Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Oncoimmunology ; 13(1): 2346359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737794

RESUMO

Immune exhaustion is a hallmark of ovarian cancer. Using multiparametric flow cytometry, the study aimed to analyze protein expression of novel immunological targets on CD3+ T cells isolated from the peripheral blood (n = 20), malignant ascites (n = 16), and tumor tissue (n = 6) of patients with ovarian cancer (OVCA). The study revealed an increased proportion of effector memory CD8+ T cells in OVCA tissue and malignant ascites. An OVCA-characteristic PD-1high CD8+ T cell population was detected, which differed from PD-1lowCD8+ T cells by increased co-expression of TIGIT, CD39, and HLA-DR. In addition, these OVCA-characteristic CD8+ T cells showed reduced expression of the transcription factor TCF-1, which may also indicate reduced effector function and memory formation. On the contrary, the transcription factor TOX, which significantly regulates terminal T cell-exhaustion, was found more frequently in these cells. Further protein and gene analysis showed that CD39 and CD73 were also expressed on OVCA tumor cells isolated from solid tumors (n = 14) and malignant ascites (n = 9). In the latter compartment, CD39 and CD73 were also associated with the expression of the "don't eat me" molecule CD24 on tumor cells. Additionally, ascites-derived CD24+EpCAM+ tumor cells showed a higher frequency of CD39+ or CD73+ cells. Furthermore, CD39 expression was associated with unfavorable clinical parameters. Expression of CD39 on T cells was upregulated through CD3/CD28 stimulation and its blockade by a newly developed nanobody construct resulted in increased proliferation (eFluor), activation (CD25 and CD134), and production of cytotoxic cytokines (IFN-γ, TNF-α, and granzyme-B) of CD8+ T cells.


Assuntos
Apirase , Linfócitos T CD8-Positivos , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Apirase/metabolismo , Apirase/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Pessoa de Meia-Idade , Ascite/imunologia , Ascite/patologia , Ascite/metabolismo , Antígenos CD/metabolismo , Antígenos CD/genética , Idoso , Receptor de Morte Celular Programada 1/metabolismo , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/antagonistas & inibidores , Fator 1 de Transcrição de Linfócitos T/metabolismo , Fator 1 de Transcrição de Linfócitos T/genética , Antígenos HLA-DR/metabolismo , Adulto , Exaustão das Células T , Proteínas de Grupo de Alta Mobilidade
2.
Int Immunol ; 36(4): 167-182, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38169425

RESUMO

Forkhead box P3 (Foxp3)-expressing regulatory T (Treg) cells play essential roles in immune homeostasis but also contribute to establish a favorable environment for tumor growth by suppressing anti-tumor immune responses. It is thus necessary to specifically target tumor-infiltrating Treg cells to minimize effects on immune homeostasis in cancer immunotherapy. However, molecular features that distinguish tumor-infiltrating Treg cells from those in secondary lymphoid organs remain unknown. Here we characterize distinct features of tumor-infiltrating Treg cells by global analyses of the transcriptome and chromatin landscape. They exhibited activated phenotypes with enhanced Foxp3-dependent transcriptional regulation, yet being distinct from activated Treg cells in secondary lymphoid organs. Such differences may be attributed to the extensive clonal expansion of tumor-infiltrating Treg cells. Moreover, we found that TCF7 and LEF1 were specifically downregulated in tumor-infiltrating Treg cells both in mice and humans. These factors and Foxp3 co-occupied Treg suppressive function-related gene loci in secondary lymphoid organ Treg cells, whereas the absence of TCF7 and LEF1 accompanied altered gene expression and chromatin status at these gene loci in tumor-infiltrating Treg cells. Functionally, overexpression of TCF7 and LEF1 in Treg cells inhibited the enhancement of Treg suppressive function upon activation. Our results thus show the downregulation of TCF7 and LEF1 as markers of highly suppressive Treg cells in tumors and suggest that their absence controls the augmentation of Treg suppressive function in tumors. These molecules may be potential targets for novel cancer immunotherapy with minimum effects on immune homeostasis.


Assuntos
Neoplasias , Linfócitos T Reguladores , Humanos , Animais , Camundongos , Regulação para Baixo , Fatores de Transcrição Forkhead/metabolismo , Cromatina/metabolismo , Fator 1 de Transcrição de Linfócitos T/genética , Fator 1 de Transcrição de Linfócitos T/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo
3.
Zhongguo Fei Ai Za Zhi ; 26(8): 605-614, 2023 Aug 20.
Artigo em Chinês | MEDLINE | ID: mdl-37752540

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) therapy lacks viable biomarkers for response and prognosis prediction. This study aimed to investigate the correlation of peripheral blood laboratory test results combined with lymphocyte subset ratios to the response and prognosis of immunotherapy in advanced lung cancer. METHODS: Advanced lung cancer patients admitted to West China Hospital, Sichuan University from May 2021 to July 2023 were prospectively enrolled in this study. Clinical data and peripheral blood were collected before and after treatment and lymphocyte subset ratios were analyzed by flow cytometry. Logistic regression was used to identify factors correlated to ICIs treatment efficacy. Cox modeling was applied to explore the prognostic factors. RESULTS: Logistic regression showed that the baseline level of transcription factor T cell factor 1 (TCF1)+CD8+ T cell ratio and peripheral white blood cell (WBC) count, lymphocyte percentage, cytokeratin 19 fragment (CYFRA21-1) after 1 cycle of ICIs treatment were the potential predictors for ICIs response (P<0.05). Cox regression analysis showed that the baseline level of TCF1+CD8+ T cell ratio (P=0.020) and peripheral WBC count after 1 cycle of ICIs treatment (P<0.001) were prognostic factors. CONCLUSIONS: Patients with high baseline TCF1+CD8+ T cell ratio combined with low WBC counts and low CYFRA21-1 level after 1 cycle of ICIs treatment are more likely to benefit from ICIs therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Fator 1 de Transcrição de Linfócitos T/genética , Prognóstico , Linfócitos T CD8-Positivos , Imunoterapia
4.
Sci Immunol ; 8(86): eadg0878, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37624910

RESUMO

During persistent antigen stimulation, such as in chronic infections and cancer, CD8 T cells differentiate into a hypofunctional programmed death protein 1-positive (PD-1+) exhausted state. Exhausted CD8 T cell responses are maintained by precursors (Tpex) that express the transcription factor T cell factor 1 (TCF-1) and high levels of the costimulatory molecule CD28. Here, we demonstrate that sustained CD28 costimulation is required for maintenance of antiviral T cells during chronic infection. Low-level CD28 engagement preserved mitochondrial fitness and self-renewal of Tpex, whereas stronger CD28 signaling enhanced glycolysis and promoted Tpex differentiation into TCF-1neg exhausted CD8 T cells (Tex). Furthermore, enhanced differentiation by CD28 engagement did not reduce the Tpex pool. Together, these findings demonstrate that continuous CD28 engagement is needed to sustain PD-1+ CD8 T cells and suggest that increasing CD28 signaling promotes Tpex differentiation into more functional effector-like Tex, possibly without compromising long-term responses.


Assuntos
Antígenos CD28 , Fator 1 de Transcrição de Linfócitos T , Fator 1 de Transcrição de Linfócitos T/genética , Receptor de Morte Celular Programada 1 , Linfócitos T CD8-Positivos , Diferenciação Celular , Fatores de Transcrição
5.
Cancer Cell ; 41(9): 1662-1679.e7, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37625402

RESUMO

Stem-like CD8+ T cells are regulated by T cell factor 1 (TCF1) and are considered requisite for immune checkpoint blockade (ICB) response. However, recent findings indicate that reliance on TCF1+CD8+ T cells for ICB efficacy may differ across tumor contexts. We find that TCF1 is essential for optimal priming of tumor antigen-specific CD8+ T cells and ICB response in poorly immunogenic tumors that accumulate TOX+ dysfunctional T cells, but is dispensable for T cell priming and therapy response in highly immunogenic tumors that efficiently expand transitory effectors. Importantly, improving T cell priming by vaccination or by enhancing antigen presentation on tumors rescues the defective responses of TCF1-deficient CD8+ T cells upon ICB in poorly immunogenic tumors. Our study highlights TCF1's role during the early stages of anti-tumor CD8+ T cell responses with important implications for guiding optimal therapeutic interventions in cancers with low TCF1+CD8+ T cells and low-neo-antigen expression.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Fator 1 de Transcrição de Linfócitos T , Humanos , Anticorpos , Antígenos de Neoplasias , Imunoterapia , Fator 1 de Transcrição de Linfócitos T/genética , Neoplasias/imunologia , Neoplasias/terapia
6.
Cancer Biother Radiopharm ; 38(2): 132-139, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32822226

RESUMO

Background: The procancer effect of TEA domain transcription factor 4 (TEAD4) has been gradually discovered. However, its expression in esophageal cancer (EC) cells and its effect on proliferation and apoptosis have not been reported. In this study, we investigated the possible role of TEAD4 in EC cells. Materials and Methods: TEAD4 messenger RNA and protein expression were assessed in EC cell lines by real-time quantitative-PCR and Western blot. Gene silencing approach was employed to investigate the potential role of TEAD4 in cellular growth, proliferation, migration, and invasion in EC cells. The interaction between TEAD4 and transcription factor 7 (TCF7) was verified by co-immunoprecipitation reaction. The cell apoptosis rates of KYSE-30 cells were detected by flow cytometry. Meanwhile, the expression of apoptosis-related proteins in KYSE-30 cells was detected by Western blot analysis. Results: TEAD4 was significantly increased in EC cell lines, interference of TEAD4 inhibited EC cell viability, invasion, and migration, and promotes apoptosis. TCF7 was found when using STRING website to interact with TEAD4 proteins and TCF7 was significantly increased in EC and knockdown expression of TEAD4 hindered biological function of KYSE-30 cells and this effect was reversed by overexpression of TCF7. Conclusions: The findings concluded that TEAD4 is highly expressed in EC cells and gene silencing of TEAD4 inhibits proliferation and promotes apoptosis of EC cells by regulating TCF7. These findings suggested that TEAD4 might be a novel therapeutic target for the prevention of EC.


Assuntos
Neoplasias Esofágicas , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator 1 de Transcrição de Linfócitos T/genética , Fator 1 de Transcrição de Linfócitos T/metabolismo , Linhagem Celular Tumoral , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proliferação de Células/genética , Inativação Gênica , Apoptose/genética , Fatores de Transcrição de Domínio TEA
7.
Front Immunol ; 13: 985280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211334

RESUMO

T cell immune dysfunction is a prominent characteristic of chronic lymphocytic leukemia (CLL) and the main cause of failure for immunotherapy and multi-drug resistance. There remains a lack of specific biomarkers for evaluating T cell immune status with outcome for CLL patients. T cell factor 1 (TCF1, encoded by the TCF7 gene) can be used as a critical determinant of successful anti-tumor immunotherapy and a prognostic indicator in some solid tumors; however, the effects of TCF1 in CLL remain unclear. Here, we first analyzed the biological processes and functions of TCF1 and co-expressing genes using the GEO and STRING databases with the online tools Venny, Circos, and Database for Annotation, Visualization, and Integrated Discovery (DAVID). Then the expression and prognostic values of TCF1 and its partner gene B cell leukemia/lymphoma 11B (BCL11B) were explored for 505 CLL patients from 6 datasets and validated with 50 CLL patients from Henan cancer hospital (HNCH). TCF1 was downregulated in CLL patients, particularly in CD8+ T cells, which was significantly correlated with poor time-to-first treatment (TTFT) and overall survival (OS) as well as short restricted mean survival time (RMST). Function and pathway enrichment analysis revealed that TCF1 was positively correlated with BCL11B, which is involved in regulating the activation and differentiation of T cells in CLL patients. Intriguingly, BCL11B was highly consistent with TCF1 in its decreased expression and prediction of poor prognosis. More importantly, the combination of TCF1 and BCL11B could more accurately assess prognosis than either alone. Additionally, decreased TCF1 and BCL11B expression serves as an independent risk factor for rapid disease progression, coinciding with high-risk indicators, including unmutated IGHV, TP53 alteration, and advanced disease. Altogether, this study demonstrates that decreased TCF1 and BCL11B expression is significantly correlated with poor prognosis, which may be due to decreased TCF1+CD8+ T cells, impairing the effector CD8+ T cell differentiation regulated by TCF1/BCL11B.


Assuntos
Fator 1-alfa Nuclear de Hepatócito , Leucemia Linfocítica Crônica de Células B , Proteínas Repressoras , Proteínas Supressoras de Tumor , Biomarcadores/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Prognóstico , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fator 1 de Transcrição de Linfócitos T/genética , Fator 1 de Transcrição de Linfócitos T/metabolismo , Fatores de Transcrição , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
8.
Nutr J ; 21(1): 59, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36155628

RESUMO

BACKGROUND: Among candidate genes related to type 2 diabetes (T2DM), one of the strongest genes is Transcription factor 7 like 2 (TCF7L2), regarding the Genome-Wide Association Studies. We aimed to conduct a systematic review of the literature on the modification effect of TCF7L2 on the relation between glycemic parameters and lifestyle factors. METHODS: A systematic literature search was done for relevant publications using electronic databases, including PubMed, EMBASE, Scopus, and Web of Science, from January 1, 2000, to November 2, 2021. RESULTS: Thirty-eight studies (16 observational studies, six meal test trials, and 16 randomized controlled trials (RCTs)) were included. Most observational studies had been conducted on participants with non-diabetes showing that TCF7L2 modified the association between diet (fatty acids and fiber) and insulin resistance. In addition, findings from meal test trials showed that, compared to non-risk-allele carriers, consumption of meals with different percentages of total dietary fat in healthy risk-allele carriers increased glucose concentrations and impaired insulin sensitivity. However, ten RCTs, with intervention periods of less than ten weeks and more than one year, showed that TCF7L2 did not modify glycemic parameters in response to a dietary intervention involving different macronutrients. However, two weight loss dietary RCTs with more than 1-year duration showed that serum glucose and insulin levels decreased and insulin resistance improved in non-risk allele subjects with overweight/obesity. Regarding artichoke extract supplementation (ALE), two RCTs observed that ALE supplementation significantly decreased insulin concentration and improved insulin resistance in the TT genotype of the rs7903146 variant of TCF7L2. In addition, four studies suggested that physical activity levels and smoking status modified the association between TCF7L2 and glycemic parameters. However, three studies observed no effect of TCF7L2 on glycemic parameters in participants with different levels of physical activity and smoking status. CONCLUSION: The modification effects of TCF7L2 on the relation between the lifestyle factors (diet, physical activity, and smoking status) and glycemic parameters were contradictory. PROSPERO REGISTRATION NUMBER: CRD42020196327.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Glicemia , Diabetes Mellitus Tipo 2/genética , Gorduras na Dieta , Ácidos Graxos , Humanos , Insulina , Estilo de Vida , Polimorfismo de Nucleotídeo Único , Fator 1 de Transcrição de Linfócitos T/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética
9.
Cancer Immunol Immunother ; 71(12): 2881-2898, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35460379

RESUMO

BACKGROUND: T-cell longevity is undermined by antigen-driven differentiation programs that render cells prone to attrition through several mechanisms. CD8 + T cells that express the Tcf-1 transcription factor have undergone limited differentiation and exhibit stem-cell-like replenishment functions that facilitate persistence. We engineered human CD8 + T cells to constitutively express Tcf-1 and a TCR specific for the NY-ESO-1 cancer-associated antigen. Co-engineered cells were assessed for their potential for adoptive cellular immunotherapy. METHODS: Tcf-1 mRNA encoding TCF-1B and TCF-1E isoforms, along with GzmB expression were assessed in CD62L + CD57 -, CD62L - CD57 -, and CD62L - CD57 + CD8 + T cells derived from normal donor lymphocytes. The impact of stable Tcf-1B expression on CD8 + T-cell phenotype, anti-tumor activity, and cell-cycle activity was assessed in vitro and in an in vivo tumor xenograft model. RESULTS: TCF-1B and TCF-1E were dynamically regulated during self-renewal, with progeny of recently activated naïve T cells more enriched for TCF-1B mRNA. Constitutive TCF-1B expression improved the survival of TCR-engineered CD8 + T cells upon engagement with tumor cells. Tcf-1B prohibited the acquisition of a GzmB High state, and protected T cells from apoptosis associated with elicitation of effector function, and promoted stem cell-like characteristics. CONCLUSIONS: Tcf-1 protects TCR-engineered CD8 + T cells from activation induced cell death by restricting GzmB expression. Our study presents constitutive Tcf-1B expression as a potential means to impart therapeutic T cells with attributes of persistence for durable anti-tumor activity.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Fator 1 de Transcrição de Linfócitos T , Humanos , Antígenos de Neoplasias , Granzimas/metabolismo , Receptores de Antígenos de Linfócitos T , RNA Mensageiro/metabolismo , Fator 1 de Transcrição de Linfócitos T/genética , Fator 1 de Transcrição de Linfócitos T/metabolismo
10.
Bioengineered ; 13(4): 9135-9147, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34753394

RESUMO

Various studies have manifested that microRNAs (miRNAs) are involved in the modulation of the occurrence and development of osteosarcoma (OS). However, whether miR-22-3p is associated with OS growth remains unclear. In the study, the potential molecular mechanisms of miR-22-3p in OS was explored. It was affirmed that miR-22-3p was associated with distant metastasis and tumor size in OS patients, and reduced in OS tissues and cells while transcription factor 7-like 2 (TCF7L2) was elevated. Elevated miR-22-3p repressed OS cell progression, and the Wnt/ß-catenin pathway, while elevated TCF7L2 was opposite. MiR-22-3p targeted TCF7L2 in OS. In functional rescue experiments, knockdown of miR-22-3p on OS progression and promotion of Wnt/ß-catenin were reversed by simultaneous knockdown of TCF7L2. Transplantation experiments in nude mice showed that elevated miR-22-3p repressed OS tumor growth and decreased TCF7L2, Wnt and ß-catenin. Shortly, this study suggest that miR-22-3p refrains the Wnt/ß-catenin pathway by targeting TCF7L2 and thereby preventing OS deterioration. MiR-22-3p/TCF7L2 axis is supposed to be a candidate molecular target for future OS treatment.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , Proteína 2 Semelhante ao Fator 7 de Transcrição , Via de Sinalização Wnt , Animais , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Osteossarcoma/metabolismo , Fator 1 de Transcrição de Linfócitos T/genética , Fator 1 de Transcrição de Linfócitos T/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
11.
Nat Commun ; 12(1): 4164, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230493

RESUMO

Spi-1 Proto-Oncogene (SPI1) fusion genes are recurrently found in T-cell acute lymphoblastic leukemia (T-ALL) cases but are insufficient to drive leukemogenesis. Here we show that SPI1 fusions in combination with activating NRAS mutations drive an immature T-ALL in vivo using a conditional bone marrow transplant mouse model. Addition of the oncogenic fusion to the NRAS mutation also results in a higher leukemic stem cell frequency. Mechanistically, genetic deletion of the ß-catenin binding domain within Transcription factor 7 (TCF7)-SPI1 or use of a TCF/ß-catenin interaction antagonist abolishes the oncogenic activity of the fusion. Targeting the TCF7-SPI1 fusion in vivo with a doxycycline-inducible knockdown results in increased differentiation. Moreover, both pharmacological and genetic inhibition lead to down-regulation of SPI1 targets. Together, our results reveal an example where TCF7-SPI1 leukemia is vulnerable to pharmacological targeting of the TCF/ß-catenin interaction.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator 1 de Transcrição de Linfócitos T/metabolismo , Transativadores/metabolismo , beta Catenina/metabolismo , Animais , Transplante de Medula Óssea , Carcinogênese/genética , Modelos Animais de Doenças , Feminino , GTP Fosfo-Hidrolases/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Oncogenes , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Fator 1 de Transcrição de Linfócitos T/genética , Linfócitos T/metabolismo , Transativadores/genética , Transcriptoma , beta Catenina/genética
12.
Mol Cancer ; 20(1): 93, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172072

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most common malignant tumours. The recurrence and metastasis of CRC seriously affect the survival rate of patients. Angiogenesis is an extremely important cause of tumour growth and metastasis. Circular RNAs (circRNAs) have been emerged as vital regulators for tumour progression. However, the regulatory role, clinical significance and underlying mechanisms still remain largely unknown. METHODS: High-throughput sequencing was used to analyse differential circRNAs expression in tumour and non-tumour tissues of CRC. In situ hybridization (ISH) and qRT-PCR were used to determine the level of circ3823 in CRC tissues and serum samples. Then, functional experiments in vitro and in vivo were performed to investigate the effects of circ3823 on tumour growth, metastasis and angiogenesis in CRC. Sanger sequencing, RNase R and Actinomycin D assay were used to verify the ring structure of circ3823. Mechanistically, dual luciferase reporter assay, fluorescent in situ hybridization (FISH), RNA immunoprecipitation (RIP) and RNA pull-down experiments were performed to confirm the underlying mechanisms of circ3823. RESULTS: Circ3823 was evidently highly expressed in CRC and high circ3823 expression predicted a worse prognosis of CRC patients. Receiver operating characteristic curves (ROCs) indicated that the expression of circ3823 in serum showed high sensitivity and specificity for detecting CRC which means circ3823 have the potential to be used as diagnostic biomarkers. Functional experiments in vitro and in vivo indicated that circ3823 promote CRC cell proliferation, metastasis and angiogenesis. Mechanism analysis showed that circ3823 act as a competing endogenous RNA of miR-30c-5p to relieve the repressive effect of miR-30c-5p on its target TCF7 which upregulates MYC and CCND1, and finally facilitates CRC progression. In addition, we found that N6-methyladenosine (m6A) modification exists on circ3823. And the m6A modification is involved in regulating the degradation of circ3823. CONCLUSIONS: Our findings suggest that circ3823 promotes CRC growth, metastasis and angiogenesis through circ3823/miR-30c-5p/TCF7 axis and it may serve as a new diagnostic marker or target for treatment of CRC patients. In addition, m6A modification is involved in regulating the degradation of circ3823.


Assuntos
Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/genética , RNA Circular/metabolismo , Fator 1 de Transcrição de Linfócitos T/metabolismo , Adulto , Idoso , Animais , Neoplasias Colorretais/genética , Progressão da Doença , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Neovascularização Patológica/genética , RNA Circular/genética , Transdução de Sinais/genética , Fator 1 de Transcrição de Linfócitos T/genética
13.
FASEB J ; 35(5): e21549, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33913198

RESUMO

T cell factor-1 (TCF-1) (encoded by the TCF7 gene) is a transcription factor that plays important role during the T cell development and differentiation for T cell to exercise its functions including producing memory T cells. Not only TCF-1 can modulate the T cell development but also exerts various effects on the differentiation and function of mature CD8+ T cells. In addition, it drives the production and maintenance of the immune response of CD8+ T cells after PD-1 checkpoint blockade therapy. TCF-1 can serve as a potential target of immunotherapy and may provide promising novel treatment strategies for patients with cancer and infections. Moreover, TCF-1 is a potential biomarker of CD8+ T cell functionality to predict the efficacy of immunotherapy in fighting against cancer and infections. Herein, we summarize the role of TCF-1 in T cell development and its applications in the treatment of cancer and infectious diseases.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Doenças Transmissíveis/terapia , Memória Imunológica , Imunoterapia , Neoplasias/terapia , Fator 1 de Transcrição de Linfócitos T/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Doenças Transmissíveis/imunologia , Regulação da Expressão Gênica , Humanos , Neoplasias/imunologia , Fator 1 de Transcrição de Linfócitos T/genética
14.
Cell Cycle ; 20(5-6): 575-590, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33651649

RESUMO

Hepatoblastoma (HB) is the most commonly seen pediatric liver malignancy. With frequent mutations in CTNNB1 gene that encodes ß-catenin, hepatoblastoma has been considered as a Wnt/ß-catenin-activated malignant tumor. Altered glucose metabolism upon nutrient deprivation (glucose starvation) might also be a critical event in hepatoblastoma carcinogenesis. The present study provides a lncRNA NBR2/miR-22/TCF7 axis modulating proliferation, invasion, migration, and apoptosis of hepatoblastoma cells upon glucose starvation through Wnt and downstream TCF7 signaling pathways. The expression of NBR2 is significantly increased within hepatoblastoma tissue samples; moreover, under incubation with 0 mM glucose (glucose starvation), NBR2 expression is significantly upregulated. NBR2 silencing not only inhibited hepatoblastoma cell viability, invasion, and migration under normal culture condition but also promoted the cell apoptosis under glucose starvation. NBR2 silencing in hepatoblastoma cells also decreased TCF7 mRNA expression and TCF7 protein levels, as well as the protein levels of the cell cycle, glucose entrapment, and EMT markers. miR-22 is directly bound to both NBR2 and TCF7; lncRNA NBR2 counteracted miR-22-mediated repression on TCF7 via acting as a ceRNA. The effects of NBR2 silencing on TCF7 expression, hepatoblastoma cell phenotype, and cell cycle, glucose entrapment, and EMT markers were all significantly reversed by miR-22 inhibition. In conclusion, lncRNA NBR2 aggravates hepatoblastoma cell malignancy through competing with TCF7 for miR-22 binding, therefore counteracting miR-22-mediated repression on TCF7. LncRNA NBR2 might be a promising target to inhibit hepatoblastoma cell proliferation under glucose starvation.


Assuntos
Proliferação de Células/fisiologia , Glucose/deficiência , Hepatoblastoma/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Fator 1 de Transcrição de Linfócitos T/metabolismo , Fatores de Transcrição/metabolismo , Células Hep G2 , Hepatoblastoma/genética , Humanos , MicroRNAs/genética , Ligação Proteica/fisiologia , RNA Longo não Codificante/genética , Fator 1 de Transcrição de Linfócitos T/genética , Fatores de Transcrição/genética
15.
Oncol Rep ; 45(2): 557-568, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33416164

RESUMO

Clinical resistance to ABL tyrosine kinase inhibitor (TKI) imatinib remains a critical issue in the treatment of chronic myeloid leukemia (CML). Transcription factor 7 (TCF7) is one of the main Wnt/ß­catenin signaling mediators. Previous studies have shown that TCF7 is vital for tumor initiation, and targeting TCF7 can reduce drug resistance in many types of cancer. However, the role of TCF7 in CML imatinib­resistant cells is unclear. In the present study, we analyzed the transcriptomic data from CML clinical samples in the Gene Expression Omnibus (GEO) and performed experimental verification in the CML imatinib­resistant cell line K562/G01. We found that the expression of TCF7 was independent of BCR­ABL1 activity. Silencing of TCF7 downregulated the expression levels of CTNNB1, CCND1, and ABCC2, and therefore inhibited proliferation, weakened colony formation, and increased the drug sensitivity of imatinib­resistant cells. After analyzing the transcriptomic data of four groups (Scramble, TCF7_KD, Scramble+imatinib, and TCF7_KD+imatinib) using bioinformatics, we noted that Wnt/ß­catenin and ATP­binding cassette (ABC) transporter signaling pathways were upregulated in imatinib­resistant cells under conventional dose of imatinib, and TCF7 knockdown could neutralize this effect. Next, using ChIP­qPCR, we demonstrated that TCF7 was recruited to the promoter region of ABCC2 and activated gene transcription. In summary, our results highlight that the upregulation of Wnt/ß­catenin and ABC transporter signaling pathways induced by imatinib treatment of resistant cells confers imatinib resistance, and reveal that targeting TCF7 to regulate the Wnt/ß­catenin/TCF7/ABC transporter signaling axis may represent an effective strategy for overcoming imatinib resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Fator 1 de Transcrição de Linfócitos T/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos , Apoptose/genética , Proliferação de Células/genética , Regulação Leucêmica da Expressão Gênica , Humanos , Mesilato de Imatinib/uso terapêutico , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteína 2 Associada à Farmacorresistência Múltipla , RNA-Seq , Fator 1 de Transcrição de Linfócitos T/genética , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
16.
Cancer Immunol Immunother ; 70(6): 1635-1647, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33275172

RESUMO

BACKGROUND: Combined inhibition of BRAF/MEK is an established therapy for melanoma. In addition to its canonical mode of action, effects of BRAF/MEK inhibitors on antitumor immune responses are emerging. Thus, we investigated the effect of these on adaptive immune responses. PATIENTS, METHODS AND RESULTS: Sequential tumor biopsies obtained before and during BRAF/MEK inhibitor treatment of four (n = 4) melanoma patients were analyzed. Multiplexed immunofluorescence staining of tumor tissue revealed an increased infiltration of CD4+ and CD8+ T cells upon therapy. Determination of the T-cell receptor repertoire usage demonstrated a therapy induced increase in T-cell clonotype richness and diversity. Application of the Grouping of Lymphocyte Interactions by Paratope Hotspots algorithm revealed a pre-existing immune response against melanoma differentiation and cancer testis antigens that expanded preferentially upon therapy. Indeed, most of the T-cell clonotypes found under BRAF/MEK inhibition were already present in lower numbers before therapy. This expansion appears to be facilitated by induction of T-bet and TCF7 in T cells, two transcription factors required for self-renewal and persistence of CD8+ memory T cells. CONCLUSIONS: Our results suggest that BRAF/MEK inhibition in melanoma patients allows an increased expansion of pre-existing melanoma-specific T cells by induction of T-bet and TCF7 in these.


Assuntos
Reprogramação Celular , Linfócitos do Interstício Tumoral/imunologia , MAP Quinase Quinase 1/antagonistas & inibidores , Melanoma/imunologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Biomarcadores Tumorais/análise , Regulação Neoplásica da Expressão Gênica , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Prognóstico , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Fator 1 de Transcrição de Linfócitos T/genética , Fator 1 de Transcrição de Linfócitos T/metabolismo , Células Tumorais Cultivadas
17.
Anticancer Agents Med Chem ; 21(12): 1544-1550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33001017

RESUMO

BACKGROUND: G Protein-coupled Receptor 4 (GPR4) has been reported to play essential roles in regulating the proliferation, migration and angiogenesis of vascular endothelial cells. GPR4 is also suggested to play significant roles in the growth and angiogenesis of ovarian cancer. OBJECTIVE: To explore the functions of GPR4 and Transcription Factor 7 (TCF7) in ovarian cancer. METHODS: The expression levels of genes involved in Wnt signaling were validated by quantitative Real-Time- PCR (q-RT-PCR). The effects of GPR4 and TCF7 on ovarian cancer cell invasion and apoptosis were determined using soft agar, transwell assay and flow cytometric assay. Protein levels of beta-catenin, MMP-2 and MMP-9 were evaluated by Western blotting. RESULTS: In this study, we found that GPR4 and TCF7 had the capacity to control cell division by altering cell cycle distribution, anchorage-independent growth, and directional cell motility of ovarian cancer cell A2780. Also, we showed that the knockdown of GPR4 and TCF7 in ovarian cancer cell A2780 induced significant inhibitition of cell growth and invasion, as well as the promotion of apoptosis. Downregulation of TCF7 resulted in the decreased MMP-2 and MMP-9 levels. CONCLUSION: The results implicate that GPR4 behaves like an oncogene and may function through WNT pathway molecule TCF7. Downregulation of GPR4 and TCF7 essentially inhibited cell growth and invasion and enhanced apoptosis of ovarian cancer cells, which may lay a foundation for ovarian cancer treatment.


Assuntos
Regulação para Baixo , Neoplasias Ovarianas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fator 1 de Transcrição de Linfócitos T/metabolismo , Apoptose , Proliferação de Células , Feminino , Humanos , Neoplasias Ovarianas/patologia , Receptores Acoplados a Proteínas G/genética , Fator 1 de Transcrição de Linfócitos T/genética , Células Tumorais Cultivadas
18.
Carcinogenesis ; 42(1): 148-158, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32710739

RESUMO

Artesunate (ART) is a clinically approved antimalarial drug and was revealed as a candidate of colorectal cancer chemopreventive agents in our drug screening system. Here, we aimed to understand the suppressive effects of ART on intestinal tumorigenesis. In vitro, ART reduced T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter transcriptional activity. In vivo, ART inhibited intestinal polyp development. We found that ART reduces TCF1/TCF7 nuclear translocation by binding the Ras-related nuclear protein (RAN), suggesting that ART inhibits TCF/LEF transcriptional factor nuclear translocation by binding to RAN, thereby inhibiting Wnt signaling. Our results provide a novel mechanism through which artesunate inhibits intestinal tumorigenesis.


Assuntos
Polipose Adenomatosa do Colo/prevenção & controle , Artesunato/farmacologia , Carcinogênese/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/patologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Artesunato/uso terapêutico , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Técnicas de Silenciamento de Genes , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Regiões Promotoras Genéticas , Fator 1 de Transcrição de Linfócitos T/genética , Fator 1 de Transcrição de Linfócitos T/metabolismo , Ativação Transcricional/efeitos dos fármacos , Via de Sinalização Wnt/genética , Proteína ran de Ligação ao GTP/antagonistas & inibidores , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo
19.
Immunity ; 53(5): 985-1000.e11, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33128876

RESUMO

Central memory CD8+ T cells (Tcm) control systemic secondary infections and can protect from chronic infection and cancer as a result of their stem-cell-like capacity to expand, differentiate, and self-renew. Central memory is generally thought to emerge following pathogen clearance and to form based on the de-differentiation of cytolytic effector cells. Here, we uncovered rare effector-phase CD8+ T cells expressing high amounts of the transcription factor Tcf7 (Tcf1) that showed no evidence of prior cytolytic differentiation and that displayed key hallmarks of Tcm cells. These effector-phase Tcf7hi cells quantitatively yielded Tcm cells based on lineage tracing. Mechanistically, Tcf1 counteracted the differentiation of Tcf7hi cells and sustained the expression of conserved adult stem-cell genes that were critical for CD8+ T cell stemness. The discovery of stem-cell-like CD8+ T cells during the effector response to acute infection provides an opportunity to optimize Tcm cell formation by vaccination.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/imunologia , Citotoxicidade Imunológica , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Memória Imunológica , Fator 1 de Transcrição de Linfócitos T/metabolismo , Animais , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular/genética , Montagem e Desmontagem da Cromatina , Citotoxicidade Imunológica/genética , Imunofluorescência , Expressão Gênica , Fator 1-alfa Nuclear de Hepatócito/química , Fator 1-alfa Nuclear de Hepatócito/genética , Humanos , Imunização , Memória Imunológica/genética , Imunofenotipagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Conformação Proteica , Baço/imunologia , Baço/metabolismo , Relação Estrutura-Atividade , Fator 1 de Transcrição de Linfócitos T/química , Fator 1 de Transcrição de Linfócitos T/genética
20.
Mol Genet Genomic Med ; 8(12): e1538, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33128433

RESUMO

BACKGROUND: Th17 cells are a newly discovered subset of CD4+ T cells known as key participants in various immune responses and inflammatory conditions including autoimmune diseases. Mi(cro)RNAs are a family of non-coding RNAs that regulate numerous critical immune functions. Immuno-miRNAs modulate cell biological processes in T cells, such as differentiation and function of Th17 cells. The aim of the present study is to investigate the expression of miR-9-5p, miR-193b-3p, and autoimmunity-related genes during human Th17 cells differentiation. METHODS: Human naïve CD4+ T cells were purified from peripheral blood mononuclear cells (PBMCs) by magnetic cell sorting system (MACS) and their purity was checked by flow-cytometric analysis. Naïve CD4+ T cells were cultured under Th17-polarizing condition for 6 days. IL- 17 secretion was determined by means of enzyme-linked immunosorbent assay (ELISA). Next, the expression levels of miRNAs and putative targets genes were assessed by qRT-PCR at different time points of differentiation. RESULTS: Our result showed dramatic downregulation of TCF7, MAP3K1, ENTPD1, and NT5E genes during human Th17 differentiation. Polarization also had a significant inducible effect on the expression of miR-9 and miR-193b over differentiation of human Th17 cells. According to our results, miR-9-5p and miR-193b-3p may contribute to Th17 differentiation probably by inhibiting the expression of negative regulators of Th17 differentiation. CONCLUSION: This study confirmed deregulation of TCF7, MAP3K1, ENTPD1, and NT5E genes in Th17 differentiation process and introduced miR-9 and miR-193b as Th17 cell-associated miRNAs, making them good candidates for further investigations.


Assuntos
Diferenciação Celular , MicroRNAs/genética , Células Th17/metabolismo , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Apirase/genética , Apirase/metabolismo , Células Cultivadas , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/metabolismo , MicroRNAs/metabolismo , Fator 1 de Transcrição de Linfócitos T/genética , Fator 1 de Transcrição de Linfócitos T/metabolismo , Células Th17/citologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA