with FGF1 and other growth factors.


Assuntos
Exossomos , Fator 1 de Crescimento de Fibroblastos , Animais , Humanos , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 1 de Crescimento de Fibroblastos/farmacologia , Exossomos/metabolismo , Cicatrização , Proliferação de Células , Fibroblastos , Mamíferos
9.
Genes Cells ; 29(3): 231-253, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253356

RESUMO

The cell-assisted lipotransfer technique, integrating adipose-derived mesenchymal stem cells (ADMSCs), has transformed lipofilling, enhancing fat graft viability. However, the multipotent nature of ADMSCs poses challenges. To improve safety and graft vitality and to reduce unwanted lineage differentiation, this study refines the methodology by priming ADMSCs into preadipocytes-unipotent, self-renewing cells. We explored the impact of fibroblast growth factor-1 (FGF-1), fibroblast growth factor-2 (FGF-2), and epidermal growth factor (EGF), either alone or in combination, on primary human ADMSCs during the proliferative phase. FGF-2 emerged as a robust stimulator of cell proliferation, preserving stemness markers, especially when combined with EGF. Conversely, FGF-1, while not significantly affecting cell growth, influenced cell morphology, transitioning cells to a rounded shape with reduced CD34 expression. Furthermore, co-priming with FGF-1 and FGF-2 enhanced adipogenic potential, limiting osteogenic and chondrogenic tendencies, and possibly promoting preadipocyte commitment. These preadipocytes exhibited unique features: rounded morphology, reduced CD34, decreased preadipocyte factor 1 (Pref-1), and elevated C/EBPα and PPARγ, alongside sustained stemness markers (CD73, CD90, CD105). Mechanistically, FGF-1 and FGF-2 activated key adipogenic transcription factors-C/EBPα and PPARγ-while inhibiting GATA3 and Notch3, which are adipogenesis inhibitors. These findings hold the potential to advance innovative strategies for ADMSC-mediated lipofilling procedures.


Assuntos
Fator 1 de Crescimento de Fibroblastos , Células-Tronco Mesenquimais , Humanos , Adipogenia , Diferenciação Celular , Células Cultivadas , Fator de Crescimento Epidérmico/farmacologia , Fator 1 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , PPAR gama/metabolismo
10.
Oral Dis ; 30(2): 551-561, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36648372

RESUMO

OBJECTIVE: The present study identified potentially pivotal miRNAs contributing to chondrogenic differentiation in temporomandibular joint suffering abnormal stress. MATERIALS AND METHODS: Sprague-Dawley rats were randomly divided into control and experimental unilateral mastication (EUM) group. Bone micro-structure parameters was detected by micro-CT, and FGF-1 and MMP-1 expression was examined by immunohistochemistry. Differentially expressed miRNAs of bilateral condyle cartilage were screened via miRNA microarray at 4- and 8-week EUM, then further verified using quantitative reverse-transcription PCR. Over-expression of five differentially expressed miRNAs in chondrocytes was triggered by transfecting miRNA mimics. The expression of MMP-13, Col-II, OPN, and Runx2 was verified by western blotting. RESULTS: Expressions of FGF-1 and MMP-1 in right condyles gradually increased from 2 to 6 weeks after EUM. A total of 20 differentially expressed miRNAs were regulated by EUM, which related to cell proliferation, invasion, and osteoblast differentiation pathways. The over-expression of miR-148a-3p and miR-1-3p led to down-regulation of Col-II, while MMP-13 and Runx2 were up-regulated by induction of hypotrophic differentiation or IL-1ß stimulation. These findings suggested that miR-148a-3p and miR-1-3p promote chondrogenic differentiation. CONCLUSIONS: Several pivotal miRNAs were found to be related to chondrogenic differentiation, which provides novel insight into pathogenic mechanisms of cartilage homeostasis.


Assuntos
MicroRNAs , Ratos , Animais , MicroRNAs/genética , Subunidade alfa 1 de Fator de Ligação ao Core , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 1 da Matriz , Fator 1 de Crescimento de Fibroblastos , Mastigação , Ratos Sprague-Dawley , Cartilagem/metabolismo , Homeostase
11.
Lab Invest ; 104(4): 100321, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38154497

RESUMO

With more novel drugs being approved for the treatment of ovarian carcinoma, the question remains to what extent patients benefit from antiangiogenic treatment with bevacizumab, either in combination with poly-(ADP-ribose) polymerase inhibitors or as single-agent maintenance. As fibroblast growth factor receptors and their ligands (FGFRs/FGFs) are key players in angiogenic signaling and have been linked to resistance to several drugs, we investigated the prognostic or predictive potential of FGFs/FGFRs signaling in the context of bevacizumab treatment within the prospective phase III AGO-OVAR11/ICON-7 study. FGFR1, FGFR2, FGFR3, FGFR4, FGF1, and FGF19 gene expressions were determined in 380 ovarian carcinoma tumor samples collected from German centers in the multicenter phase III AGO-OVAR11 trial/ICON-7 trial. All patients received carboplatin and paclitaxel, administered every 3 weeks for 6 cycles, and were randomized to bevacizumab. Expressions of FGFR1, FGFR2, FGF1, and FGF19 were associated with progression-free survival in both uni- and multivariate (FGFR1: HR, 1.6, P < .001; FGFR2: HR, 1.6, P = .002; FGF1: HR, 2.3, P < .001; and FGF19: HR, 0.7; P = .007) analysis. A signature built by FGFR1, FGFR4, and FGF19 defined a subgroup (n = 62) of patients that derived the greatest bevacizumab-associated improvement of progression-free survival (HR, 0.3; P = .004). In this exploratory analysis of a prospective randomized phase III trial, we provide evidence that the expression of FGFRs/FGFs might have independent prognostic values. An FGFR/FGF-based gene signature identified in our study appears to predict long-term benefit from bevacizumab. This observation is hypothesis-generating and requires validation on independent cohorts.


Assuntos
Carcinoma , Neoplasias Ovarianas , Humanos , Feminino , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Fator 1 de Crescimento de Fibroblastos , Estudos Prospectivos , Fatores de Crescimento de Fibroblastos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética
12.
Cell Mol Life Sci ; 80(10): 311, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783936

RESUMO

Fibroblast growth factor 1 (FGF1) acts by activating specific tyrosine kinase receptors on the cell surface. In addition to this classical mode of action, FGF1 also exhibits intracellular activity. Recently, we found that FGF1 translocated into the cell interior exhibits anti-apoptotic activity independent of receptor activation and downstream signaling. Here, we show that expression of FGF1 increases the survival of cells treated with various apoptosis inducers, but only when wild-type p53 is present. The p53-negative cells were not protected by either ectopically expressed or translocated FGF1. We also confirmed the requirement of p53 for the anti-apoptotic intracellular activity of FGF1 by silencing p53, resulting in loss of the protective effect of FGF1. In contrast, in p53-negative cells, intracellular FGF1 regained its anti-apoptotic properties after transfection with wild-type p53. We also found that FGF1 directly interacts with p53 in cells and that the binding region is located in the DBD domain of p53. We therefore postulate that intracellular FGF1 protects cells from apoptosis by directly interacting with p53.


Assuntos
Fator 1 de Crescimento de Fibroblastos , Proteína Supressora de Tumor p53 , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 1 de Crescimento de Fibroblastos/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Apoptose
13.
Neuropathol Appl Neurobiol ; 49(5): e12935, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37705188

RESUMO

AIMS: Fibroblast growth factor (FGF) signalling is dysregulated in multiple sclerosis (MS) and other neurological and psychiatric conditions, but there is little or no consensus as to how individual FGF family members contribute to disease pathogenesis. Lesion development in MS is associated with increased expression of FGF1, FGF2 and FGF9, all of which modulate remyelination in a variety of experimental settings. However, FGF9 is also selectively upregulated in major depressive disorder (MDD), prompting us to speculate it may also have a direct effect on neuronal function and survival. METHODS: Transcriptional profiling of myelinating cultures treated with FGF1, FGF2 or FGF9 was performed, and the effects of FGF9 on cortical neurons investigated using a combination of transcriptional, electrophysiological and immunofluorescence microscopic techniques. The in vivo effects of FGF9 were explored by stereotactic injection of adeno-associated viral (AAV) vectors encoding either FGF9 or EGFP into the rat motor cortex. RESULTS: Transcriptional profiling of myelinating cultures after FGF9 treatment revealed a distinct neuronal response with a pronounced downregulation of gene networks associated with axonal transport and synaptic function. In cortical neuronal cultures, FGF9 also rapidly downregulated expression of genes associated with synaptic function. This was associated with a complete block in the development of photo-inducible spiking activity, as demonstrated using multi-electrode recordings of channel rhodopsin-transfected rat cortical neurons in vitro and, ultimately, neuronal cell death. Overexpression of FGF9 in vivo resulted in rapid loss of neurons and subsequent development of chronic grey matter lesions with neuroaxonal reduction and ensuing myelin loss. CONCLUSIONS: These observations identify overexpression of FGF9 as a mechanism by which neuroaxonal pathology could develop independently of immune-mediated demyelination in MS. We suggest targeting neuronal FGF9-dependent pathways may provide a novel strategy to slow if not halt neuroaxonal atrophy and loss in MS, MDD and potentially other neurodegenerative diseases.


Assuntos
Transtorno Depressivo Maior , Esclerose Múltipla , Animais , Ratos , Fator 1 de Crescimento de Fibroblastos , Fator 2 de Crescimento de Fibroblastos , Fator 9 de Crescimento de Fibroblastos
14.
Mod Pathol ; 36(12): 100336, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37742927

RESUMO

Phosphaturic mesenchymal tumors (PMT) are uncommon neoplasms that cause hypophosphatemia/osteomalacia mainly by secreting fibroblast growth factor 23. We previously identified FN1::FGFR1/FGF1 fusions in nearly half of the PMTs and frequent KL (Klotho or α-Klotho) overexpression in only those with no known fusion. Here, we studied a larger cohort of PMTs for KL expression and alterations. By FN1 break-apart fluorescence in situ hybridization (FISH) and reappraisal of previous RNA sequencing data, 6 tumors previously considered "fusion-negative" (defined by negative results of FISH for FN1::FGFR1 fusion and FGF1 break-apart and/or of RNA sequencing) were reclassified as fusion-positive PMTs, including 1 containing a novel FN1::ZACN fusion. The final cohort of fusion-negative PMTs included 33 tumors from 32 patients, which occurred in the bone (n = 18), soft tissue (n = 10), sinonasal tract (n = 4), and brain (n = 1). In combination with previous work, RNA sequencing, RNA in situ hybridization, and immunohistochemistry showed largely concordant results and demonstrated KL/α-Klotho overexpression in 17 of the 28 fusion-negative and none of the 10 fusion-positive PMTs studied. Prompted by a patient in this cohort harboring germline KL upstream translocation with systemic α-Klotho overexpression and multifocal PMTs, FISH was performed and revealed KL rearrangement in 16 of the 33 fusion-negative PMTs (one also with amplification), including 14 of the 17 cases with KL/α-Klotho overexpression and none of the 11 KL/α-Klotho-low fusion-negative and 11 fusion-positive cases studied. Whole genomic sequencing confirmed translocation and inversion in 2 FISH-positive cases involving the KL upstream region, warranting further investigation into the mechanism whereby these rearrangements may lead to KL upregulation. Methylated DNA immunoprecipitation and sequencing suggested no major role of promoter methylation in KL regulation in PMT. Interestingly, KL-high/-rearranged cases seemed to form a clinicopathologically homogeneous group, showing a predilection for skeletal/sinonasal locations and typically matrix-poor, cellular solitary fibrous tumor-like morphology. Importantly, FGFR1 signaling pathways were upregulated in fusion-negative PMTs regardless of the KL status compared with non-PMT mesenchymal tumors by gene set enrichment analysis, perhaps justifying FGFR1 inhibition in treating this subset of PMTs.


Assuntos
Mesenquimoma , Seios Paranasais , Neoplasias de Tecidos Moles , Humanos , Hibridização in Situ Fluorescente , Fator 1 de Crescimento de Fibroblastos/genética , Neoplasias de Tecidos Moles/genética , Mesenquimoma/genética , Mesenquimoma/patologia , Translocação Genética , Seios Paranasais/patologia
15.
Breast Cancer Res ; 25(1): 99, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608351

RESUMO

BACKGROUND: Obesity increases breast cancer risk and breast cancer-specific mortality, particularly for people with estrogen receptor (ER)-positive tumors. Body mass index (BMI) is used to define obesity, but it may not be the best predictor of breast cancer risk or prognosis on an individual level. Adult weight gain is an independent indicator of breast cancer risk. Our previous work described a murine model of obesity, ER-positive breast cancer, and weight gain and identified fibroblast growth factor receptor (FGFR) as a potential driver of tumor progression. During adipose tissue expansion, the FGF1 ligand is produced by hypertrophic adipocytes as a stimulus to stromal preadipocytes that proliferate and differentiate to provide additional lipid storage capacity. In breast adipose tissue, FGF1 production may stimulate cancer cell proliferation and tumor progression. METHODS: We explored the effects of FGF1 on ER-positive endocrine-sensitive and resistant breast cancer and compared that to the effects of the canonical ER ligand, estradiol. We used untargeted proteomics, specific immunoblot assays, gene expression profiling, and functional metabolic assessments of breast cancer cells. The results were validated in tumors from obese mice and breast cancer datasets from women with obesity. RESULTS: FGF1 stimulated ER phosphorylation independently of estradiol in cells that grow in obese female mice after estrogen deprivation treatment. Phospho- and total proteomic, genomic, and functional analyses of endocrine-sensitive and resistant breast cancer cells show that FGF1 promoted a cellular phenotype characterized by glycolytic metabolism. In endocrine-sensitive but not endocrine-resistant breast cancer cells, mitochondrial metabolism was also regulated by FGF1. Comparison of gene expression profiles indicated that tumors from women with obesity shared hallmarks with endocrine-resistant breast cancer cells. CONCLUSIONS: Collectively, our data suggest that one mechanism by which obesity and weight gain promote breast cancer progression is through estrogen-independent ER activation and cancer cell metabolic reprogramming, partly driven by FGF/FGFR. The first-line treatment for many patients with ER-positive breast cancer is inhibition of estrogen synthesis using aromatase inhibitors. In women with obesity who are experiencing weight gain, locally produced FGF1 may activate ER to promote cancer cell metabolic reprogramming and tumor progression independently of estrogen.


Assuntos
Neoplasias da Mama , Fator 1 de Crescimento de Fibroblastos , Receptores de Estrogênio , Animais , Feminino , Camundongos , Estradiol , Estrogênios , Fator 1 de Crescimento de Fibroblastos/metabolismo , Ligantes , Obesidade/complicações , Proteômica , Receptores de Estrogênio/genética , Aumento de Peso , Neoplasias da Mama/metabolismo
16.
Ann Med ; 55(2): 2244515, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37603701

RESUMO

BACKGROUND: Papillary thyroid cancer (PTC) is the most common endocrine malignant tumour. The purpose of this study was to explore the potential molecular mechanism of circRNA regulating immune-related mRNA through sponge miRNA in the occurrence and immune regulation of PTC. METHODS: All data were downloaded from public databases, such as GEO, Immport and TCGA. Differentially expressed (DE) mRNAs (DEmRNAs), DEmiRNAs and DEcircRNAs were identified using metaMA and limma packages. Subsequently, immune-related DEmRNAs were screened, and circRNA-miRNA-mRNA (ceRNA) regulatory network was constructed. In addition, functional annotation, protein-protein interaction (PPI) network construction, immune cell infiltration analysis and Pearson correlation analysis were performed. Finally, qRT-PCR validation and cell experiments were also performed. RESULTS: In total, 2962 DEmRNAs, 78 DEmiRNAs and 51 DEcircRNAs were obtained. Subsequently, 195 immune-related DEmRNAs were obtained based on Immport database. Cytokine-cytokine receptor interaction was the only signalling pathway obtained in KEGG analysis. Then, 8 hub immune-related DEmRNAs were identified based on PPI network and CytoHubba plug-in. Subsequently, ceRNA sub-network containing hub immune-related DEmRNAs was extracted from ceRNA regulatory network. In ceRNA sub-network, hsa_circ_0082182-hsa-miR-18b-5p-FGF1/PDGFC, hsa_circ_0016404-hsa-miR-1275-FGF1/CTSB/IL13RA1, hsa_circ_0070100-hsa-miR-27a-3p/hsa-miR-27b-3p-TGFBR3, hsa_circ_0060055/hsa_circ_0038718-hsa-miR-150-3p-CXCL14, hsa_circ_0030427/hsa_circ_0002917-hsa-miR-22-3p-BMP7 and hsa_circ_0030427/hsa_circ_0002917-hsa-miR-125a-5p-LIFR axes were identified. Moreover, FGF1, PDGFC, CTSB, IL13RA1, TGFBR3, CXCL14, BMP7, LIFR, hsa-miR-125a-5p, hsa-miR-1275, hsa-miR-150-3p, hsa-miR-18b-5p and hsa-miR-27b-3p were also found to have good diagnostic accuracy and may be potential novel diagnostic markers for PTC. XCell analysis showed that the levels of immune cell infiltration (including Tregs, HSC, DC and Monocytes) were significantly different between the PTC and the control groups. Knockdown of the expression of hsa_circ_0082182 significantly inhibits the activity, proliferation, migration and invasion of TPC-1 cells. CONCLUSION: Several circRNA-miRNA-mRNA axes identified in this study may be related to the occurrence, progression and survival of PTC. This lays a theoretical foundation for further understanding the molecular mechanism of PTC, and also contributes to clinical management and research.


In ceRNA sub-network, hsa_circ_0082182-hsa-miR-18b-5p-FGF1/PDGFC, hsa_circ_0016404-hsa-miR-1275-FGF1/CTSB/IL13RA1, hsa_circ_0070100-hsa-miR-27a-3p/hsa-miR-27b-3p-TGFBR3, hsa_circ_0060055/hsa_circ_0038718-hsa-miR-150-3p-CXCL14, hsa_circ_0030427/hsa_circ_0002917-hsa-miR-22-3p-BMP7 and hsa_circ_0030427/hsa_circ_0002917-hsa-miR-125a-5p-LIFR axes were identified.FGF1, PDGFC, CTSB, IL13RA1, TGFBR3, CXCL14, BMP7, LIFR, hsa-miR-125a-5p, hsa-miR-1275, hsa-miR-150-3p, hsa-miR-18b-5p and hsa-miR-27b-3p were also found to have good diagnostic accuracy and may be potential novel diagnostic markers for PTC.Knockdown the expression of hsa_circ_0082182 significantly inhibits the activity, proliferation, migration and invasion of TPC-1 cell.


Assuntos
MicroRNAs , Neoplasias da Glândula Tireoide , Humanos , RNA Circular/genética , Câncer Papilífero da Tireoide/genética , Fator 1 de Crescimento de Fibroblastos , MicroRNAs/genética , Neoplasias da Glândula Tireoide/genética
17.
Gut Microbes ; 15(1): 2238959, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37505920

RESUMO

Gut microbiota-diet interaction has been identified as a key factor of metabolic associated fatty liver disease (MAFLD). Recent studies suggested that dietary polyphenols may protect against MAFLD by regulating gut microbiota; however, the underlying mechanisms remain elusive. We first investigated the effects of cyanidin 3-glucoside and its phenolic metabolites on high-fat diet induced MAFLD in C57BL/6J mice, and protocatechuic acid (PCA) showed a significant positive effect. Next, regulation of PCA on lipid metabolism and gut microbiota were explored by MAFLD mouse model and fecal microbiota transplantation (FMT) experiment. Dietary PCA reduced intraperitoneal and hepatic fat deposition with lower levels of transaminases (AST & ALT) and inflammatory cytokines (IL-1ß, IL-2, IL-6, TNF-α & MCP-1), but higher HDL-c/LDL-c ratio. Characterization of gut microbiota indicated that PCA decreased the Firmicutes/Bacteroidetes ratio mainly by reducing the relative abundance of genus Enterococcus, which was positively correlated with the levels of LDL-c, AST, ALT and most of the up-regulated hepatic lipids by lipidomics analysis. FMT experiments showed that Enterococcus faecalis caused hepatic inflammation, fat deposition and insulin resistance with decreased expression of carnitine palmitoyltransferase-1 alpha (CPT1α), which can be reversed by PCA through inhibiting Enterococcus faecalis. Transcriptomics analysis suggested that Enterococcus faecalis caused a significant decrease in the expression of fibroblast growth factor 1 (Fgf1), and PCA recovered the expression of Fgf1 with insulin-like growth factor binding protein 2 (Igfbp2), insulin receptor substrate 1 (Irs1) and insulin receptor substrate 2 (Irs2). These results demonstrated that high proportion of gut Enterococcus faecalis accelerates MAFLD with decreased expression of CPT1α and Fgf1, which can be prevented by dietary supplementation of PCA.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , LDL-Colesterol , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 1 de Crescimento de Fibroblastos/farmacologia , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos
18.
BMC Endocr Disord ; 23(1): 140, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415174

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a chronic condition resulting from microangiopathy in a high-glucose environment. The evaluation of vascular injury in DN has primarily focused on active molecules of VEGF, namely VEGFA and VEGF2(F2R). Notoginsenoside R1 (NGR1), a traditional anti-inflammatory medication, exhibits vascular activity. Therefore, identifying classical drugs with vascular inflammatory protection for the treatment of DN is a valuable pursuit. METHODS: The "Limma" method was employed to analyze the glomerular transcriptome data, while the Spearman algorithm for Swiss target prediction was utilized to analyze the drug targets of NGR1. The molecular docking technique was employed to investigate the relationship between vascular active drug targets, and the COIP experiment was conducted to verify the interaction between fibroblast growth factor 1 (FGF1) and VEGFA in relation to NGR1 and drug targets. RESULTS: According to the Swiss target prediction, the LEU32(b) site of the Vascular Endothelial Growth Factor A (VEGFA) protein, as well as the Lys112(a), SER116(a), and HIS102(b) sites of the Fibroblast Growth Factor 1 (FGF1) protein, are potential binding sites for NGR1 through hydrogen bonding. Additionally, the Co-immunoprecipitation (COIP) results suggest that VEGFA and FGF1 proteins can interact with each other, and NGR1 can impede this interaction. Furthermore, NGR1 can suppress the expression of VEGFA and FGF1 in a high-glucose environment, thereby decelerating podocyte apoptosis. CONCLUSION: The inhibition of the interaction between FGF1 and VEGFA by NGR1 has been observed to decelerate podocyte apoptosis.


Assuntos
Podócitos , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator 1 de Crescimento de Fibroblastos , Simulação de Acoplamento Molecular , Podócitos/metabolismo , Apoptose , Glucose
19.
J Interferon Cytokine Res ; 43(6): 257-268, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252793

RESUMO

Despite extensive research to decipher the immunological basis of coronavirus disease (COVID-19), limited evidence on immunological correlates of COVID-19 severity from MENA region and Egypt was reported. In a single-center cross-sectional study, we have analyzed 25 cytokines that are related to immunopathologic lung injury, cytokine storm, and coagulopathy in plasma samples from 78 hospitalized Egyptian COVID-19 patients in Tanta University Quarantine Hospital and 21 healthy control volunteers between April 2020 and September 2020. The enrolled patients were divided into 4 categories based on disease severity, namely mild, moderate, severe, and critically ill. Interestingly, interleukin (IL)-1-α, IL-2Rα, IL-6, IL-8, IL-18, tumor necrosis factor-alpha (TNF-α), FGF1, CCL2, and CXC10 levels were significantly altered in severe and/or critically ill patients. Moreover, principal component analysis (PCA) demonstrated that severe and critically ill COVID-19 patients cluster based on specific cytokine signatures that distinguish them from mild and moderate COVID-19 patients. Specifically, levels of IL-2Rα, IL-6, IL-10, IL-18, TNF-α, FGF1, and CXCL10 largely contribute to the observed differences between early and late stages of COVID-19 disease. Our PCA showed that the described immunological markers positively correlate with high D-dimer and C-reactive protein levels and inversely correlate with lymphocyte counts in severe and critically ill patients. These data suggest a disordered immune regulation, particularly in severe and critically ill Egyptian COVID-19 patients, manifested as overactivated innate immune and dysregulated T-helper1 responses. Additionally, our study emphasizes the importance of cytokine profiling to identify potentially predictive immunological signatures of COVID-19 disease severity.


Assuntos
COVID-19 , Citocinas , Humanos , Interleucina-18 , Estudos Transversais , Egito , Interleucina-6 , Fator de Necrose Tumoral alfa , Estado Terminal , Subunidade alfa de Receptor de Interleucina-2 , Fator 1 de Crescimento de Fibroblastos , Gravidade do Paciente
20.
Am J Otolaryngol ; 44(4): 103895, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37075695

RESUMO

BACKGROUND: Postoperative nasal treatment is an important factor affecting the outcomes of endoscopic sinus surgery (ESS) in patients with chronic rhinosinusitis (CRS). This study aimed to determine the effect of recombinant human acidic fibroblast growth factor (rh-aFGF) on nasal mucosal healing after ESS. METHODS: This study is a prospective, single-blind, and randomized controlled clinical study. Fifty-eight CRS patients with nasal polyps (CRSwNP) with bilateral ESS were enrolled and randomly given 1 mL of budesonide nasal spray and 2 mL of rh-aFGF solution (rh-aFGF group) or 1 mL of budesonide nasal spray and 2 mL of rh-aFGF solvent (budesonide group)-infiltrated Nasopore nasal packing after ESS. Preoperative and postoperative scores for Sino-Nasal Outcome Test (SNOT-22), Visual Analogue Scale (VAS), and Lund-Kennedy were collected and analyzed. RESULTS: Forty-two patients completed the 12-week follow-up. Postoperative SNOT-22 scores and VAS scores showed no significant differences between the two groups. In terms of the Lund-Kennedy scores, there was a statistically significant difference between the two groups at the 2-, 4-, 8-, and 12-week postoperative visits, but not at the 1-week visit. Twelve weeks after surgery, the nasal mucosa had completely epithelialized in 18 patients in the rh-aFGF group and in 12 patients in the budesonide group (χ2 = 4.200, P = 0.040). CONCLUSION: The combined application of rh-aFGF and budesonide significantly improved postoperative endoscopic appearance in the nasal mucosal healing process.


Assuntos
Pólipos Nasais , Seios Paranasais , Rinite , Sinusite , Humanos , Seios Paranasais/cirurgia , Fator 1 de Crescimento de Fibroblastos/farmacologia , Fator 1 de Crescimento de Fibroblastos/uso terapêutico , Sprays Nasais , Estudos Prospectivos , Método Simples-Cego , Rinite/tratamento farmacológico , Rinite/cirurgia , Sinusite/tratamento farmacológico , Sinusite/cirurgia , Mucosa Nasal , Pólipos Nasais/tratamento farmacológico , Pólipos Nasais/cirurgia , Budesonida , Endoscopia , Doença Crônica , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA