RESUMO
Detection and characterization of protein-protein interactions are essential for many cellular processes, such as cell growth, tissue repair, drug delivery, and other physiological functions. In our research, we have utilized emerging solid-state nanopore sensing technology, which is highly sensitive to better understand heparin and fibroblast growth factor 1 (FGF-1) protein interactions at a single-molecule level without any modifications. Understanding the structure and behavior of heparin-FGF-1 complexes at the single-molecule level is very important. An abnormality in their formation can lead to life-threatening conditions like tumor growth, fibrosis, and neurological disorders. Using a controlled dielectric breakdown pore fabrication approach, we have characterized individual heparin and FGF-1 (one of the 22 known FGFs in humans) proteins through the fabrication of 17 ± 1 nm nanopores. Compared to heparin, the positively charged heparin-binding domains of some FGF-1 proteins translocationally react with the pore walls, giving rise to a distinguishable second peak with higher current blockade. Additionally, we have confirmed that the dynamic FGF-1 is stabilized upon binding with heparin-FGF-1 at the single-molecule level. The larger current blockades from the complexes relative to individual heparin and the FGF-1 recorded during the translocation ensure the binding of heparin-FGF-1 proteins, forming binding complexes with higher excluded volumes. Taken together, we demonstrate that solid-state nanopores can be employed to investigate the properties of individual proteins and their complex interactions, potentially paving the way for innovative medical therapies and advancements.
Assuntos
Fator 1 de Crescimento de Fibroblastos , Heparina , Nanoporos , Ligação Proteica , Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/metabolismo , Heparina/química , Heparina/metabolismo , HumanosRESUMO
FGFRs are cell surface receptors that, when activated by specific FGFs ligands, transmit signals through the plasma membrane, regulating key cellular processes such as differentiation, division, motility, metabolism and death. We have recently shown that the modulation of the spatial distribution of FGFR1 at the cell surface constitutes an additional mechanism for fine-tuning cellular signaling. Depending on the multivalent, engineered ligand used, the clustering of FGFR1 into diverse supramolecular complexes enhances the efficiency and modifies the mechanism of receptor endocytosis, alters FGFR1 lifetime and modifies receptor signaling, ultimately determining cell fate. Here, we present a novel approach to generate multivalent FGFR1 ligands. We functionalized FGF1 for controlled oligomerization by developing N- and C-terminal fusions of FGF1 with the Fc fragment of human IgG1 (FGF1-Fc and Fc-FGF1). As oligomerization scaffolds, we employed GFPpolygons, engineered GFP variants capable of well-ordered multivalent display, fused to protein G to ensure binding of Fc fragment. The presented strategy allows efficient assembly of oligomeric FGFR1 ligands with up to twelve receptor binding sites. We show that multivalent FGFR1 ligands are biologically active and trigger receptor clustering on the cell surface. Importantly, the approach described in this study can be easily adapted to oligomerize alternative growth factors to control the activity of other cell surface receptors.
Assuntos
Fator 1 de Crescimento de Fibroblastos/química , Imunoglobulina G/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/química , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Análise por Conglomerados , Endocitose , Endossomos/metabolismo , Proteínas de Fluorescência Verde/química , Humanos , Ligantes , Camundongos , Microscopia de Fluorescência , Células NIH 3T3 , Fosforilação , Ligação Proteica , Domínios Proteicos , Engenharia de Proteínas , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes/química , Transdução de SinaisRESUMO
Fibroblast growth factor receptors (FGFRs) are integral membrane proteins involved in various biological processes including proliferation, migration and apoptosis. There are a number of regulatory mechanisms of FGFR signaling, which tightly control the specificity and duration of transmitted signals. The effect of the FGFRs spatial distribution in the plasma membrane on receptor-dependent functions is still largely unknown. We have demonstrated that oligomerization of FGF1 with coiled-coil motifs largely improves FGF1 affinity for FGFRs and heparin. Set of developed FGF1 oligomers evoked prolonged activation of FGFR1 and receptor-downstream signaling pathways, as compared to the wild type FGF1. The majority of obtained oligomeric FGF1 variants showed increased stability, enhanced mitogenic activity and largely improved internalization via FGFR1-dependent endocytosis. Importantly, FGF1 oligomers with the highest oligomeric state exhibited reduced ability to stimulate FGFR-dependent glucose uptake, while at the same time remained hyperactive in the induction of cell proliferation. Our data implicate that oligomerization of FGF1 alters the biological activity of the FGF/GFR1 signaling system. Furthermore, developed FGF1 oligomers, due to improved stability and proliferative potential, can be applied in the regenerative medicine or as drug delivery vehicles in the ADC approach against FGFR1-overproducing cancers.
Assuntos
Proliferação de Células , Fator 1 de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Células 3T3-L1 , Animais , Ligação Competitiva , Linhagem Celular Tumoral , Fator 1 de Crescimento de Fibroblastos/química , Heparina/metabolismo , Humanos , Camundongos , Microscopia de Fluorescência , Células NIH 3T3 , Ligação Proteica , Multimerização ProteicaRESUMO
Dysregulation of angiogenesis can be caused by hypoxia, which may result in severe diseases of the heart, including coronary artery disease. Hypoxiainducible factor 1 (HIF1) modulates angiogenesis via the regulation of several angiogenic factors. However, the underlying mechanism of hypoxiainduced angiogenesis remains unknown. In the present study, it was hypothesized that long noncoding RNA (lncRNA) noncoding RNA activated by DNA damage (NORAD) may serve a role in the process of angiogenesis via the regulation of microRNA(miR)5903p under hypoxic conditions. The effect of NORAD and miR5903p on cell viability and properties associated with angiogenesis, including cell migration and tube formation in human umbilical vein endothelial cells (HUVECs) under hypoxic conditions, were assessed. Potential downstream angiogenic factors of miR5903p were also determined by molecular experiments. It was identified that NORAD expression was upregulated and miR5903p expression was downregulated in hypoxiaexposed HUVECs, and also in myocardial infarction (MI) left ventricle tissues in mice. Moreover, downregulation of NORAD expression resulted in decreased cell viability and angiogenic capacity, but further knocking down miR5903p expression reversed these alterations, resulting in increased cell migration and tube formation in HUVECs under hypoxic conditions for 24 h. It was demonstrated that NORAD overexpression also increased cell vitality and tubeformation capacity. Furthermore, NORAD was identified to bind with miR5903p directly, and miR5903p was shown to target certain proangiogenic agents, such as vascular endothelial growth factor (VEGF)A, fibroblast growth factor (FGF)1 and FGF2 directly. Therefore, the present results suggested that lncRNA NORAD may bind with miR5903p to regulate the angiogenic ability of HUVECs via the regulation of several downstream proangiogenic factors under hypoxia. Thus, the lncRNA NORAD/miR5903p axis may be a novel regulatory pathway in the angiogenic mechanisms in HUVECs, which highlights a potentially novel perspective for treating ischemia/hypoxiainduced angiogenic diseases.
Assuntos
Hipóxia Celular , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Antagomirs/metabolismo , Movimento Celular , Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Infarto do Miocárdio/patologia , Neovascularização Fisiológica , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
BACKGROUND: Vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) signaling pathways play important roles in the formation of the blood vascular system and nervous system across animal phyla. We have earlier reported VEGF and FGF from Hydra vulgaris Ind-Pune, a cnidarian with a defined body axis, an organized nervous system and a remarkable ability of regeneration. We have now identified three more components of VEGF and FGF signaling pathways from hydra. These include FGF-1, FGF receptor 1 (FGFR-1) and VEGF receptor 2 (VEGFR-2) with a view to deciphering their possible roles in regeneration. METHODS: In silico analysis of proteins was performed using Clustal omega, Swiss model, MEGA 7.0, etc. Gene expression was studied by whole mount in situ hybridization. VEGF and FGF signaling was inhibited using specific pharmacological inhibitors and their effects on head regeneration were studied. RESULTS: Expression patterns of the genes indicate a possible interaction between FGF-1 and FGFR-1 and also VEGF and VEGFR-2. Upon treatment of decapitated hydra with pharmacological inhibitor of FGFR-1 or VEGFR-2 for 48â¯h, head regeneration was delayed in treated as compared to untreated, control regenerates. When we studied the expression of head specific genes HyBra1 and HyKs1 and tentacle specific gene HyAlx in control and treated regenerates using whole mount in situ hybridization, expression of all the three genes was found to be adversely affected in treated regenerates. CONCLUSIONS: The results suggest that VEGF and FGF signaling play important roles in regeneration of hypostome and tentacles in hydra.
Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Cabeça/fisiologia , Hydra/fisiologia , Regeneração/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Simulação por Computador , Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Hydra/efeitos dos fármacos , Indóis/farmacologia , Domínios Proteicos , Pirróis/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Regeneração/efeitos dos fármacos , Transdução de Sinais , Homologia Estrutural de Proteína , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
Single-chain variable fragment (scFv) antibodies are the smallest immunoglobulins with high antigen-binding affinity. We have previously reported that fibroblast growth factor 1 played pivotal roles in cancer development and generated a mouse scFv (mscFv1C9) could effectively prohibit cancer cell proliferation in vitro and in vivo. Here, we further humanized this scFv (hscFv1C9) using a structure-guided complementarity determining region grafting strategy. The purified hscFv1C9 maintained similar antigen-binding affinity and specificity as mscFv1C9, and it was capable of inhibiting growth of different tumours in vitro and in vivo. These data strongly suggested that hscFv1C9 has antitumour potentials.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Fator 1 de Crescimento de Fibroblastos/antagonistas & inibidores , Glioma/tratamento farmacológico , Anticorpos de Cadeia Única/farmacologia , Sequência de Aminoácidos/genética , Animais , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Feminino , Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/imunologia , Glioma/genética , Glioma/patologia , Xenoenxertos , Humanos , Camundongos , Anticorpos de Cadeia Única/imunologiaRESUMO
BACKGROUND: Human fibroblast growth factor-1 (FGF-1) has powerful mitogenic activities in a variety of cell types and plays significant roles in many physiological processes e.g. angiogenesis and wound healing. There is increasing demand for large scale production of recombinant human FGF-1 (rhFGF-1), in order to investigate the potential medical use. In the present study, we explored SHuffle™ T7 strain for production of rhFGF-1. METHODS: A synthetic gene encoding Met-140 amino acid form of human FGF-1 was utilized for expression of the protein in three different E. coli hosts (BL21 (DE3), Rosetta-gami™ 2(DE3), SHuffle™ T7). Total expressions and soluble/insoluble expression ratios of rhFGF-1 in different hosts were analyzed and compared. Soluble rhFGF-1 produced in SHuffle™ T7 cells was purified using one-step heparin-Sepharose affinity chromatography and characterized by a variety of methods for physicochemical and biological properties. RESULTS: The highest level of rhFGF-1 expression and maximum soluble/insoluble ratio were achieved in SHuffle™ T7 strain. Using a single-step heparin-Sepharose chromatography, about 1500mg of purified rhFGF-1 was obtained from one liter of the culture, representing purification yield of â¼70%. The purified protein was reactive toward anti-FGF-1 ployclonal antibody in immunoblotting. Mass spectrometry confirmed the protein had expected amino acid sequence and molecular weight. In reverse-phase high-performance liquid chromatography (RP-HPLC), the protein displayed the same retention time with the human FGF-1 standard, and purity of 94%. Less than 0.3% of the purified protein was comprised of oligomers and/or aggregates as judged by high-performance size-exclusion chromatography (HP-SEC). Secondary and tertiary structures of the protein, investigated by circular dichroism and intrinsic fluorescence spectroscopy methods, respectively, represented native folding of the protein. The purified rhFGF-1 was bioactive and stimulated proliferation of NIH 3T3 cells with EC50 of 0.84ng/mL. CONCLUSION: Although SHuffle™ T7 has been introduced for production of disulfide-bonded proteins in cytoplasm, we herein successfully recruited it for high yield production of soluble and bioactive rhFGF-1, a protein with 3 free cysteine and no disulfide bond. To our knowledge, this is the highest-level of rhFGF-1 expression in E. coli reported so far. Extensive physicochemical and biological analysis showed the protein had similar characteristic to authentic FGF-1.
Assuntos
Bacteriófago T7/genética , Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Animais , Bacteriófago T7/metabolismo , Proliferação de Células/efeitos dos fármacos , Escherichia coli/genética , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/farmacologia , Humanos , Camundongos , Células NIH 3T3 , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologiaRESUMO
The recent discovery of metabolic roles for fibroblast growth factor 1 (FGF1) in glucose homeostasis has expanded the functions of this classically known mitogen. To dissect the molecular basis for this functional pleiotropy, we engineered an FGF1 partial agonist carrying triple mutations (FGF1ΔHBS) that diminished its ability to induce heparan sulfate (HS)-assisted FGF receptor (FGFR) dimerization and activation. FGF1ΔHBS exhibited a severely reduced proliferative potential, while preserving the full metabolic activity of wild-type FGF1 in vitro and in vivo. Hence, suboptimal FGFR activation by a weak FGF1-FGFR dimer is sufficient to evoke a metabolic response, whereas full FGFR activation by stable and sustained dimerization is required to elicit a mitogenic response. In addition to providing a physical basis for the diverse activities of FGF1, our findings will impact ongoing drug discoveries targeting FGF1 and related FGFs for the treatment of a variety of human diseases.
Assuntos
Fator 1 de Crescimento de Fibroblastos/química , Hepatócitos/efeitos dos fármacos , Mitógenos/química , Receptores de Fatores de Crescimento de Fibroblastos/química , Células 3T3-L1 , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 1 de Crescimento de Fibroblastos/farmacologia , Expressão Gênica , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitógenos/genética , Mitógenos/metabolismo , Mitógenos/farmacologia , Modelos Moleculares , Células NIH 3T3 , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estabilidade Proteica , Ratos , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
Site-specific conjugation is a leading trend in the development of protein conjugates, including antibody-drug conjugates (ADCs), suitable for targeted cancer therapy. Here, we present a very efficient strategy for specific attachment of a cytotoxic drug to fibroblast growth factor 1 (FGF1), a natural ligand of FGF receptors (FGFRs), which are over-expressed in several types of lung, breast, and gastric cancers and are therefore an attractive molecular target. Recently, we showed that FGF1 fused to monomethylauristatin E (vcMMAE) was highly cytotoxic to cells presenting FGFRs on their surface and could be used as a targeting agent alternative to an antibody. Unfortunately, conjugation via maleimide chemistry to endogenous FGF1 cysteines or a cysteine introduced at the N-terminus proceeded with low yield and led to nonhomogeneous products. To improve the conjugation, we introduced a novel Lys-Cys-Lys motif at either FGF1 terminus, which increased cysteine reactivity and allowed us to obtain an FGF1 conjugate with a defined site of conjugation and a yield exceeding 95%. Using FGFR-expressing cancer lines, we confirmed specific cytotoxity of the obtained C-terminal FGF1-vcMMAE conjugate and its selective endocytososis as compared with FGFR1-negative cells. This simple and powerful approach relying on the introduction of a short sequence containing cysteine and positively charged amino acids could be used universally to improve the efficiency of the site-specific chemical modification of other proteins.
Assuntos
Antineoplásicos/química , Sistemas de Liberação de Medicamentos/métodos , Fator 1 de Crescimento de Fibroblastos/química , Oligopeptídeos/química , Motivos de Aminoácidos , Animais , Sítios de Ligação , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisteína/química , Endocitose/efeitos dos fármacos , Fator 1 de Crescimento de Fibroblastos/metabolismo , Humanos , Oligopeptídeos/farmacocinética , Oligopeptídeos/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismoRESUMO
Fibroblast growth factors (FGFs) regulate several cellular developmental processes by interacting with cell surface heparan proteoglycans and transmembrane cell surface receptors (FGFR). The interaction of FGF with heparan sulfate (HS) is known to induce protein oligomerization, increase the affinity of FGF towards its receptor FGFR, promoting the formation of the HS-FGF-FGFR signaling complex. Although the role of HS in the signaling pathways is well recognized, the details of FGF oligomerization and formation of the ternary signaling complex are still not clear, with several conflicting models proposed in literature. Here, we examine the effect of size and sulfation pattern of HS upon FGF1 oligomerization, binding stoichiometry and conformational stability, through a combination of ion mobility (IM) and theoretical modeling approaches. Ion mobility-mass spectrometry (IMMS) of FGF1 in the presence of several HS fragments ranging from tetrasaccharide (dp4) to dodecasaccharide (dp12) in length was performed. A comparison of the binding stoichiometry of variably sulfated dp4 HS to FGF1 confirmed the significance of the previously known high-affinity binding motif in FGF1 dimerization, and demonstrated that certain tetrasaccharide-length fragments are also capable of inducing dimerization of FGF1. The degree of oligomerization was found to increase in the presence of dp12 HS, and a general lack of specificity for longer HS was observed. Additionally, collision cross-sections (CCSs) of several FGF1-HS complexes were calculated, and were found to be in close agreement with experimental results. Based on the (CCSs) a number of plausible binding modes of 2:1 and 3:1 FGF1-HS are proposed. Graphical Abstract á .
Assuntos
Fator 1 de Crescimento de Fibroblastos/metabolismo , Heparitina Sulfato/metabolismo , Sítios de Ligação , Fator 1 de Crescimento de Fibroblastos/química , Heparitina Sulfato/química , Humanos , Espectrometria de Mobilidade Iônica/métodos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica , TermodinâmicaRESUMO
Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody-drug conjugates. The FGF1V-valine-citrulline-MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V-vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality.
Assuntos
Antineoplásicos/química , Desenho de Fármacos , Fator 1 de Crescimento de Fibroblastos/química , Neoplasias/tratamento farmacológico , Oligopeptídeos/química , Oligopeptídeos/uso terapêutico , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 1 de Crescimento de Fibroblastos/uso terapêutico , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Células NIH 3T3 , Neoplasias/metabolismo , Neoplasias/patologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes/metabolismo , Relação Estrutura-AtividadeRESUMO
The extracellular portion of the human fibroblast growth factor receptor2 D2 domain (FGFR2 D2) interacts with human fibroblast growth factor 1 (hFGF1) to activate a downstream signaling cascade that ultimately affects mitosis and differentiation. Suramin is an antiparasiticdrug and a potent inhibitor of FGF-induced angiogenesis. Suramin has been shown to bind to hFGF1, and might block the interaction between hFGF1 and FGFR2 D2. Here, we titrated hFGF1 with FGFR2 D2 and suramin to elucidate their interactions using the detection of NMR. The docking results of both hFGF1-FGFR2 D2 domain and hFGF1-suramin complex were superimposed. The results indicate that suramin blocks the interaction between hFGF1 and FGFR2 D2. We used the PyMOL software to show the hydrophobic interaction of hFGF1-suramin. In addition, we used a Water-soluble Tetrazolium salts assay (WST1) to assess hFGF1 bioactivity. The results will be useful for the development of new antimitogenic activity drugs.
Assuntos
Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Suramina/química , Suramina/farmacologia , Antiparasitários , Sítios de Ligação/efeitos dos fármacos , Regulação para Baixo , Fator 1 de Crescimento de Fibroblastos/ultraestrutura , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologiaRESUMO
Human fibroblast growth factor-1 (FGF-1) has broad therapeutic potential in regenerative medicine but has undesirable biophysical properties of low thermostability and 3 buried cysteine (Cys) residues (at positions 16, 83, and 117) that interact to promote irreversible protein unfolding under oxidizing conditions. Mutational substitution of such Cys residues eliminates reactive buried thiols but cannot be accomplished simultaneously at all 3 positions without also introducing further substantial instability. The mutational introduction of a novel Cys residue (Ala66Cys) that forms a stabilizing disulfide bond (i.e., cystine) with one of the extant Cys residues (Cys83) effectively eliminates one Cys while increasing overall stability. This increase in stability offsets the associated instability of remaining Cys substitution mutations and permits production of a Cys-free form of FGF-1 (Cys16Ser/Ala66Cys/Cys117Ala) with only minor overall instability. The addition of a further stabilizing mutation (Pro134Ala) creates a Cys-free FGF-1 mutant with essentially wild-type biophysical properties. The elimination of buried free thiols in FGF-1 can substantially increase the protein half-life in cell culture. Here, we show that the effective cell survival/mitogenic functional activity of a fully Cys-free form is also substantially increased and is equivalent to wild-type FGF-1 formulated in the presence of heparin sulfate as a stabilizing agent. The results identify this Cys-free FGF-1 mutant as an advantageous "second generation" form of FGF-1 for therapeutic application.
Assuntos
Cisteína/química , Fator 1 de Crescimento de Fibroblastos/química , Substituição de Aminoácidos , Cristalografia por Raios X , Cisteína/genética , Fator 1 de Crescimento de Fibroblastos/genética , Humanos , Modelos Moleculares , Engenharia de Proteínas , Estabilidade ProteicaRESUMO
Fibroblast growth factor 1 (FGF1), a ubiquitously expressed pro-angiogenic protein that is involved in tissue repair, carcinogenesis, and maintenance of vasculature stability, is released from the cells via a stress-dependent nonclassical secretory pathway. FGF1 secretion is a result of transmembrane translocation of this protein. It correlates with the ability of FGF1 to permeabilize membranes composed of acidic phospholipids. Like several other nonclassically exported proteins, FGF1 exhibits ß-barrel folding. To assess the role of folding of FGF1 in its secretion, we applied targeted mutagenesis in combination with a complex of biophysical methods and molecular dynamics studies, followed by artificial membrane permeabilization and stress-induced release experiments. It has been demonstrated that a mutation of proline 135 located in the C-terminus of FGF1 results in (i) partial unfolding of FGF1, (ii) a decrease in FGF1's ability to permeabilize bilayers composed of phosphatidylserine, and (iii) drastic inhibition of stress-induced FGF1 export. Thus, folding of FGF1 is critical for its nonclassical secretion.
Assuntos
Permeabilidade da Membrana Celular , Fator 1 de Crescimento de Fibroblastos/química , Modelos Moleculares , Dobramento de Proteína , Substituição de Aminoácidos , Animais , Varredura Diferencial de Calorimetria , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Células HEK293 , Humanos , Cinética , Bicamadas Lipídicas/química , Membranas Artificiais , Camundongos , Simulação de Dinâmica Molecular , Mutação , Células NIH 3T3 , Permeabilidade , Fosfatidilserinas/química , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismoRESUMO
Most genomic alterations are tolerated while only a minor fraction disrupts molecular function sufficiently to drive disease. Protein kinases play a central biological function and the functional consequences of their variants are abundantly characterized. However, this heterogeneous information is often scattered across different sources, which makes the integrative analysis complex and laborious. wKinMut-2 constitutes a solution to facilitate the interpretation of the consequences of human protein kinase variation. Nine methods predict their pathogenicity, including a kinase-specific random forest approach. To understand the biological mechanisms causative of human diseases and cancer, information from pertinent reference knowledge bases and the literature is automatically mined, digested, and homogenized. Variants are visualized in their structural contexts and residues affecting catalytic and drug binding are identified. Known protein-protein interactions are reported. Altogether, this information is intended to assist the generation of new working hypothesis to be corroborated with ulterior experimental work. The wKinMut-2 system, along with a user manual and examples, is freely accessible at http://kinmut2.bioinfo.cnio.es, the code for local installations can be downloaded from https://github.com/Rbbt-Workflows/KinMut2.
Assuntos
Biologia Computacional/métodos , Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Variação Genética , Genômica/métodos , Proteínas Quinases/genética , Software , Mineração de Dados , Bases de Dados Genéticas , Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Reprodutibilidade dos Testes , Relação Estrutura-Atividade , NavegadorRESUMO
Buried free-cysteine (Cys) residues can contribute to an irreversible unfolding pathway that promotes protein aggregation, increases immunogenic potential, and significantly reduces protein functional half-life. Consequently, mutation of buried free-Cys residues can result in significant improvement in the storage, reconstitution, and pharmacokinetic properties of protein-based therapeutics. Mutational design to eliminate buried free-Cys residues typically follows one of two common heuristics: either substitution by Ser (polar and isosteric), or substitution by Ala or Val (hydrophobic); however, a detailed structural and thermodynamic understanding of Cys mutations is lacking. We report a comprehensive structure and stability study of Ala, Ser, Thr, and Val mutations at each of the three buried free-Cys positions (Cys16, Cys83, and Cys117) in fibroblast growth factor-1. Mutation was almost universally destabilizing, indicating a general optimization for the wild-type Cys, including van der Waals and H-bond interactions. Structural response to Cys mutation characteristically involved changes to maintain, or effectively substitute, local H-bond interactions-by either structural collapse to accommodate the smaller oxygen radius of Ser/Thr, or conversely, expansion to enable inclusion of novel H-bonding solvent. Despite the diverse structural effects, the least destabilizing average substitution at each position was Ala, and not isosteric Ser.
Assuntos
Cisteína/genética , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/uso terapêutico , Mutação/genética , Cristalografia por Raios X , Cisteína/química , Fator 1 de Crescimento de Fibroblastos/química , Humanos , Estrutura Secundária de ProteínaRESUMO
Therapeutic potential of human acidic fibroblast growth factor (FGF1) resulting from its undeniable role in angiogenesis and wound healing processes is questioned due to its low stability and short half-life in vivo. Our previous studies showed that prolonged biological activity of FGF1 can be achieved by increasing its proteolytic resistance directly linked to improved global thermostability. In this study, we applied an alternative method of generation of long-lasting FGF1 variants by rigidification of the growth factor's segment highly sensitive to proteases action. In order to determine regions the most prone to enzymatic degradation, we used limited proteolysis by trypsin combined with mass spectrometry analysis. We found that the initial proteolytic cleavages occurred mainly within the C-terminal region of the wild-type protein, pointing on its significant role in growth factor degradation. Based on bioinformatic analysis, we introduced two single mutations (C117P, K118V) within ß-strand XI and combined them in a double mutant. We determined resistance to proteolysis, biophysical properties and biological activities of obtained variants. All of them occurred to be significantly less susceptible to trypsin (up to 100-fold) and also to chymotrypsin degradation comparing to the wild-type protein. Interestingly, all variants were not more thermostable than the wild-type FGF1. We attributed this dramatic increase in resistance to proteolysis to entropic stabilization of C-terminal region.
Assuntos
Quimotripsina/metabolismo , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Mutação Puntual , Estabilidade Proteica , Tripsina/metabolismo , Animais , Fator 1 de Crescimento de Fibroblastos/química , Humanos , Camundongos , Modelos Moleculares , Células NIH 3T3 , Desnaturação Proteica , Proteólise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , TemperaturaRESUMO
In recent years, great advances have been made in the use of islet transplantation as a treatment for type I diabetes. Indeed, it is possible that stimulation of local neovascularization upon transplantation could improve functional graft outcomes. In the present study, we investigate the use of multilayered alginate microbeads to provide a sustained delivery of FGF-1, and whether this results in increased neovascularization in vivo. Multilayered alginate microbeads, loaded with either 150ng or 600ng of FGF-1 in the outer layer, were surgically implanted into rats using an omentum pouch model and compared to empty microbead implants. Rats were sacrificed at 4days, 1week, and 6weeks. Staining for CD31 showed that both conditions of FGF-1 loaded microbeads resulted in a significantly higher vessel density at all time points studied. Moreover, at 6weeks, alginate microbeads containing 600ng FGF-1 provided a greater vascular density compared to both the control group and the microbeads loaded with 150ng FGF-1. Omenta analyzed via staining for smooth muscle alpha actin showed no variation in mural cell density at either 4days or 1week. At 6weeks, however, omenta exposed to microbeads loaded with 600ng FGF-1 showed an increase in mural cell staining compared to controls. These results suggest that the sustained delivery of FGF-1 from multilayered alginate microbeads results in a rapid and persistent vascular response. An increase in the local blood supply could reduce the number of islets required for transplantation in order to achieve clinical efficacy.
Assuntos
Alginatos/química , Indutores da Angiogênese/farmacologia , Portadores de Fármacos , Fator 1 de Crescimento de Fibroblastos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Omento/irrigação sanguínea , Actinas/metabolismo , Indutores da Angiogênese/administração & dosagem , Indutores da Angiogênese/química , Animais , Biomarcadores/metabolismo , Preparações de Ação Retardada , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fator 1 de Crescimento de Fibroblastos/administração & dosagem , Fator 1 de Crescimento de Fibroblastos/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de TempoRESUMO
Alginate-based materials have received considerable attention for biomedical applications because of their hydrophilic nature, biocompatibility, and physical architecture. Applications include cell encapsulation, drug delivery, stem cell culture, and tissue engineering scaffolds. In fact, clinical trials are currently being performed in which islets are encapsulated in PLO coated alginate microbeads as a treatment of type I diabetes. However, large numbers of islets are required for efficacy due to poor survival following transplantation. The ability to locally stimulate microvascular network formation around the encapsulated cells may increase their viability through improved transport of oxygen, glucose and other vital nutrients. Fibroblast growth factor-1 (FGF-1) is a naturally occurring growth factor that is able to stimulate blood vessel formation and improve oxygen levels in ischemic tissues. The efficacy of FGF-1 is enhanced when it is delivered in a sustained fashion rather than a single large-bolus administration. The local long-term release of growth factors from islet encapsulation systems could stimulate the growth of blood vessels directly towards the transplanted cells, potentially improving functional graft outcomes. In this article, we outline procedures for the preparation of alginate microspheres for use in biomedical applications. In addition, we describe a method we developed for generating multilayered alginate microbeads. Cells can be encapsulated in the inner alginate core, and angiogenic proteins in the outer alginate layer. The release of proteins from this outer layer would stimulate the formation of local microvascular networks directly towards the transplanted islets.